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Abstract

A pulmonary fissure is a boundary between the lobes in the lungs. Its segmentation is of clinical interest as it facilitates the assessment
of lung disease on a lobar level. This paper describes a new approach for segmenting the major fissures in both lungs on thin-section
computed tomography (CT). An image transformation called ‘‘ridge map’’ is proposed for enhancing the appearance of fissures on
CT. A curve-growing process, modeled by a Bayesian network, is described that is influenced by both the features of the ridge map
and prior knowledge of the shape of the fissure. The process is implemented in an adaptive regularization framework that balances these
influences and reflects the causal dependencies in the Bayesian network using an entropy measure. The method effectively alleviates the
problem of inappropriate weights of regularization terms, an effect that can occur with static regularization methods. The method was
applied to segment and visualize the lobes of the lungs on chest CT of 10 patients with pulmonary nodules. Only 78 out of 3286 left or
right lung regions with fissures (2.4%) required manual correction. The average distance between the automatically segmented and the
manually delineated ‘‘ground–truth’’ fissures was 1.01 mm, which was similar to the average distance of 1.03 mm between two sets of
manually segmented fissures. The method has a linear-time worst-case complexity and segments the upper lung from the lower lung
on a standard computer in less than 5 min.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

With the widespread use of computed tomography (CT)
and multidetector CT scanners, large volumes of data
reconstructed in thin sections can be produced. These capa-
bilities are not fully utilized due to the large amount of data
that needs to be analyzed. Therefore, automatic or semi-
automatic image analysis systems are being developed to
assist radiologists not only in detection but also qualitative
and quantitative analysis of lung pathology while minimiz-
ing repetitive and tedious aspects of image interpretation
(Ko and Naidich, 2004). To become reliable and useful
1361-8415/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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clinical tools for chest CT analysis, image-based diagnosis
systems must be able to segment and model the lung and
its associated structures accurately. A structure with
important implications for the segmentation of local
areas within the lung is the pulmonary fissure, a three-
dimensional (3D) boundary surface between the lobes of
the lung. The left lung has two lobes separated by a major
fissure, and the right lung has three lobes separated by one
minor, or horizontal, and one major, or oblique, fissure.
This paper describes a method for segmenting the major
fissure on thin-section CT.

Our objective was to develop a fissure segmentation
method that is computationally efficient so that radiolo-
gists need not perform the time-consuming task of identify-
ing the fissure in an entire CT scan. Such a method may
have a key role in computer-aided diagnosis systems for
both the diagnosis and assessment of malignant and benign
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lung disease. In particular, as structures that abut the fis-
sures are frequently pulmonary nodules, identification of
the fissure might benefit existing image analysis systems
for detection (Brown et al., 2001; Ko and Betke, 2001; Shen
et al., 2002; Chang et al., 2004; Farag et al., 2004), segmen-
tation (Mullally et al., 2004; Kuhnigk et al., 2004; Okada
et al., 2004), and registration (Betke et al., 2003) of nodules
which can be an early manifestation of lung cancer. The fis-
sure could also be used as an additional reference to deter-
mine the position of a tumor that moves with respiration
during radiation treatment and thus reduce the amount
of undesirable radiation to surrounding healthy tissue. This
may benefit motion-adaptive radiotherapy (Gierga et al.,
2004), 4D-CT treatment planning (Rietzel et al., 2003),
and image-guided robotic radiosurgery (Adler et al.,
1999). Moreover, since the proposed fissure segmentation
system can provide a visualization of a patient’s upper
and lower lungs, it could be incorporated in teaching soft-
ware for medical professionals, such as interactive anatomy
atlases that provide 3D visualizations of the human body,
e.g. (Golland et al., 1999; Kikinis et al., 1996).

A fissure is formed when the visceral pleura of adjacent
lobes contact each other, with thickness on the order of
0.2 mm. On CT images of 1–3 mm thickness, the fissure
can often be observed as a thin curve with high attenuation
values compared to the surrounding tissues (Fig. 1(a))
(Webb et al., 2001). When a CT scan is viewed in the axial
plane from the upper thorax to the lower thorax, the cross-
section of the major fissure, spanning from the medial to
the lateral side of the lung, appears to move from the pos-
terior to the anterior in both lungs (Fig. 1(e)). This paper
follows common practice and uses the term ‘‘fissure’’ to
refer to the fissure cross-section on axial CT sections, where
applicable.

On CT, a fissure can have a variety of appearances,
which makes its detection and segmentation challenging.
Due to respiratory and cardiac motion, as well as partial
volume effect, a fissure often appears as a ribbon-like struc-
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Fig. 1. Appearances of the major fissure on thin-section CT: (a) fissures appe
with fissure cross-sections. Fissure fragments are circled in (c); (e) sagittal vie
fissure, which separates the surface of the right lung into the upper and lower
ture, several pixels wide (Fig. 1(b)), rather than the more
typical configuration of a thin curvilinear opacity with
sharp edges (Fig. 1(a)). When the fissure appears as a rib-
bon structure, it forms locally bright ‘‘ridges’’ in the axial
images and its exact width is difficult to determine. More-
over, frequently fissures are incomplete on CT (Fig. 1(c))
and lobes also have been described to be partially fused
(Glazer et al., 1991). Detection and segmentation of the fis-
sure is further complicated by ‘‘clutter’’, i.e., structures that
are located adjacent to the fissure, such as small vessels or
nodules. Lastly, the image may also be affected by noise
introduced by the imaging process. Our objective was to
develop a fissure segmentation method that is robust, i.e.,
can handle the range of fissure appearances described
above.

A large body of the literature has been published on seg-
mentation techniques (Haralick and Shapiro, 1985; Pham
et al., 2000), however, few systems have addressed the
problem of segmenting the fissure. Previous methods and
our proposed method have primarily been directed towards
thin-section CT. An exception is the fissure segmentation
method by Wang et al. (2002) which was applied to thicker
section diagnostic CT (5–10 mm thick sections). Kubo
et al. (2001) described detection of major fissures on
1-mm CT sections on a per-section basis. Each CT image
was converted into a binary image with a fixed threshold
of �300 Hounsfield Units (HU) and then analyzed with
morphological operations. Kuhnigk et al.’s method (Kuh-
nigk et al., 2003) first segmented the vascular tree from
the lung parenchyma on chest CT, and then enhanced
the brightness of non-vessel voxels based on their distance
to the vasculature. The resulting images were processed by
an interactive watershed algorithm that achieved the seg-
mentation of the lobes of the lung. Their method relies
on accurate vascular segmentation, which is however very
difficult to achieve in general. No local shape constraints
from neighboring sections or global lung models were used
in the above methods (Kubo et al., 2001; Kuhnigk et al.,
(e)
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2003). Zhang et al. (2006) and Zhang (2002) analyzed 1.2–
3-mm CT sections using a ‘‘ridge operator’’ to enhance the
fissural contrast; in their method, a pulmonary atlas was
used to initialize the fissure segmentation process, then a
region of interest containing the fissure was determined in
each section from segmentation of the previous axial
image. A fuzzy reasoning approach followed by a graph
search was then applied to the regions of interest to seg-
ment the major fissure section by section. The shape con-
straints from the atlas were used for the final fissure
detection as well. Automatic segmentation of the minor fis-
sure has not been well studied yet in previous work (Wang
et al., 2002; Kubo et al., 2001; Kuhnigk et al., 2003; Zhang
et al., 2006; Zhang, 2002).

Difficulties with existing threshold-based techniques for
fissure segmentation relate to the variation of fissure atten-
uation values among sections and within sections
(Fig. 1(a)–(d)). A single fixed threshold on attenuation can-
not be used to identify fissure pixels and distinguish them
from surrounding clutter (Fig. 1(c)). Its use would result
in disjointed fissure fragments. It becomes particularly dif-
ficult to identify the disjointed fragments as belonging to
the same fissure. Similar issues would arise if other low-
level image processing methods such as the Canny edge
detector (Canny, 1986) were applied.

Many higher-level image analysis methods have been
developed for segmenting the objects that have a similar
two-dimensional (2D) appearance as fissures, for instance,
for road detection (Geman and Jedynak, 1996), tongue
tracking (Akgul et al., 1999), and, most notably, vessel
extraction (Aylward and Bullitt, 2002; Aylward et al.,
1996; Frangi et al., 1998; Hinz et al., 2001; Koller et al.,
1995; Krissian et al., 2000; Lorigo et al., 2000; Vasilevskiy
and Siddiqi, 2001). Several methods for vessel segmenta-
tion perform eigenvalue analysis of the Hessian matrix of
the image intensities (Aylward and Bullitt, 2002; Aylward
et al., 1996; Frangi et al., 1998; Koller et al., 1995; Krissian
et al., 2000). Koller et al. (1995), for example, used such a
technique to define multiscale filters to detect vessel struc-
tures in 2D images. Another example is the work by Ayl-
ward and Bullitt (2002), Aylward et al. (1996) who
extracted 3D vessel structures by detecting their ‘‘core’’,
i.e., their medial loci (Damon, 1999; Pizer et al., 1998).
Their method was based on a gradient descent search that
analyzed the eigenvalues of the Hessian matrix on each
voxel. Other vessel segmentation methods (Hinz et al.,
2001; Lorigo et al., 2000; Vasilevskiy and Siddiqi, 2001)
have been based on a widely known technique, the ‘‘snake’’
or active contour method (Kass et al., 1987) that used a
deformable closed-curve spline contour to capture the
boundary of an object in an iterative energy minimizing
process. The deformation of the active contour was guided
by user-introduced constraints, for example, a smoothness
assumption on the object shape, and by properties of the
image data in the region of interest. Subsequent methods
(Berger, 1990; Cohen and Kimmel, 1997; Mortensen and
Barrett, 1995; Williams and Shah, 1992) extended the
active contour method (Kass et al., 1987) to detect open-
curve boundaries with various degrees of human interac-
tions. Other extensions were level set methods (Caselles
et al., 1997; Kichenassamy et al., 1995; Malladi et al.,
1995), which can be used to recognize multiple objects
simultaneously, even under large variability of object
topology. Several works (e.g., Paragios and Deriche,
2002; Yezzi et al., 1999) evolved the object contour based
on the statistics of local image regions instead of image gra-
dients. Geometric-flow methods have been developed to
segment blood vessels by evolving the surfaces based on
the curvatures of vessel centerlines (Lorigo et al., 2000)
or by moving the surface points such that the flux of the
image gradient vector field is maximized (Vasilevskiy and
Siddiqi, 2001).

Addition of boundary smoothness constraints, incorpo-
rated into the energy function, enables the original active
contour method (Kass et al., 1987) to bridge small gaps in
the appearance of the object boundary, which is useful for
segmenting a fissure on CT. However, when large gaps
are present in an image of a boundary, which occurs for fis-
sures on CT, the active contour method (Kass et al., 1987)
often fails. Prior knowledge of boundary shape, however,
can bridge such gaps. Previous methods (Leventon et al.,
2000; Chen et al., 2002; Cremers et al., 2002; Wang and
Staib, 2000) that incorporated prior knowledge of object
shape into the contour deformation process required to
model the objects as closed curves or surfaces. Motivated
by this work and by a contour-growing technique (Berger,
1990), we developed a curve-growing method for fissure seg-
mentation that models the fissure as an open active contour.
The proposed technique differs considerably from the vessel
segmentation work described above as the 3D structures of
fissures and vessels differ significantly, even if their 2D
appearances are similar. The method takes advantage of
the 3D structure of the fissure as a boundary between the
lobes in the lungs: prior shape knowledge obtained from
the segmentation results on neighboring sections guides
the evolution of the active curve. The contribution of the
prior-shape term of the energy function changes adaptively
during the curve growing process based on an image
entropy formulation. To the best of our knowledge, this for-
mulation is unique. It somewhat relates to the idea of com-
puting the image energy adaptively (Ma and Tagare, 1999;
Paragios and Deriche, 2002; Yezzi et al., 1999). Ma and
Tagare (1999) used an image energy term that was adap-
tively computed based on the local arc length of the curve
instead of the traditional global term. Approaches based
on image-region statistics (Paragios and Deriche, 2002;
Yezzi et al., 1999) used mean and variance but not entropy
measurements to compute the image energy adaptively.

The proposed fissure segmentation method was inte-
grated as an individual module in a pulmonary image anal-
ysis system (Wang et al., 2004) that can automatically
segment lung contours on CT. The resulting system can
segment the major pulmonary fissures and provide a visu-
alization of the 3D surfaces of the upper and lower lung
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(Fig. 2). We tested the proposed curve-growing method on
10 thin-section CT scans of 10 patients.

2. Methods

This section starts with an overview of the proposed fis-
sure segmentation system. Subsections follow with details
of the methods developed for this system.

The main steps of the system are shown in Fig. 3(a). In
the initialization step, the fissure is delineated manually on
a CT image, the ‘‘initialization section’’, which is typically
located somewhere in the lower half of the lung. If the fis-
sure appears as a clear curve, existing segmentation
methods (e.g., Berger, 1990) may also be used for auto-
matic initialization (Fig. 3(c)). The initial fissure curve,
denoted as C0, provides information for automatic seg-
mentation of the fissure in nearby sections in the second
step, in which the shape-based curve-growing method are
used. The number of axial sections in a thin-section chest
CT scan is large, often up to several hundreds. For effi-
ciency reasons, the method may only be applied to a subset
of sections. These ‘‘key sections’’ are selected at fixed inter-
vals in the cranio-caudal direction throughout the scan
(Fig. 3(c)). A flowchart of the segmentation process
applied to the key sections is given in Fig. 3(b). In each
key section, the region containing the fissure is first deter-
mined. A series of low-level image processing operations
then produces a ‘‘ridge map’’ of this region to enhance
the appearance of the fissure in the image. The shape-based
curve-growing method can then be applied to this map to
compute the fissures. Linear interpolation is used to gener-
ate the fissures for non-key sections.
3D Fissure Surface

Ridge Map Generation

Fissure Region
Localization

Step 3
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Fig. 3. System diagram of fissure segmentation: (a) overall system; (b) details
sections in the lung.
2.1. Geometric modeling of a fissure and its surrounding

region

This section defines a fissure curve geometrically and
describes how prior knowledge about its shape can be com-
puted and used to identify its surrounding region. Our def-
inition of this region of interest, called the ‘‘fissure region’’,
ensures that it contains the fissure to be segmented.

The 2D fissure cross-section on a CT section with cranio-
caudal coordinate z is referred to as the fissure curve Cz and
represented in the form y = Cz(x), where x is the medial–
lateral direction or horizontal image axis and y is the ante-
rior–posterior direction or vertical image axis. The fissure
curve C can also be represented as a collection of curve seg-
ments C = {S1, . . .,SK, . . .SN}, where SK represents the Kth
curve segment (Fig. 4(c)). The points on curve segment SK

are denoted by fV 0
K ; V

1
K ; . . . ; V L

Kg, where L + 1 is the num-
ber of points in SK. Fissure curves on non-key sections
are generated by interpolation. A fissure curve Cz can be
interpolated from two fissure curves Cz1

and Cz2
by

CzðxÞ ¼ Cz1
ðxÞ þ rðCz2

ðxÞ � Cz1
ðxÞÞ; ð1Þ

where r = (z � z1)/(z2 � z1) and z1 < z < z2. Similarly,
Eq. (1) can be used to extrapolate a fissure curve Cz if
z1 < z2 < z or z < z1 < z2.

In step 1 of the fissure segmentation system (Fig. 3(a)),
initial curve C0 is segmented on the initialization section
I0. In step 2, the fissure region of each key section is located.
First, the fissure region of the first key section I1 at distance
d below I0 is determined as follows. The curve C0 is trans-
lated onto I1 and then translated in the anterior direction
by kd, where k is a constant scale factor. When projected
ns
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of processing step 2; (c) locations of initialization, key, and non-key CT
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into the sagittal plane, gradients of the upper lung surface
are typically oriented at an angle to the cranio-caudal axis
of about 45�. By choosing k = tan(45�) = 1, we can thus
approximate a translation along the gradient direction of
the upper lung surface. The translated curve is denoted by
C�1. Symbol * indicates that the curve provides prior shape
information for segmentation of the fissure in I1. Prior curve
C�1 is used to define the fissure region of I1. The region con-
tains all lung voxels of section I1 with C�1ðxÞ � bh=2c 6
y 6 C�1ðxÞ þ bh=2c, for some constant h (Fig. 4(d)). The fis-
sure region of a subsequent key section It can be identified
by combining the information of two previously segmented
curves, e.g., the initial curve C0 and the fissure C1 segmented
on I1. In general, the prior curve C�t on It is extrapolated
from the curves C1 and C2 on some nearest sections I1

and I2 using Eq. (1) (Fig. 4) with z1 < z2 < zt or zt < z1 < z2.
The fissure region of section It is then computed using C�t as
in the previous case. Values for the parameters d, k, and h

were chosen by experimentation as described in Section 3.
The experiments took into account the general size, posi-
tion, and shape of human lung lobes, as well as the resolu-
tion of the given thin-section CT data sets.

2.2. Identifying fissure candidate pixels on ridge map of
fissure region

An image enhancement operation was developed to sup-
port the detection of fissures on thin-section CT. It is par-
ticularly useful as a pre-processing technique when the
fissure appears as a curvilinear structure of a certain width.
The approach generates a ridge map Iu in three steps
(Fig. 5) and then identifies fissure candidate pixels. First,
the fissure region I is smoothed by applying a 3 · 3 Gauss-
ian operator G (Jain et al., 1995) such that IG = I � G,
where � denotes convolution. Second, based on the convo-
lution of Sobel masks ($x, $y) (Jain et al., 1995) with IG, a
map I$ = sign ($y � IG) (j$x � IGj + j$y � IGj), containing
the signed magnitude of the gradient is defined, where
sign( ) is a function returning 1 on a positive input and
�1 on a negative. The sign function was chosen so that
the gradient map I$ can provide directional information
about the image gradient in the anterior–posterior direc-
tion (y-direction). Third, the ridge operator u is applied
to I$ which yields the ridge map

Iu ¼ signðuy � IrÞðjux � Irj þ juy � IrjÞ: ð2Þ
Since the gradient map I$ was defined so that it can main-
tain directional information, the sign function in the above
definition of the ridge map Iu (Eq. (2)) can distinguish
high-attenuation ridges from low-attenuation valleys.

Ridge maps significantly enhance the appearance of
fissures as can be seen for two examples in Figs. 5 and 6.
Ideally, their local maxima of a ridge map along the ante-
rior–posterior direction (y-direction) correspond to the pix-
els of the fissure on CT. However, some local maxima may
represent pixels on non-fissure structures, e.g., vessels,
which can be identified by evaluating the orientation of
the ridge vector (ux � I$, uy � I$) at these pixels. Fissure
pixels have ridge vectors that point in the direction perpen-
dicular to the fissure curve (y-direction), i.e., [p/4:3p/4],
because the fissure is generally aligned in the medial–lateral
direction. Pixels on ridges whose ridge vectors point in a
direction outside of this range are considered clutter and
can be removed. This is done in step 2 of the fissure seg-
mentation system. The connected components of the
remaining pixels are computed, and pixels in small compo-
nents are removed. The remaining pixels are considered
candidate pixels for the fissure curve in the proposed
curve-growing segmentation methods.

The proposed ridge map operator provides a simple and
efficient way to enhance the appearance of fissures on CT.
Other derivative-based transformations might produce
similar enhancements, for example, the work by Koller
et al. (1995), Aylward and Bullitt (2002, 1996), Krissian
et al. (2000), and Frangi et al. (1998).
2.3. Shape-based curve growing method

In this section, a method for segmenting fissures is
described that grows the curve segment by segment, as in Wil-
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liams and Shah’s greedy search (Williams and Shah, 1992), in
each step locating a curve segment that minimizes an energy
function. Our method evaluates the following energy func-
tion to estimate the position of the Kth segment of the curve:

EK ¼ aKfshape þ bfimg þ cfcurv; ð3Þ
where function fshape measures the shape similarity between
current and prior curves, function fimg the ‘‘image energy’’
of the current curve, and function fcurv the curvature of
the current curve (detailed definitions are given in Section
2.3.2). Our formulation differs from previous approaches
in the literature, e.g. (Berger, 1990; Chen et al., 2002; Leven-
ton et al., 2000; Wang and Staib, 2000; Williams and Shah,
1992), in that we chose an adaptive parameter aK, in addi-
tion to two fixed regularization parameters b and c, to weigh
the contributions of the three terms in the energy function.

The CURVE GROWING ALGORITHM takes as inputs the prior
shape curve C* and the image data in the ridge map Iu
(Sections 2.1 and 2.2). The original image data I or other
transformations of it can also be used, so the subscript u
is dropped in the description of the algorithm. The
algorithm locates C by adding curve segments SK,
K = 2, . . .,N, one at a time, to the initial segment S1. The
method for finding an initial curve segment in step 2 of
the algorithm is described in Section 2.3.1. Segment SK is
estimated in step 3–9 by evaluating previously estimated
segment bS K�1, prior curve segments S�K and S�K�1, and a
set of n candidate segments fSi

Kg
n
i¼1 that collectively define

the image region of interest IK (Fig. 7 and Section 2.3.2).
The entropy-based computation of the regularization
parameter aK is described in Section 2.3.3. The computa-
tional complexity of the algorithm is linear in the number
of pixels of the fissure region.
2.3.1. Curve initialization

The objective of the curve initialization process is to
identify an initial curve segment bS 1 among the set fSj

1g of
connected components of fissure candidate pixels that were
determined by the method described in Section 2.2. This is
difficult because, at this early step in the CURVE GROWING

ALGORITHM, it is not known whether a particular segment
Sj

1 belongs to the final fissure curve. The proposed method
uses confidence weights to determine if a

CURVE GROWING ALGORITHM (C*,I)

1. Initialize K = 1, length L = 5, sample size n = 7, and
regularization parameters b = 0.5 and c = 0.1.

2. Estimate initial curve segment bS1.
3. Grow curve C from bS 1 rightwards until right lung

boundary is reached by repeating:
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K computed for the candidate segments.
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4. K = K + 1;
5. Locate curve segment SK to the right of ŜK�1 such

that fcurvðSK ; ŜK�1Þ ¼ fcurvðS�K ; S�K�1Þ.
6. Define candidate segments fSi

Kg
n
i¼1 such that SK is

middle segment.
7. Compute entropy HðSK jIK ; bS K�1Þ based on samples
fSi

Kg
n
i¼1.
8. Compute regularization parameter aðIK ; bS K�1Þ based
on HðSK jIK ; bS K�1Þ.

9. Estimate curve segment bS K ¼ arg minSi
K
½aðIK ; bSK�1Þ

ðSi
K ;
bS K�1;C

�
KÞ þ bfimgðSi

KÞ þ cfcurvðSi
K ;
bS K�1Þ�.

10. Grow curve from bS 1 leftwards until left lung bound-
ary is reached (as in step 3–9).

11. Output C.
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segment is a fissure or non-fissure segment (Fig. 8(a)). For
each segment Sj

1, the prior curve C* is translated in the
anterior–posterior direction so that it overlays the centroid
of Sj

1. The resulting curve is denoted by C�ðjÞ. A confidence
weight W j ¼

P
v2C�ðjÞ

IðvÞ is then calculated for each segment
Sj

1 by accumulating a normalized ridge map value of each
point on curve C�ðjÞ. The ridge value is normalized by the
maximum ridge map value among all pixels with the same
medial–lateral position (i.e., same image column). The nor-
malization balances the amount that pixels at different
medial–lateral positions (i.e., different columns) contribute
to the confidence weights. The segment with the highest
confidence weight Wmax is selected and identified as the ini-
tial curve segment Ŝ1.

2.3.2. Energy function derived by maximum a posteriori

estimation

In this section, the energy function used in step 9 of the
CURVE GROWING ALGORITHM (Eq. (3)) is derived based on
Bayesian estimation theory. The approach is illustrated
with Bayesian networks (Pearl, 1988), which have been
applied to many applications that involve reasoning pro-
cesses. A Bayesian network was developed in which the
prior shape curve C* and the image data I are random vari-
(a) (b)

I

S

I *C

C

1

S

S

S

N

K

2

Fig. 9. A hierarchy of Bayesian networks for curve growing: (a) random va
information about fissure shape C* and image data I; (b) random variable SK,
data I, prior curve C* and previous curve segment SK�1; (c) random variable SK

SK�1 and the set C�K of corresponding points on the prior curve.
ables that are ‘‘causal predecessors’’ of the random variable
C, the curve to be estimated (Fig. 9(a)). Segmenting the
curve C is then equivalent to finding the maximum-a-
posteriori (MAP) estimate bC that maximizes the condi-
tional probability density p(CjC*,I) for the prior shape C*

and the observed image data I (font ‘‘roman’’ is used to
denote random variables, font ‘‘italics’’ to indicate that
the random variable has taken on a particular value, and
symbol � to describe that such a value was estimated by
the proposed method). Each segment SK of the curve C is
also modeled as a random variable which is assumed to
be only dependent on the most recently added curve seg-
ment SK�1 and not on earlier segments. This ‘‘Markov
assumption’’ (Pearl, 1988) on consecutive curve segments
yields the Bayesian network shown in Fig. 9(b). Segment-
ing the fissure is then equivalent to finding the curve bC that
maximizes of the conditional probability

pðCjC�; IÞ ¼ pðS1; S2; . . . ; SN jC�; IÞ
¼ pðS1jC�; IÞpðS2jS1;C

�; IÞpðS3jS2;C
�; IÞ . . .

� pðSN jSN�1;C
�; IÞ: ð4Þ

We assume that the initial curve segment bS 1, estimated
as described in Section 2.3.1, maximizes p(S1jC*,I). It then
(c)

IK
*CK

*C

I

IN
*
NC
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I *C2 2
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 1S

riable C, representing the curve to be estimated, is influenced by prior
representing the Kth curve segment to be estimated, is influenced by image
, K = 2, . . .,N, is influenced by local image data IK, previous curve segment
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remains to be explained why each segment bS K , computed in
step 9 of the algorithm, maximizes the conditional proba-
bilities pðSK jbS K�1;C

�; IÞ, for K = 2, . . .,N. Each term
pðSK jbSK�1;C

�; IÞ can be rewritten as pðSK jbSK�1;C
�
K ; IKÞ to

indicate the dependence of SK on the local attenuation
measurements IK and the set of points C�K on prior curve
C* that correspond to the points on segments SK andbSK�1 of curve C (Fig. 9(c)). Bayes’ rule yields

pðSK jbSK�1;C
�
K ; IKÞ ¼ pðIK jSK ; bS K�1ÞpðC�K jSK ; bS K�1; IKÞ

� pðbSK�1jSKÞpðSKÞ=pðbSK�1;C
�
K ; IKÞ;

ð5Þ

where the normalizing factor pðbSK�1;C
�
K ; IKÞ is irrelevant to

estimating segment SK, and where the prior p(SK) is consid-
ered to be uniform. Finding the segment bSK that maximizes
pðSK jbSK�1;C

�
K ; IKÞ then means finding bS K that maximizes

the product pðIK jSK ; bS K�1ÞpðC�K jSK ; bS K�1; IKÞpðbSK�1jSKÞ.
The remainder of this section describes the respective rela-
tionships between these three probability functions to the
image energy, shape similarity, and curvature terms fimg,
fshape, and fcurv of the energy function.

First, it is reasonable to assume that the curve segment of
the fissure should be on the high-attention ridges in the ridge
map. The pixels V0

K ;V
1
K ; . . . ;VL

K belonging to the curve seg-
ment SK are therefore likely to have larger ridge values
IðV0

KÞ; . . . ; IðVL
KÞ than neighboring pixels. The sum of atten-

uation values along the segment can be bounded from above
and below by the constants Imax and Imin (±2 · 106 HU).
The expression fimgðSKÞ ¼ Imax �

PL
j¼1IðVj

KÞ can then be
used to define the image energy of segment SK and to model
pðIK jSK ; bS K�1Þ by the truncated exponential density
function

pðIK jSK ; bS K�1Þ ¼ q exp
XL

j¼0

IðVi
KÞ � Imax

 !
¼ q exp ð�fimgðSKÞÞ; ð6Þ

where q = 1/(1 � exp(Imin � Imax)) is a constant normali-
zation factor.

Second, the fissure surface changes smoothly in the med-
ial–lateral direction, and thus the curvature is small at each
spline point of the fissure curve and zero at each non-spline
point (see Fig. 7). The curvature of spline point bV L

K�1 ¼ V0
K

can be approximated (Williams and Shah, 1992) by the
squared length of the vector bV 0

K�1 þ VL
K � 2V 0

K , which is

the difference between vector bV 0
K�1 � bV L

K�1 along segmentbSK�1 and vector V 0
K � VL

K along SK. Using the curvature

expression fcurvðSK ; bS K�1Þ ¼ kbV 0
K�1 þ VL

K � 2V 0
Kk

2, the con-

ditional probability pðbSK�1jSKÞ is then modeled by the
zero-mean Gaussian density function of the square root
of the approximated curvature fcurv at point V 0

K ,

pðbSK�1jSKÞ ¼
1ffiffiffiffiffiffi

2p
p

rc

exp � fcurvðSK ; bS K�1Þ
2r2

c

 !
; ð7Þ

with constant variance r2
c .
Third, the fissure surface also changes smoothly in the
cranio-caudal direction. The difference between curvature
fcurv(SK,SK�1) at V 0

K and curvature fcurvðS�K ; S�K�1Þ at corre-
sponding point V �0K on prior curve segments S�K and S�K�1 is
used to define the shape similarity fshapeðSK ; SK�1;C

�
KÞ of

the current and prior curves. The corresponding point
V �0K is found by searching for the closest point on C*,
i.e., the point with the smallest Euclidean distance to V 0

K

(Fig. 7). Using the shape similarity expression fshape

ðSK ; SK�1;C
�
KÞ ¼ ðfcurvðS�K ; S�K�1Þ � fcurvðSK ; SK�1ÞÞ2, the con-

ditional probability pðC�K jSK ; bS K�1; IKÞ is then modeled by

the zero-mean Gaussian density function of the square
root of the approximated shape similarity fshape between
points V 0

K and V 0�
K ,

pðC�K jSK ; bS K�1; IKÞ ¼
1ffiffiffiffiffiffi

2p
p

rðIK ; bS K�1Þ

� exp � fshapeðSK ; bS K�1;C
�
KÞ

2r2ðIK ; bS K�1Þ

 !
; ð8Þ

where the variance r2ðIK ; bS K�1Þ is modeled as a function
of the observed attenuations IK and the estimated curve
segment bS K�1. Note that modeling this functional depen-
dence allows us to be consistent with the Bayesian net-
work in Fig. 9(c). In particular, the shape similarity
measure can only have a small variance in situations,
where the attenuation values in region IK are very similar
or, where the curve is not smooth. Conversely, the shape
similarity measure can have a large variance in situations,
where the fissure curve is smooth or, where there is
strong evidence for the location of curve segment SK in
image region IK. To capture these insights about estima-
tion uncertainty, we propose an entropy formulation for
modeling the variance r2ðIK ; bS K�1Þ in Section 2.3.3.

The segment bSK that maximizes pðSK jbS K�1;C
�
K ; IKÞ (Eq.

5) also maximizes the logarithm of the product
pðC�K jSK ; bS K�1; IKÞpðIK jSK ; bSK�1ÞpðbSK�1jSKÞ. This is equiva-
lent to minimizing the sum

1

2r2ðIK ; bS K�1Þ
fshapeðSK ; bS K�1;C

�
KÞ þ fimgðSKÞ

þ 1

2r2
c

fcurvðSK ; bS K�1Þ ð9Þ

of the arguments of the exponential functions in Eqs. (6)–
(8). Since the relative weights of the three terms matter
rather than their absolute values, the energy function can
be rewritten as:

aðIK ; bSK�1ÞfshapeðSK ; bS K�1;C
�
KÞ þ bfimgðSKÞ

þ cfcurvðSK ; bS K�1Þ: ð10Þ

with regularization parameters aðIK ; bS K�1Þ, b and c. The
values for the fixed parameters b and c were chosen by
experimentation as described in Section 3, while
aðIK ; bSK�1Þ is determined as described in the following
section.
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2.3.3. Adaptive regularization via entropy computation

Ill-suited values for regularization parameters
aðIK ; bS K�1Þ, b and c can lead to undesirable results of the
energy minimization process. For instance, if parameter
aðIK ; bS K�1Þ is assigned a value that is too large for a situa-
tion in which the current and prior fissure shapes are quite
different, the shape of prior curve C* may overly influence
the estimation of curve bC . On the other hand, if parameter
aðIK ; bS K�1Þ is assigned a value that is too small, noise or
clutter in the image may overly influence the estimation
of curve bC . Optimal regularization factors can be learned
by various approaches, e.g., a cross-validation method
(Li, 1995) that requires a large amount of computation
before the segmentation process, and the resulting param-
eters are then static during the segmentation process.
Instead of using such a static regularization mechanism,
we propose to determine the values of aðIK ; bSK�1Þ adap-
Fig. 10. Image features, entropy and adaptive regularization: (a) regions
(c) corresponding ridge maps; (d) normalized entropy H 0 along the curve; (
correspond to high uncertainty for curve localization, which is represented as t
and their relevant values in the graph are circled in (c)–(e).
tively during the curve growing process while parameters
b and c remain fixed.

To derive an expression for adaptive regularization
parameter aðIK ; bSK�1Þ, which is inversely proportional to
the variance r2ðIK ; bSK�1Þ of the shape similarity measure,
we define the entropy (Shannon, 1948) of SK, given IK

and bSK�1:

HðSK jIK ; bS K�1Þ ¼ �
Xn

i¼1

ðpðSi
K jIK ; bS K�1Þlog2 pðSi

K jIK ; bS K�1ÞÞ;

ð11Þ
where Si

K is the ith sample of SK in IK (Fig. 7) and, where

pðSi
K jIK ; bSK�1Þ ¼ pðIK jSi

K ;
bSK�1ÞpðbS K�1jSi

KÞpðSi
KÞ=pðIK ; bS K�1Þ:

ð12Þ
The product pðIK jSi

K ;
bS K�1ÞpðbSK�1jSi

KÞpðSi
KÞ can be com-

puted using Eqs. (6) and (7) and pðSi
KÞ ¼ 1=n. The joint
of interest in original CT images; (b) ground–truth fissure curves;
e) corresponding value of a along the curve. Ambiguous image features
he large values of H 0 and a. The corresponding locations in the ridge map
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probability pðIK ; bSK�1Þ is a normalizing constant and equal
to
P
ðpðIK jSi

K ;
bSK�1ÞpðbSK�1jSi

KÞÞ=n, because, for given IK

and bS K�1, the summation of pðSi
K jIK ; bS K�1Þ must be equal

to 1.
Note that the maximum entropy, or the greatest uncer-

tainty in estimating SK, occurs when pðSi
K jIK ; bS K�1Þ ¼ 1=n

for each of the n samples. The entropy ranges from 0 to
logn, and thus H 0 = H/logn ranges from 0 to 1. By exper-
iments, we determined that values of this normalized
entropy H 0 below k = 0.5 occur when the fissure curve
appears clearly in the image region IK. For such cases, we
assigned the value of � = 0.2 to the adaptive regularization
parameter aðIK ; bSK�1Þ, which ensures that the shape prior
has a low weight in the energy computation. For values
of H 0 above k = 0.5, i.e., situations with greater uncertainty
in estimating SK, we used a rescaled value of H 0, in
particular,

aðIK ; bS K�1Þ ¼ maxf�; ðHðSK jIK ; bS K�1Þ= log n� kÞ=ð1� kÞg;
ð13Þ

which ensures that the prior shape has a large weight in the
energy computation. Examples of normalized entropy val-
ues H 0 and corresponding value of a along the fissure curve
are given in Fig. 10.

For computational convenience, our current implemen-
tation of entropy HðSK jIK ; bSK�1Þ stressed the image influence
modeled by pðIK jSi

K ;
bS K�1Þ and considered the curve smooth-

ness to be less important, i.e., using a uniform distribution
for pðbSK�1jSi

KÞ. As a result, the entropy HðSK jIK ; bS K�1Þ is
approximated by computing �

Pn
i¼1ðpðIK jSi

K ;
bS K�1Þlog2 p

ðIK jSi
K ;
bS K�1ÞÞ instead of Eq. (11).
Table 1
Results of fissure segmentation on 10 CT scans: automatic segmentation was
sections

Patient Number of
sections
in CT scan

Lung Number of
fissure
sections, NT

Number of sections segmented

Curve
growing, NC

Manual
marking, NM

1 322 Right 195 192 3
Left 246 245 1

2 269 Right 163 159 4
Left 181 177 4

3 274 Right 155 149 6
Left 179 173 6

4 297 Right 164 159 5
Left 186 184 2

5 259 Right 136 132 4
Left 179 178 1

6 233 Right 125 39 2
Left 148 46 4

7 301 Right 135 42 4
Left 121 38 3

8 304 Right 166 51 5
Left 148 45 5

9 307 Right 160 49 5
Left 190 61 3

10 324 Right 146 44 5
Left 163 46 6

Manual segmentation was performed on NM sections, which includes the initi
3. Experimental results

This section summarizes the results of two kinds of
empirical studies: (1) experiments that used the curve-
growing method to segment the pulmonary fissures on
CT scans of 10 patients, and (2) tests that supported the
development of the proposed method, in particular, the
selection of parameter values.

The major pulmonary fissures were segmented on 10
1.25-mm-section CT scans of patients with pulmonary
nodules (see Table 1). A total of 2890 sections were pro-
cessed. The average number of sections per CT scan was
288. On average, the number of sections per CT scan with
left lung fissures was 174 and with right lung fissures was
155. The curve-growing method was applied to every sec-
tion of the first five CT scans (processing mode 1) and
every third section for the remaining five CT scans (pro-
cessing mode 2). Fig. 11 shows the lungs of five patients,
each with two lobes separated by the major fissures. The
results of the curve-growing method on each key section
were either confirmed by visual inspection or manually
corrected if the method failed to delineate a complete fis-
sure curve. Manual correction took 5–20 s depending on
the length of the curve on a given section. The proposed
segmentation method was successful in the sense that only
78 out of 3286 left or right lung regions with fissures
(2.4%) required manual correction (see Table 1). The
degree of automation for a CT scan, computed by the
ratio of the number of sections in which a fissure curve
was produced without human correction over the total
number of sections with fissures, was thus 97.6%, on
average.
performed on NC of the key sections and NI = NT � (NC + NM) non-key

by Degree of
automation
NT�NM

NT
ð%Þ

Voxel
width
(mm)

RMS distance
(mm)

Standard
deviation of
distance (mm)

Interpolation,
NI

– 98 0.74 1.30 1.06
– 99
– 98 0.55 1.31 0.85
– 98
– 96 0.59 2.15 1.59
– 97
– 97 0.57 1.67 1.15
– 99
– 97 0.55 1.33 0.81
– 99
84 98 0.62 1.05 0.79
98 97
89 97 0.54 0.75 0.68
80 98

110 97 0.68 0.92 0.77
98 97

106 97 1.00 1.50 1.22
126 98
97 96 1.00 1.77 1.19

111 96

alization section.



Fig. 11. The lungs of patients 1, 2, 6, 8, and 9 with lobes segmented by the curve-growing method. Each lung surface contour is separated into two parts at
the points, where the fissure curve joined the lung contour. For the left lungs, the upper lung contours and segmented fissure curves form the surface of the
upper lobe of the lung (light gray) and the lower lung contours and fissure curves form the surface of the lower lobe of the lung (dark gray). The right lungs
are visualized similarly, except that each upper lung is a combination of the patient’s right upper lobe and middle lobe as the minor fissure was not
segmented.
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To evaluate the accuracy of the curve-growing method,
we compared the curves delineated by a human expert,
which serve as a gold standard, with automatically seg-
mented curves. A distance measure computes the root-
mean-square (RMS) value and standard deviation of the
distances between all pairs of corresponding points on
the curves with the same coordinate value in the medial–
lateral direction. Accuracy results based on the distance
measure are reported in Table 1. In each CT scan, 20 major
fissures, which were segmented automatically, were ran-
domly selected in left or right lung cross-sections. The aver-
age RMS value of 1.38 mm and standard deviation of
1.01 mm of the distances between ground and truth curves
and these automatically segmented curves were small com-
pared to the average voxel width of the CT image, which
was 0.68 mm. We conclude that the fissures segmented by
the curve-growing method on average approximates the
gold standard closely.

The performance of the proposed segmentation method
is illustrated in Figs. 12–16. Intermediate results during the
curve-growing process are shown in Figs. 12 and 13. A
comparison of curve-growing results with results obtained
by using the method in Berger (1990) are shown in Figs.
C*

(a)

(e) (f)

(b)

Fig. 12. Curve growing example: (a) fissure region with large nodule; (b) prio
initialization; (d) initial segment after initialization. This segment is chosen inste
4, 8, 16 and 18.

Fig. 13. Comparison of methods: top: intermediate results at iterations 2,
pulmonary nodule. Bottom: results using the method in Berger (1990), which
13 and 14. An example, where manual correction was
required is shown in Fig. 15. Cases with large RMS values
are shown in Fig. 16.

The need for manual correction does not differ signifi-
cantly between the two modes of processing (i.e., without
interpolation as reported for patients 1–5 in Table 1 and
with interpolation as for patients 6–10); the respective
results for the average degree of automation for the two
modes were 97.9% and 97.2% (p-value > 0.2). The need
for visual inspection, however, differed significantly: on
average, 175 sections were segmented by the curve-growing
method in mode 1 and only 46 sections in mode 2. On a
work station with a 2 GHz dual processor with 2 GB mem-
ory, it took 2:35 min to segment the CT scan of patient 6 in
mode 1, which included human markings on one section. It
took 1:25 min to segment the same CT scan in mode 2,
which included human markings on two sections. This tim-
ing difference is typical for our data. If segmentation effi-
ciency is a concern, processing mode 2 may be preferred
to processing mode 1.

In addition to processing modes 1 and 2, we tested other
modes to determine if it would be advised to use even fewer
key sections and rely more heavily on interpolated curves.
(c)

(g) (h)

(d)

r shape C*; (c) corresponding ridge map and candidate segments before
ad of the longer one, circled in (c); (e)–(h) intermediate results at iterations

6, 18, 20 and 24. The curve-growing method successfully bypassed the
did not bypass the nodule correctly.



(d)

(c)

(b)

(a)

(1) (2) (3) (4) (5) (6) (7)

Fig. 14. Challenging segmentation scenarios: (a) seven fissure regions on the original CT images from four patients which include a significant amount of
clutter; (b) segmented curves by proposed method; (c) segmented curves by method in Berger (1990); (d) ground–truth curves. While the segmentations in
(1b) and (1c) are similar, the results in (2c–7c) are clearly inferior to the curve-growing results in (2b–7b) since the method in Berger (1990) relied on the
image intensities only and did not take advantage of prior information about curve shape. Ground–truth for image (7a) was difficult to establish in the
region marked by the arrow in (7d). The fissure segmentation in (7b) is more likely than in (7c) based on the segmentation results from neighboring
sections.

(1) (2) (3) (4) (5)

Fig. 15. Example, where human correction was required: (1–3) the fissure regions (top) and curves (bottom) on three previously segmented key sections;
(4) the fissure region on the current key section. The distance between each key section shown in (1–4) is 2.5 mm; (5) the fissure curve segmented by the
proposed method (top) and the manually marked curve (bottom) on the current key section shown in (4); the differences in shape of the segmented curves
in sections (1–4) were mainly due to the bright lung structure highlighted by black arrows, which led to an incorrect segmentation on the current key
section that required manual correction. The image region marked on (4) by the white arrow indicates the right location of the fissure curve.

(1a) (1b) (2a) (2b) (3a) (3b)

Fig. 16. Examples with large RMS distances between ground–truth and segmented curves: (1a–3a) three fissure regions on CT of patient 3 and 4; (1b–3b)
automatically (top) and manually (bottom) segmented fissure curves.
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In this experiment, the sections of a CT scan were sampled
at different, uniform rates, first every section became a key
section, then every third, etc., up to every eleventh. This
resulted in a key section distance d ranging from 1.25 mm
to 13.75 mm. As expected, the further the key sections were
apart, the more human corrections were needed and the
larger the RMS value and standard deviation of the dis-
tance between segmented and ground–truth curves became
(Table 2). In this experiment, we also applied another mea-
sure of accuracy, the overlap measure, which is defined to
be the percentage of pairs of corresponding points on the
curves whose distance is less than two voxels in the anterior
or posterior direction (we did not require an exact match of
voxels, i.e., a distance of zero, in order to focus on the more
salient differences between the two curves). The overlap
between the segmented and ground–truth curves, as
reported in Table 2, decreased with the increase in the num-
ber of fissures that were segmented by interpolation. Based
on the results obtained using both accuracy measures and
the number of sections in which human markings were
necessary, we concluded that sampling rates of every fifth
or more sections are not advised. The accuracy measure-
ments reported in Table 2 for the sampling rates less or
equal to 3 are similar to the results we obtained by compar-
ing two sets of manual markings by the same person – a
RMS distance of 1.03 mm and a 93% curve overlap. This
considerable intra-observer variability indicates that we
cannot expect a higher level of accuracy than the accuracy
of our curve-growing method, which resulted in an average
RMS distance of 1.38 mm for all 10 CT cases.

To evaluate the sensitivity of the proposed method to
variations in the shape of the prior curve, we deliberately



Table 2
Comparison of segmentation results from different processing modes and by a second manual marking: the fissure of the right lung of patient 6 was
segmented on 121 CT sections in six different processing modes

Key section
sampling rate

Number of sections segmented by Degree of overlap
with M1 (%)

RMS distance
to M1 (mm)

Standard deviation of
distance to M1 (mm)Curve growing Human marking Interpolation

1 120 1 0 91 0.98 0.73
3 39 2 80 88 1.36 1.20
5 20 6 95 85 1.37 1.14
7 13 6 102 85 1.17 0.89
9 11 4 106 77 1.47 1.12

11 5 7 109 82 1.43 1.15

Number of sections manually marked (M2): 121 93 1.03 0.87

The last row provides a comparison between M1 and a second manual marking M2.
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marked relatively inaccurate prior curves on 20 sections
that were randomly chosen from the CT scans of two
patients. Fig. 17(1c)–(g) shows an example, where the aver-
age RMS distance between such curves and carefully
drawn curves was 2.2 mm, i.e., more than three times the
width of a voxel. Even with such inaccurate prior curves,
the curve-growing method was able to segment the fissure
curves in a subsequent key section accurately (with RMS
distance 0.51 mm). The robustness of the curve-growing
method, shown with this example, is important for cases
when the fissure is drawn inaccurately on the initialization
section or key sections, where human interaction is needed.

An experiment involving the CT scans of three patients
was conducted to verify that the prior curve is translated
into a current key section appropriately using the parame-
ter value k = 1. In this experiment, we inspected the anat-
omy of each patient’s lung lobes; in particular, we
evaluated the direction of the gradient of the lobe surface
in various regions of the lung. To determine a parameter
value for the anterior–posterior range h of the fissure
region, we considered the general size, position, and shape
of human lung lobes, as well as the voxel resolution of the
CT scans. We selected h = 15 pixels which corresponded to
8–15 mm in the tested CT scans. By visual inspection it was
verified that the value h = 15 ensured that the segmented
fissure region in a given section was likely to fully contain
the fissure cross-section of that section.
(1)

(2)

(a) (b) (c) (d

Fig. 17. The effect of variation in prior curves on segmentation results: (a) fissur
2a is 3.75 mm; (1b–1g) examples of manually marked fissure curves in image (
section (2a). The curves in (1b) and (2b) are used as ground–truth curves in th
curves (1b) and (1c–1g) is 2.21 mm and the standard deviation of the distance i
2g) is only 0.51 mm and standard deviation of the distance is 0.36 mm. This me
in a sub-voxel difference in accuracy, and thus, the proposed method perform
The curve-growing method uses the parameters, L, n, b,
and c whose values had to be selected in the development of
the proposed method. There is a tradeoff when choosing
the value for L, the number of points on each linear spline
segment of the fissure curve. If L is too small, there may
not be enough information to compute an entropy that is
sufficient to distinguish local image patches or to approxi-
mate the curvature of the curve segment in a stable manner.
If L is too large, the linear spline may not approximate the
shape of the fissure curve sufficiently. Through experimen-
tation, we determined L = 5 to be a choice that balances
these issues. Another parameter is n, the number of candi-
date segments that the curve-growing method evaluates to
approximate the image entropy. While it is advantageous
for this approximation to use a large number of samples,
the discrete nature of our voxel data does not allow many
choices that would ensure that each sample segment cov-
ered different voxel locations. We therefore chose to sample
curve segments every 30� along a half circle on the axial
plane, which resulted in a value of n = 7.

To explain our choice of values for parameters b and c,
we note that the three-term cost function in Eq. (3) has
only 2 degrees of freedom since a curve that minimizes
the energy afshape + bfimg + cfcurv also minimizes a 0fshape +
b 0fimg + fcurv, where a 0 = a/c and b 0 = b/c. We were thus
free to fix one of the three parameters. We chose the value
c = 0.1 and conducted an experiment involving 20 CT
) (e) (f) (g)

e regions in two original CT sections. The distance between sections 1a and
1a) that serve as prior curves for the automatic segmentations (2b–2g) of
e accuracy calculations. The RMS distance between the manually marked
s 0.85 mm. The RMS distance between the segmented curves (2b) and (2c–
ans that a substantial variation in the shape of the prior curve only resulted
ed robustly.



(1)

(2)

(3)

(4)

(a) Original CT (b)    =0.1 (c)    =0.5 (d)    =0.9 (e) Ground truth

Fig. 18. The effect of variation of b on segmentation results: (a) four fissure regions chosen from two patients; (b–d) segmented fissure curves when
b = 0.1,0.5, and 0.9. The segmented and ground–truth curves match best for the case of b = 0.5. (e) Ground–truth curves by human markings. Examples
of inaccurate segmentation results are shown in (1b–2b) for b = 0.1, where the segmented curves inappropriately matched the prior shapes in the image
regions highlighted by the arrows, and in (3d–4d) for b = 0.9, where clutter influenced the curve growing process (3d–4d).
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cross-sections from two patients to analyze the sensitivity
of the method with respect to the selection of parameter
b. We tested the values b = 0.1, 0.5 and 0.9 (see Fig. 18).
There is a tradeoff when choosing the value for b. If b is
small, the segmented fissure curve is mostly influenced by
the prior curve shape, which is detrimental if the current
and prior fissure shapes are relatively different as in
Fig. 18(1b)–(2b). If b is large, the curve growing process
is sensitive to the attenuation values, which is undesirable
if the image contains clutter or noise as in Fig. 18(3d)–
(4d). In many other cases, the method was not sensitive
to the value of b (e.g, the segmentations shown in
Fig. 18(1c), (1d), (2c), and, (2d) for a large value for b
and in Fig. 18(3b), (4b), (3c), and (4c) for a small value
for b). The RMS values and standard deviations of the dis-
tances between the automatically segmented curves and the
ground–truth markings were similar for the different values
of b with a slightly better performance for b = 0.5
(2.45 mm and 2.11 mm for b = 0.1, 2.10 mm and
1.76 mm for b = 0.5, and 2.33 mm and 1.92 mm for
b = 0.9, on average). We thus used a value of b = 0.5 in
our CURVE GROWING ALGORITHM. Parameter a was computed
adaptively and ranged between 0.1 and 1.
4. Discussion and conclusion

Our system for segmenting and visualizing the upper
and lower lung surfaces is based on the following main
contributions:

� a shape-based curve-growing method for fissure
segmentation,
� an effective mechanism for curve initialization,
� an adaptive regularization mechanism for balancing the

influence of the different terms in the energy function
during the curve-growing process.
Traditional active contour methods (Berger, 1990; Kass
et al., 1987; Kichenassamy et al., 1995; Malladi et al., 1995)
have been hindered by clutter or imaging noise due to
problems with initializing the iterative energy minimization
process as well as preventing it to converge to an off-curve
local minimum. Previously reported methods circumvented
the challenge of automatically initializing the contour
deformation process by relying on the human interaction
(Kass et al., 1987; Kichenassamy et al., 1995; Malladi
et al., 1995). Our proposed curve-growing method requires
manual segmentation in only 2.4% of the tested CT sec-
tions because the automatic prior curve initialization was
generally successful. It only failed for images with a large
amount of clutter that were even difficult for human
experts to segment. The method robustly segmented the
remaining fissure curves, even in cases when the manu-
ally-marked or automatically-computed prior curves were
somewhat inaccurate, and thus has the ability to ‘‘amend’’
itself. It took on average less than 3 min on a workstation
with a 2 GHz dual processor to segment the fissures of a
CT scan, which included the time needed for visual inspec-
tion on each key section.

To reduce the possibility that the curve-growing process
can be trapped in an off-curve local energy minimum, the
proposed method evaluated the image energy fimg of a
curve segment instead of a singular spline point as in pre-
vious methods (Kass et al., 1987; Williams and Shah,
1992). The current method was therefore less sensitive to
off-curve local minima, which were caused by typically only
a small number of pixels in the fissure region, than the tra-
ditional methods (Kass et al., 1987; Williams and Shah,
1992). Having a good initial approximation of a curve to
be segmented was critical for ensuring the success of the
iterative segmentation process because it reduced the
chance of encountering an off-curve local energy minimum
during the curve growing.



(a) (b) (c) (d) (e)

 0.3

108 128  160  200 x

C *

Fig. 19. Adaptive versus static regularization: the curve growing process grew the curve leftwards from its rightmost part. (a) Shape prior. (b) Curve
obtained with static regularization: a = 0.6, b = 0.7 and c = 0.1. The area, where the shape similarity constraint inappropriately influenced the curve
growing process is boxed. (c) Curve obtained with adaptive regularization: b = 0.5, c = 0.1 and the value of a along the curve is plotted in the graph (d).
The corresponding locations of the local maxima of a at x = 103,108, and 128 in (d) are circled in (c). With adaptive regularization, the shape similarity
constraint did not influence the curve growing process inappropriately (boxes). (e) Ground–truth curve.
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Convergence to off-curve local energy minima may also
occur with traditional active contour methods (Berger,
1990; Kass et al., 1987; Kichenassamy et al., 1995; Malladi
et al., 1995) if the assumption that the object shape is
smooth does not hold, which is often the case in practice.
When significant curvature variations on the object bound-
ary exist or large gaps in the boundary appear in the image,
as were observed for the fissure curve (see Figs. 12–14), the
smoothness constraint fcurv by itself would not be appropri-
ate to guide the segmentation process. In the proposed
adaptive regularization formulation, the shape fshape and
image energy fimg terms were therefore weighed more heav-
ily than fcurv. With a static regularization approach, the
weights of the energy terms could also be chosen so that
the smoothness constraint is weighed least, but the weights
would then be fixed and thus cannot be appropriate for all
situations. For example, Fig. 19 shows a case where the
shape term fshape should be weighed least. The proposed
adaptive regularization method is here clearly superior to
the standard static regularization method.

Future work will compare the proposed image-enhance-
ment technique with methods based on the analysis of the
Hessian matrix of image attenuation (e.g., Aylward et al.,
1996; Frangi et al., 1998; Koller et al., 1995). Future work
will also compare the proposed system for the segmentation
of the lobes of the lung with Boykov and Jolly’s interactive
system (Boykov and Jolly, 2000), which was based on the
graph-cut approach. This approach formed a graph by con-
necting all pairs of neighboring voxels by edges weighted by
their intensity gradient. A min-cut/max-flow algorithm was
used to find the optimal graph cut which represents the
segmentation between object and background voxels. The
min-cut/max-flow algorithm is typically implemented by
an algorithm of cubic-time worst-case complexity. This is
computationally significantly more expensive than our
method which has the linear-time complexity O(m), where
m is the number of points m on the fissure surface.

Future work will also include testing the fissure segmen-
tation methods on thoracic CT scans of patients with lung
disease such as asthma and emphysema. Adding to the cur-
rent fissure segmentation system a method that can seg-
ment the thoracic vessel tree may allow classification of
pixels in the fissure region as belonging to the fissure, a ves-
sel, or an abnormal structure. Furthermore, patient-specific
3D shape information from a CT scan may prove useful as
a prior for fissure segmentation on subsequent CT scans of
the same patient. The lobes of the lung that have been seg-
mented in one CT scan may be used as a template to sup-
port robust and accurate segmentation of the lobes of the
lung in another CT scan. The proposed fissure segmenta-
tion system may eventually aid the task of both qualitative
and quantitative regional analysis of lung disease such as
automatic detection (Ko and Betke, 2001; Mullally et al.,
2004) and registration (Betke et al., 2003; Wang et al.,
2004) of nodules on CT scans.
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