Lecture 22: Queueing Theory and Discrete-Event Simulation

• Queueing Theory

Note: The QT slides are due to one Harry Perros who has good taste in ideas but bad taste in slide background colors....
• Queueing theory deals with the analysis of queues (or waiting lines) where customers wait to receive a service.

• Queues abound in everyday life!
 – *Supermarket checkout*
 – *Traffic lights*
 – *Waiting for the elevator*
 – *Waiting at a gas station*
 – *Waiting at passport control*
 – *Waiting at a a doctor’s office*
 – *Paperwork waiting at somebody’s office to be processed*
• There are also queues that we cannot see (unless we use a software/hardware system), such as:

 – *Streaming a video*: Video is delivered to the computer in the form of packets, which go through a number of routers. At each router they have to waiting to be transmitted out

 – *Web services*: A request issued by a user has to be executed by various software components. At each component there is a queue of such requests.

 – *On hold at a call center*
Notation - single queueing systems

Queue → Single Server

Queue → Multiple Servers

Multi-Queue → Single Server

Multi-Queue → Multiple Servers
Notation - Networks of queues

Tandem queues

Arbitrary topology of queues
Parameters of interest

You define a queueing system by specifying the following:

- **Service discipline:** How is the queue organized, i.e., FIFO, Priority Queue, etc. (typically FIFO queue).
- **How many servers?** (typically 1)
- **How many queues?** (typically 1)
- **Distribution of arrivals:** Poisson (with exponential inter-arrival times) or general (any distribution) with some mean and standard deviation.
- **Distribution of service times** (how long does each task need the server): Typically Exponential with some mean.
Measures of interest

- **Wait time:** How long does a task wait in the queue?
- **Mean wait time (per task).**
- **Percentile of wait time:** What percent of tasks wait more than period of time t?
- **Mean queue length (= average number of tasks waiting).**
- **Server utilization:** What percentage of time is server busy?
- **System throughput:** How many tasks complete per unit time?

One can also characterize these in terms of distribution, e.g., distribution of the queue length.
The single server queue

Calling population: finite or infinite

Queue: Finite or infinite capacity

Service discipline: FIFO
Queue formation

- A queue is formed when customers arrive faster than they can get served.

- Examples:
 - Service time = 10 minutes, a customer arrives every 15 minutes ---> No queue will ever be formed!
 - Service time = 15 minutes, a customer arrives every 10 minutes ---> Queue will grow for ever (bad for business!)
• Service times and inter-arrival times are rarely constant.
• From real data we can construct a histogram of the service time and the inter-arrival time.
• If real data is not available, then we assume a theoretical distribution.

• A commonly used theoretical distribution in queueing theory is the exponential distribution.
The M/M/1 queue

- M implies the exponential distribution (Markovian)
- The M/M/1 notation implies:
 - *a single server queue*
 - *exponentially distributed inter-arrival times*
 - *exponentially distributed service times.*
 - *Infinite population of potential customers*
 - *FIFO service discipline*
Stability condition

- A queue is stable, when it does not grow to become infinite over time.
- The single-server queue is stable if on the average, the service time is less than the inter-arrival time, i.e.

$$\text{mean service time} < \text{mean inter-arrival time}$$
Behavior of a stable queue
Mean service time < mean inter-arrival time

When the queue is stable, we will observe busy and idle periods continuously alternating
Behavior of an unstable queue
Mean service time > mean inter-arrival time

Queue continuously increases..
This is the case when a car accident occurs on the highway
Arrival and service rates: definitions

- **Arrival rate** is the mean number of arrivals per unit time \(= 1 / (\text{mean inter-arrival time}) \)
 - If the mean inter-arrival = 5 minutes, then the arrival rate is 1/5 per minute, i.e. 0.2 per minute, or 12 per hour.

- **Service rate** is the mean number of customers served per unit time \(= 1 / (\text{mean service time}) \)
 - If the mean service time = 10 minutes, then the service rate is 1/10 per minute, i.e. 0.1 per minute, or 6 per hour.
Throughput

- This is average number of completed jobs per unit.
- Example:
 - The throughput of a production system is the average number of finished products per unit time.
- Often, we use the *maximum throughput* as a measure of performance of a system.
Throughput of a single server queue

- This is the average number of jobs that depart from the queue per unit time (after they have been serviced)
- Example: The mean service time = 10 mins.
 - What is the maximum throughput (per hour)?
 - What is the throughput (per hour) if the mean inter-arrival time is:
 - 5 minutes?
 - 20 minutes?
Throughput vs the mean inter-arrival time.
Service rate = 6

- Stable queue: whatever comes in goes out!
- Unstable queue: More comes in than goes out!
Server Utilization =
Percent of time server is busy = (arrival rate) x (mean service time)

- Example:
 - Mean inter-arrival = 5 mins, or arrival rate is 1/5 = 0.2 per min. Mean service time is 2 minutes
 - Server Utilization = Percent of time the server is busy:
 \[0.2 \times 2 = 0.4\] or 40% of the time.
 - Percent of time server is idle?
 - Percent of time no one is in the system (either waiting or being served)?
Little’s Law

Denote the mean number of customers in the system as L and the mean waiting time in the system as W. Then:

$$\lambda \, W = L$$