
1

On-Line Discovery of Dense Areas in
Spatio-temporal Databases

Marios Hadjieleftheriou∗, George Kollios†, Dimitrios Gunopulos∗, Vassilis J. Tsotras∗
∗ Computer Science Department

University of California, Riverside
Email: marioh, dg, tsotras@cs.ucr.edu

† Computer Science Department
Boston University

Email: gkollios@cs.bu.edu

Abstract— Moving object databases have received considerable
attention recently. Previous work has concentrated mainly on
modeling and indexing problems, as well as query selectivity
estimation. Here we introduce a novel problem, that of addressing
density-based queries in the spatio-temporal domain. For exam-
ple: “Find all regions that will contain more than 500 objects, ten
minutes from now”. The user may also be interested in finding
the time period (interval) that the query answer remains valid.
We formally define a new class of density-based queries and
give approximate, on-line techniques that answer them efficiently.
Typically the threshold above which a region is considered to be
dense is part of the query. The difficulty of the problem lies in
the fact that the spatial and temporal predicates are not specified
by the query. The techniques we introduce find all candidate
dense regions at any time in the future. To make them more
scalable we subdivide the spatial universe using a grid and limit
queries within a pre-specified time horizon. Finally, we validate
our approaches with a thorough experimental evaluation.

I. I NTRODUCTION

Databases that manage moving objects have received con-
siderable attention in recent years due to the emergence
and importance of location-aware applications like intelligent
traffic management, mobile communications, sensor-based
surveillance systems, etc. Typically the location of a moving
object is represented as a function of time and the database
stores the function parameters [2], [1], [17], [9], [22], [21],
[16], [24], [15], [27], [23], [10]. This results into a tractable up-
date load. The system is updated only when an object changes
any of its moving parameters (e.g., speed, direction, etc).
The alternative of storing the object’s continuously changing
location is practically infeasible since it would correspond to
one update per object for each time instant [23]. Most works
assume that object trajectories are linear functions of time.
For example, given the locationo(0) of objecto at timet = 0
and its current velocity vectoroV , its position at some future
time t can be computed byo(t) = o(0) + oV t. A database
that maintains the moving functions can compute and thus
answer interesting queries about the locations of the moving
objectsin the future. Examples include range queries: “Find
which objects will be in areaA, ten minutes from now” [10],

This work was partially supported by NSF grants IIS-9907477, EIA-
9983445, IIS-0220148 and Career Award 0133825.

[2], [17], [9], [22], [21], [20], nearest neighbor queries: “Find
the closest object(s) to a given location within the next five
minutes” [24], etc. The answer to such queries is based on the
knowledge about the object movements at the time the query
is issued [25], [26].

In this paper we present a framework for answeringdensity-
based queries in moving object databases. An area is dense
if the number of moving objects it contains is above some
threshold. Discovering dense areas has applications in traffic
control systems, bandwidth management, collision probability
evaluation, etc. In these environments users are interested in
obtaining fast and accurate answers.

We identify two interesting versions of the problem: Snap-
shot Density Queries (SDQ) and Period Density Queries
(PDQ). In SDQ the user is interested in finding the dense areas
at a specified time instant in the future. Given a collection of
objects moving on a 2-dimensional space, an SDQ example
is: “find all regions that will have more than 1000 vehicles
per square mile at 3:30pm”. On the other hand, a PDQ query
finds the dense areas along with the time periods (intervals)
that the answers remain valid. For example, a basic operation
in a cellular communication network is the identification of
all cells that will become dense and for how long.

For the static version of the problem (i.e., where objects are
not moving) a number of density based clustering methods
have been proposed in recent years. The most relevant is
the STING [29] algorithm that uses a hierarchical structure
to store statistical information about the dataset. However,
this method cannot be used directly for the moving objects
environment since the update and space overhead will be
large. Another algorithm is CLIQUE [3], suited best for high
dimensional static datasets. The basic idea is to find dense
areas in lower dimensions first and continue recursively for
higher dimensions.

Discovering arbitrary dense areas inside the universe is a
rather difficult problem. Both STING and CLIQUE are grid-
based approaches. They divide the universe uniformly into a
number of disjointcells. The problem is thus simplified to
that of finding all thedense cells. We use the same approach
for two reasons: For most cases (e.g., traffic management) the
granularity and arrangement of the grid can be set according
to user needs. In other applications (e.g., cellular networks)

2

all cells are already available.
For many practical applications theexactdensity of a region

is not of critical importance. For example, a query about
potential traffic jams may tolerate a small approximation error.
Our approach is to keep a small summary of the moving object
dataset in main memory that can be used to answer queries
quickly. Also, due to high update rates, the data structures must
be easy to maintain in an on-line fashion. To achieve these
goals we use spatio-temporal grids and propose techniques
based on Dense Cell Filters and Approximate Frequency
Counting (Lossy Counting). These methods guarantee against
false negatives but have a few false positives. In applications
where false positives cannot be ignored our techniques can be
used as a pre-filtering step. Our estimators can quickly identify
the (typically few) candidate dense regions which must then
be passed through a post-filtering step.

To the best of our knowledge this is the first work that
addresses density-based queries in a spatio-temporal environ-
ment. Previous work has dealt with range, join and nearest
neighbor queries. Related to density queries is recent work
on selectivity estimationfor spatio-temporal range queries
[27], [8]. Spatio-temporal estimators compute the number of
objects that will cross a user defined spatial region at a user
defined time instant in the future. However, a density query
is “orthogonal” in nature since the user does not specify the
spatial and temporal query predicates. One straightforward
way to use a spatio-temporal estimator to identify dense areas
is by computing the selectivity estimate foreach cell in the
spatio-temporal grid. While simplistic, this approach is clearly
inefficient due to its large computational cost (the spatio-
temporal grid typically contains too many cells).

The contributions of this paper can be summarized as
follows:

• We identify two novel query types for spatio-temporal
databases based on the notion of density in space and
time. We concentrate on tractable versions of the problem
based on a regular spatio-temporal grid.

• We propose solutions that provide fastapproximatean-
swers by building main memory summaries that can
accommodate large update rates and deliver fast query
responses.

• We present an extensive experimental study that validates
the accuracy and efficiency of our methods. The proposed
Dense Cell Filter approach has the most robust perfor-
mance requiring limited space and yielding a very small
number of false positives.

II. PROBLEM DEFINITION

A. General Framework

In this section we define the general density-based query
framework and our notation.

We assume that a database stores a set ofN objects moving
on a 2-dimensional plane. We model these objects as points
represented by tuples of the form:(x, y, vx, vy), where(x, y) is
the current location and~v = (vx, vy) the velocity vector. In our
setting, objects can followarbitrary trajectories in the future
(represented by generic functions of time). For illustration

purposes and simplicity, in the rest of the paper we refer to
linear trajectories only (without loss of generality).

The objective is to find regions in space and time that
with high probability will satisfy interesting predicates. For
2-dimensional movements an interesting property is finding
areas where objects tend to be very close to each other. We
formalize this notion with the following definition:

Definition 1 (Region Density):The density of regionR
during time interval∆T is defined as:Density(R,∆T) =
min∆T N
Area(R) , wheremin∆T N is the minimum number of objects
insideR during ∆T andArea(R) is the total area ofR.

Hence, we define region density as the minimum concen-
tration of objects inside the region during the time interval
of interest. An important observation is that regions with
high density are not necessarily interesting. For example, two
objects arbitrarily close to each other define a region with
arbitrarily high density. Therefore, we allow the user to define
both the level of density and the minimum and maximum area
that a qualifying region must have. Given the above definition
we can now state the following density based queries:

Definition 2 (Period Density Query):Given a set ofN
moving objects in space, a horizonH and thresholdsα1, α2

and ξ, find regionsR = {r1, . . . , rk} and maximal time
intervals∆T = {δt1, . . . , δtk|δti ⊂ [Tnow, Tnow +H]} such
that: α1 ≤ Area(ri) ≤ α2 andDensity(ri, δti) > ξ (where
Tnow is the current time,i ∈ [1, k] andk is the query answer
size).

Notice that in the above query we do not specify time or
spatial predicates. Any method for answering this query must
find not only the dense regions but also the time periods that
these regions appear to be dense inside the specified horizon
H. Typically, we require the area to be within some size
(α1, α2) since the most interesting cases are when a large
number of objects are concentrated in a small region of space.
Also, the reported time periods are required to be maximal.
The time interval associated with a dense region should include
all time instants between the time the region will first become
dense (with respect to thresholdξ) until it seizes to be so.

A special case of the period density query is:
Definition 3 (Snapshot Density Query):Given a set ofN

moving objects in space, a horizonH, a time instantTq

(Tq ∈ [Tnow, Tnow + H]) and thresholdsα1, α2 and ξ, find
regions R={r1, . . . , rk} such that:α1 ≤ Area(ri) ≤ α2 and
Density(ri, Tq) > ξ (wherei ∈ [1, k] andk denotes the query
answer size).

In Figure 1 we show an example of objects moving on a
2-dimensional surface. The current time is1. The answer to
a PDQ withH = 3, ξ = 3 and α1 = α2 = 1 (i.e., we are
looking for regions 1 square unit in size), isR = {A,B} and
∆T = {[2, 2], [3, 3]}. It should be clear that by increasingα1,2

or decreasingξ, increases the size of the answer. Meaningful
values forα1,2 andξ are, of course, application dependent.

The requirement for arbitrary region sizes along with the
need for discovering maximal time periods render the general
density-based queries very difficult to answer and hint at
exhaustive search solutions. In addition, the horizon is not
restricted and its upper boundary advances continuously as the
current time increases. We proceed with the simplified versions

3

B

A

3 T1 2

Fig. 1. An example of objects moving linearly in 2-dimensional space over
time.

of density-based queries, based on spatio-temporal grids and
fixedhorizons.

B. Simplified Queries

We partition the universe using a number of disjoint cells
(buckets) and consider the problem of finding the most dense
cells. Assuming that the partitioning of space is done accord-
ing to user requirements, fast on-line discovery of the most
dense cells is the first, most important step for answering gen-
eral density queries. The solutions we propose are orthogonal
to the partitioning process. For simplicity we consider only
uniform grids of cells but the techniques work for general
partitions also, as long as the cells are disjoint and their sizes
remain fixed inside the horizon. The emphasis in our treatment
is in handling a very large number of cells efficiently.

We also choose afixed horizon during which user queries
can be answered. Instead of letting the boundary of the horizon
advance as the current time advances, a fixed horizon provides
answers only inside a fixed time interval[Tnow,Hf] (the upper
boundary remains constant). Simplified fixed horizons apply
to most practical moving object applications [22], [27], [8];
the user is typically interested in the near future for which
the current information holds. When the horizon expires the
estimators should be rebuilt [27], [8]. It is reasonable to
assume that the user can decide in advance the time period
during which most queries will refer to. A problem that arises
with fixed horizons is that asTnow advances closer and closer
to the horizon boundary, inevitably, queries will refer to an
ever decreasing time period into the future. One way to avoid
this situation is by rebuilding the estimators halfway through
the horizon. For example, ifTnow is 1:00pm andHf is set
to 2:00pm, after half an hour (at 1:30pm) we can rebuild the
estimator for another 30 minutes, until 2:30pm. Essentially,
we can answer queries for at least 30 minutes into the future
at all times.

Using the spatio-temporal partitioning and the fixed hori-
zons the queries we answer have the following two forms:

Definition 4 (Simple Period Density Query):Given a fixed
partitioningP of space into a number of disjoint cells, find
the cells that contain a number of objects larger than a user

T

A
2

2

B2

C2

A
1

B1

C1
C3

D1

E 1

F1

D

1 2 3

...

Fig. 2. The space-time grid forHf = 3. The trajectory of the object inserted
at t = 1 will cross cells{A1, B2, C3}.

specified thresholdξ inside the fixed horizon, along with the
time periods that the answers remain valid.

Definition 5 (Simple Snapshot Density Query):Given a
fixed partitioningP of space into a number of disjoint cells,
find the cells that contain a number of objects larger than a
user specified thresholdξ, at a user specified timeTq inside
the fixed horizon.

Assuming uniform grids of cells from now on (without loss
of generality), first a grid granularity and an appropriate hori-
zon length are decided. Conceptually we create a spatial grid
for every time instant inside the horizon. For example, assume
a horizon of three time instants and let the 2-dimensional
spatial universe be 100 miles long in each direction, with a
grid granularity of 1 square mile. This will divide the space-
time grid into 3 × 100 × 100 = 30, 000 cells. All cells are
enumerated with unique IDs (Figure 2). One straightforward
approach to address the problem is as follows. Since the speed
and direction of a moving object are known at insertion time,
we can extrapolate its trajectory and find all the cells that the
object will cross in the space-time grid. Every object update is
thus converted into a set of cell IDs, one ID (at most) per time
instant of the horizon. By maintaining the number of crossings
per cell we know each cell’s density at any time instant in the
horizon. The same technique is used for handling deletions
and updates (by adjusting the appropriate cells).

While simplistic, this approach has a major disadvantage.
In any practical application the total number of cells of the
space-time grid is expected to be very large (millions of cells).
Keeping a density counter for each cell consumes unnecessary
space. We could reduce space by keeping only the cells
that have been crossed so far and discard cells with zero
density. However, for real datasets this will not decrease space
substantially since most cells will be crossed at least once.
Other techniques, like concise and counting samples [13], can
be used to compress the density information. Counting samples
would keep only a random sample of cell< ID, count >
pairs in a straightforward way. This approach offers many
advantages, but still, it is probabilistic and does not guarantee
against false negatives.

It is apparent that the granularity and arrangement of the
chosen partitioningP directly affects the performance of

4

21 4 T3

1,2

B

1C

1B

1A

2C

2A

2B 4B

3,4

A

B

3

Fig. 3. A coarse grid of granularity 2. CellsA1 andA2 are combined into
a single bucket with counterA1,2.

any solution, for a given application. A very fine grained
(and a very coarse) grid might fail to produce any dense
cells. A very large number of cells will have a negative
impact on answer speed, etc. We postulate, though, that for
most practical applications the partitioning is already (at least
vaguely) defined thus limiting available choices.

We propose several techniques that compress the density
information by building estimators that identify only the
most dense cells and discard the rest. The penalty of using
estimators is two fold. First, the reported densities are approx-
imations. Second, in order to guarantee no false dismissals
a number of false positives will be reported along with the
correct answers.

III. G RID-BASED TECHNIQUES

We first describe a simple improvement based oncoarse
grids. We then present anApproximate Frequency Counting
algorithm (termed Lossy Counting) that appeared in [18] and
can be modified and used in our setting. Finally, we introduce
another approach, theDense Cell Filter.

A. Coarse Grids

Coarse grids are a general technique that can be utilized
by all subsequent estimators for decreasing their size. Instead
of keeping one density counter per cell for the whole space-
time grid (Figure 2), multiple consecutive cells in time are
combined into a single bucket associated with only one counter
(Figure 3). The granularity of the coarse grid is defined as
the number of consecutive cells in time that belong to the
same bucket. By making the buckets larger (decreasing the
granularity) we can decrease the size of the original grid
substantially. It should be noted that coarse grids compress
the grid in the time dimension only. Combining cells in the
spatial dimensions is not applicable since it would invalidate
the application dependent partitioning.

Figure 3 shows an example of a coarse grid with granularity
2 (buckets are illustrated by the shaded regions). Essentially,
the number of total counters is reduced by half. An object
trajectory crosses bucketsA1,2 and B3,4, and thus these
counters should be adjusted.

The coarse grid guarantees no false dismissals but may
introduce false positives. For example, the reported density
for cell A2 is the value of counterA1,2, which increases once
for every crossing of any cell (A1 or A2) that belongs to that
bucket. If the number of crosses of eitherA1 or A2 exceeds
thresholdξ, A1,2 will also exceedξ, hence no false negatives
are created. On the other hand, very fast moving objects may
introduce false positives. If the slope of a trajectory is large,
the object might pass through a bucket without crossing all the
cells that belong to it. In such cases the densities of some cells
are overestimated. Obviously, the larger the bucket width (and
the faster the objects) the more false positives may be created.

Answering an SDQ is straightforward. We locate the cells
that correspond to time instantTq and report the ones that
belong to dense buckets. To answer a PDQ we scan the grid
that corresponds to the beginning of the horizon (assumeTnow

for simplicity) and locate all the dense buckets. For every
dense bucketB, we check later time instants to find how many
consecutive buckets are also dense.

B. Lossy Counting

Lossy counting is a deterministic algorithm introduced in
[18] for computing item frequencies over a stream of transac-
tions. It guarantees an upper bound of1

ε log εL space, whereL
is the current length of the stream. The input to the algorithm
is an error thresholdε. The output is a set containing the
most frequent items. The estimated frequencies differ from
the actual frequencies by at mostεL. The algorithm calculates
the frequency of the items as a percentage ofL and detects
the ones that appear with the highest rate (asL continuously
increases). For example, a query has the following form: “Find
items that appeared until now in the stream for more than 70%
of the time”. The answer to this query would be all items with
frequencyf ≥ 0.7L.

The actual algorithm appears in Figure 4. The incoming
stream is divided into consecutive buckets. Every bucketB
consists ofw items, wherew = 1

ε is the width of each bucket.
The algorithm maintains a setF of the most frequent items.
Every entry inF has the formE =< id, f,∆ >, where
id is the item identifier,f the estimated frequency and∆
the maximum possible error inf . Initially F is empty and
B = 1. Whenever a new itemI arrives, the algorithm checks
whetherI is in F . If it is, the entry is updated by increasing
its frequency (EI .f). If it is not, a new entry is inserted in
F . Everyw items the bucket boundary is reached andF is
updated by removing the items that are not frequent anymore.
At any point, the estimator can return all items that appeared
more thanpL times (wherep ∈ [0, 1] and is specified by the
query) by outputting all entries inF for whichE.f ≥ (p−ε)L.

This technique works well for finding the most frequent
items. Once such items are inserted intoF their frequency
is being calculated and, most probably, they will never be
deleted fromF . Items that are not as frequent will be inserted
and later removed fromF . We can apply the Lossy Counting
approach for density queries with somemodifications. Instead
of a stream of items we have a sequence of object insertions
and deletions. Every insertion is converted into a set of cell

5

Input: Stream of items{I1, I2, . . .}. Error ε.
Output: Set F of entries E =< id, f,∆ >
representing the most frequent items in the stream.

F = ∅, w = 1
ε

B = 1, L = 0

New item I appears in stream:
// Check for bucket boundary first.
If L > 0 andL modw = 0:

For all E ∈ F :
If E.f + E.∆ ≤ B: removeE from F
B+ = 1

// Process the new item.
L+ = 1
If I ∈ F : EI .f+ = 1
Else: addE =< I.id, 1, B − 1 > in F

Return the most frequent items:
For all E ∈ F :

If E.f ≥ (p− ε)L : returnE.id

Fig. 4. The Lossy Counting algorithm.

IDs (Figure 2). We input the IDs that are being crossed by
the object trajectories as the streaming values of the Lossy
Counting algorithm. The dense cells, whose IDs appear more
frequently, are kept inF . Less interesting cells are omitted.
A deletion is straightforward. For a cellC crossed by the
old trajectory, ifC ∈ F we decreaseC.f by one. Cells that
become non-frequent will be deleted at the bucket boundary.

This algorithm can find the cells that have been crossed by
more thanpL trajectories, whereL ≈ NH is the number of
IDs that have appeared on the stream, a number roughly as
large as the number of object updatesN times the remaining
horizon lengthH. Since not all trajectories cross one cell per
time instant of the horizon but some extend outside of the
universe,L might be smaller than the above product. However,
user queries have a pre-specified density thresholdξ that rep-
resents an absolute number of objects, while Lossy Counting
can only produce entries that are frequent with respect toL.
Thus, we have to expressξ as a percentage ofL. In particular,
in order to retrieve all the answers we need to findp such that
pL ≤ ξ. However, sincep ≤ ξ

L ⇒ limL→∞ p = 0, as L
increases nop may satisfy the query. To prove this suppose
we return all cells with frequencies:A = {C|C.f ≥ ξ − εL},
while the correct answer is:CA = {C|C.f ≥ pL−εL}. Since
pL ≤ ξ, we get:Cardinality(A) ≤ Cardinality(CA). This
means that we might miss some of the answers. Unfortunately,
this pitfall cannot be avoided unless the estimator is rebuilt
more frequently such thatL does not become too large (so
that ap exists that satisfies the query).

Regarding implementation, setF can be organized as a
collection of hash tables, one for every time instant of the
horizon. To answer an SDQ with timeTq and thresholdξ
we find all cells with density larger thanξ in the appropriate
hash table. To answer a PDQ we scan the hash table that

C 1 C2

C4C 3
C1

h h1 2

Query

Insert

Init

3 5 7 8 91 2 4 6 10

Fig. 5. A Bloom Filter usingK = 2 hash functions andM = 10 bits.

corresponds to the beginning of the horizon (assumeTnow for
simplicity) and locate all the dense cells. For every dense cell
CTnow , we probe the hash table at time instantTnow +1 to see
if the corresponding cellCTnow+1 is also dense, and continue
as long as the cell remains dense.

An interesting observation about Lossy Counting is that
cells that may be false positives have densities in the interval
[(p− ε)L, pL]. All cells with larger densities definitely belong
to the correct answer. However, in the worst case all reported
cells may have densities in the aforementioned interval. That
is, the method does not provide any guarantees on the number
of false positives, neither this number can be estimated.

C. Dense Cell Filter

To overcome some of the above limitations we introduce
the Dense Cell Filter approach. This novel solution uses
a modification of a basic Bloom Filter to create a small
summary of the dense cells. A Bloom Filter [5] is a simple
randomized data structure for representing a set in order to
support membership queries and it is very space efficient.

Given a setS = {C1, . . . CE} of E elements the problem
is to find if itemX belongs toS (membership query). A basic
Bloom Filter is a hashing scheme that uses a bit-vector array
with M bits (initialized to zero) and a set ofK independent
hash functionsH = {h1, . . . , hK}, that produce values in
the range[1,M]. For everyCe (e ∈ [1, E]) all K hash
functions hk(Ce) (k ∈ [1,K]) are computed, producingK
numbers. Each number maps to a bit in the bit vector hence
the corresponding bits areset. To find if X belongs toS the
hash functions are applied onX to produceK values. If allK
values map to bits that are set,X is in S with some probability.
If at least one bit is not set, thenX is not in S.

Figure 5 shows an example. The filter hasM = 10 bits
and usesK = 2 hash functions. Initially all bits arereset
(set to zero and depicted as white boxes). During the insertion
stage we insert setS = {C1, C2}. Hash functionsh1(C1) =
1, h2(C1) = 5 and h1(C2) = 5, h2(C2) = 9 are computed
and the resulting bits are set (shaded boxes). During the query
stage three membership queries are performed. ForC1 andC3

the resulting bits are already set thus these items might be in
S or not. It is apparent thatC3 is a false positive since the
item was never inserted in the filter. On the other hand,C4

certainly does not belong toS sinceh1(C4) = 7 is not set.

6

Input: Set of cellsS = {C1, . . . , CE}. Number
of stagesK and hash functionsh1,...,K . Counters
per stageM . Thresholdψ. HorizonH.
Output: A dense cell list (DCL).

DCL = ∅
V1,...,K = vectors ofM counters
For k = 1 → K,m = 1 →M : Vk[m] = 0
Object insertion:
U ⊂ S = set of cell IDs crossed by object duringH
For all Ci ∈ U :

If Ci ∈ DCL : Ci.density+ = 1
Else:

For k = 1 → K : Vk[hk(Ci)]+ = 1
If all Vk[hk(Ci)] ≥ ψ : addCi in DCL

Object deletion:
U ⊂ S = set of cell IDs crossed by object duringH
For all Ci ∈ U :

If Ci ∈ DCL :
Ci.density− = 1
If Ci.density < ψ : removeCi from DCL

Else:
For k = 1 → K : Vk[hk(Ci)]− = 1

Fig. 6. The Dense Cell Filter algorithm.

Assuming perfect hash functions it can be shown that the
probability of a false positive is(1 − e−

KE
M)K . By knowing

the values ofE and M , the numberK of hash functions
that minimize the number of false positives can be computed.
This is achieved forK = ln 2(M

E) [6]. By increasingM we
decrease the probability of false positives, but at the same time
the size of the Bloom Filter increases.

There are many interesting variations that improve on the
basic Bloom Filter. For example, one problem is that two
or more hash functions can map to the same bit causing
a collision (as shown in Figure 5). To overcome this issue,
instead of usingK hash functions that map to the sameM
values we can useK bit vectors (each vector is referred to as
a stage), each one with a separate hash function and size equal
to M

K . Another variation, directly related to our approach, is
the counting Bloom Filter[12]. Each bit of the bit vector is
replaced with a small counter (for example 2 bytes). Every
time a new element is inserted, the corresponding counters
are incremented (instead of the bits just being set). When an
element is deleted, the counters are decremented.

In our environment we have a spatio-temporal grid consist-
ing of a setS = {C1, . . . , CE} of E distinct cells (or buckets
in case of coarse grids) and we want to store the density of
each cell using as little space as possible. We also want to
identify the most dense cells quickly. We thus build a counting
Bloom Filter that storesS, and maintain it on-line. Every time
an object update is performed, we convert it into a sequence
U ⊂ S of cell IDs and insert them into the filter. If the counter
of a cellCi becomes larger thanψ (specified at construction
time), we insertCi into the list of dense cells (DCL). From
that point, the frequency ofCi is updated in the DCL only,

without affecting the filter. Deletions are straightforward. They
just reverse the effect of the corresponding insertion. If the
estimated density of a cell becomes less thanψ, this cell
is removed from the DCL. A detailed description of our
algorithm is shown in Figure 6.

One improvement for this algorithm is to keep a separate
Bloom Filter per time instant of the horizon. As time pro-
gresses, Bloom Filters that refer to the past can be discarded
to save space. Also, since fewer cells are associated with each
filter, we expect to have fewer false positives. Since the DCL
list can grow very large, it should be organized as a set of in
memory hash tables, one for every time instant of the horizon.

An interesting issue that arises with this approach is that
the DCL contains all cells that exceed thresholdψ, specified
at construction time. If the user poses a query withξ < ψ, the
DCL cannot report an answer. There are two solutions for such
queries. Either the filter has to be rebuild with a full database
scan or it has to adapt to the lower thresholdξ gradually, while
postponing the answer to the query. With the adaptive thresh-
old approach the filter cannot guarantee anymore that some
dense cells will not be missed. Nevertheless, the Dense Cell
Filter is still a valuable approach since for most applications
the lower possible threshold can be decided at construction
time.

In contrast to Lossy Counting the Dense Cell Filter can
provide certain probabilistic guarantees on the number of false
positives introduced. Below we show that the probability of a
cell with densityc < ξ being reported is small and depends
on the number of objects, the number of counters,c andξ.

Lemma 1:Given N moving objects, a query thresholdξ
and a Bloom Filter with one stage ofM counters per time
instant of the horizon, the probability that cellC with density
c < ξ is being reported by the filter is in the worst case
P ≤ 1

M
N−c
ξ−c .

Proof: Consider thec-th update for cellC (which makes
the density of this cell equal toc) and assume that after this
update the counter forC (h(C)) has valueξ. The cell will be
added to the DCL and thus reported by the filter. Since the cell
already containsc objects, the counter contains anotherξ − c
objects from other cells. We haveN objects in total and in the
worst caseN −c of those can be distributed inN−c

ξ−c counters.
In that case, the probability ofC being added to the DCL
is equal to the probability ofC hashing to one of theN−c

ξ−c

out of M counters, which is equal to1M
N−c
ξ−c . In the general

case ofK stages per filter, this probability is generalized to
P ≤ (1

M
N−c
ξ−c)K .

Note that the lemma provides an upper bound and the
probability of false positives is much smaller in practice.
Nevertheless, from the formula we can infer that be increasing
the number of countersM or the thresholdξ, the probability
for false positives decreases. It is also apparent that increasing
the number of stagesK per filter will have a negative impact.
Both observations are validated by our experimental results
(refer to Section V).

IV. D ISCUSSION

First we comment on the advantages and disadvantages of
each of the three grid-based techniques. Then, we consider

7

methods for eliminating false positives.

A. Comparison of Grid-Based Algorithms

The coarse grid uses a simple idea to compress the space-
time grid. Since the compression process is independent of the
actual cell densities, the number of false positives will increase
substantially for large granularities. Furthermore, since only
one density counter is kept per bucket, the estimated densities
will not be very accurate either.

An advantage of Lossy Counting is that (if certain condi-
tions are met) it computes the estimated densities with great
accuracy, since the most dense cells are always stored in
memory. However, it provides no guarantees about the number
of false positives in the answer. Moreover, the estimator needs
to be rebuilt frequently so that it does not miss actual dense
cells. Since a large number of cells are added and dropped
at the bucket boundaries continuously (i.e., these cells are
considered by the algorithm to be almost frequent but not
frequent enough) their estimated frequencies have a higher
error. If the user threshold is small enough to be close to the
density of these cells, the algorithm will yield a higher number
of false positives with an increased estimation error. Finally,
the algorithm has a substantial computational overhead since
it has to perform one linear scan of the in memory list per
bucket boundary. The cost will increase, of course, when the
list is larger (for smaller user thresholds or a multitude of
dense cells).

In contrast, the Dense Cell Filter provides strong guarantees
on the number of false positives and can be easily adjusted
according to space requirements. Moreover, when dense cells
are identified they are added in the DCL and their estimated
densities are computed with high accuracy. Another benefit is
that the algorithm is very efficient with an expected small
computational overhead. A drawback of Dense Cell Filter
is that the threshold cannot be dynamically set (the lowest
possible threshold has to be decided at construction time).

B. False Positives

One approach for minimizing false positives is by using
a spatio-temporal histogram. Such histograms provide an es-
timate of the selectivity of each reported cell. Unfortunately,
recently proposed techniques [27], [8] do not provide any guar-
antees on the selectivity estimates they report. An alternative is
the use ofsketching(proposed in [14] and based on the seminal
work of [4]). Sketches can be used to approximate the spatio-
temporal grid by summarizing the information associated with
the cells. The advantage of sketching is that the estimation is
highly accurate with high probability. The disadvantage is that
they are computationally expensive.

If the objective is the full elimination of false positives
the user may run a spatio-temporal range query using the
spatial range of each cell being reported by the estimators.
Such a query finds the actual objects in that cell (i.e., an exact
answer). Indexing techniques for moving points can be used
for that purpose (the TPR-tree [22], [21], the duality indexing
of [17] or the partitioning schemes in [11]). Those indices
are dynamically updated and index the whole moving dataset.

While a range query provides the exact answer, it runs at time
proportional to the number of objects in the cell (and since
these are the denser cells, they will contain a lot of objects).

V. EXPERIMENTAL RESULTS

All experiments were run on an Intel Pentium(R) 4 1.60Ghz
CPU with 1Gb of main memory. We generated various syn-
thetic datasets of moving objects. For the first dataset we
initially pick a random number of dense locations and place
a large number of objects around them (a snapshot is shown
in Figure 7(a)). We distribute the rest of the objects uniformly
in space and let them move freely on the plane. The dataset
tries to simulate vehicles that disperse from dense areas. For
example, the downtown LA area at 3:00pm or a stadium after
the end of a game. In the rest, we refer to this dataset as
DENSE. The second dataset represents a network of highways
and surface streets (denoted as ROAD, Figure 7(b)). Each road
is represented by a set of connected line segments (231 line
segments were generated in total). The 2-dimensional universe
for both datasets is 100 miles long in each direction. Every
simulation lasts for 100 time instants. We generated 1 million
moving objects per dataset. Every time instant at least 1% of
the objects issue an update (which changes the speed and/or
direction of the object). The velocities of the vehicles are
generated using a skewed distribution, between 10 and 110
miles per hour.

For our measurements we used a250 × 250 uniform grid;
this gives 62,500 cells in total, while every cell is 0.4 miles
wide. The horizon was fixed at the start of each simulation.
As time proceeds, queries refer to time instants that fall inside
the horizon interval. For example, if the horizon was set to
Hf = 20 and the current time isTnow = 9, the estimators
provide answers for queries that refer to time instants between
9 and 20. When the current time reaches halfway through the
horizon, all estimators are automatically rebuild.This is typical
for horizon-based solutions [22], [27], [8].

Figure 8 shows an actual density histogram from one of our
experiments. It plots the number of cells that have a specific
density between time instants 9 and 20 for the ROAD dataset,
given the current information at timeTnow = 9 andHf = 20.
Since there are 12 time instants until the end of the horizon and
each instant carries a grid with 62,500 cells, there are 750,000
cells in that plot. A good estimator should try to compress this
information by keeping only the most dense cells which are,
typically, very few.

We also created synthetic query workloads. For each ex-
periment we set a fixed density threshold, both for period
and snapshot queries. Each experiment is run multiple times
varying the density threshold from 1000 to 2500 objects. For
snapshot queries the time predicate is uniformly distributed
inside the remaining period of the current horizon. For every
simulation we run 200 queries in total.

We compare 3 techniques: Dense Cell Filters (denoted as
DCF), Lossy Counting (LC), and coarse grids (CG). We
tested every technique using several configurations in order to
“optimally” tune their performance. We run DCF with several
different combinations of stages and counters, LC with varying

8

-20

0

20

40

60

80

100

120

-20 0 20 40 60 80 100 120

y

x

""

(a) DENSE

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

y

x

""

(b) ROAD

Fig. 7. Datasets.

0

100

200

300

400

500

600

700

800

900

1000

1 201 401 601

Density (number of objects)

N
u

m
b

er
 o

f c
el

ls

Fig. 8. A horizon density histogram.

bucket widths and CG with decreasing granularities. In the
rest of this section for every technique we plot the best result
given among all configurations with similar size. To compare
the efficiency of our techniques we use theanswer sizeas a
measure. We define the answer size as the total number of false
positives plus the actual dense cells reported by each estimator.
In addition, we compute the answer size as a percentage of the
total number of cells in the spatio-temporal grid. The answer
size is an important indication of an estimator’s robustness
since it gives a good feeling about the reduced processing
cost required for finding an exact answer, after the estimator
has produced a result superset (compared with calculating the
exact answer exhaustively, without the help of the estimator).
In addition, since false positives tend to dominate the result
set, the smaller the answer size the better the estimator. Thus,
a direct comparison between estimators is realistic.

The efficiency of the techniques as a function of the
estimator size for snapshot queries is shown in Figure 9. The
size of the estimators is computed as a percentage of the size
of the entire spatio-temporal grid. For this graph we used a
density threshold equal to 1500 objects and a fixed horizon of
50 time instants (i.e., 3,125,000 cells). Assuming 4 bytes per
cell, the 5% estimator uses only 600KB of main memory. We
can deduce that for DCF and LC a 5% estimator size yields
very few false positives (less than 2% answer size). Increasing
their size beyond 5% does not yield substantial improvements,
especially for DCF. On the other hand, CG benefits even for

sizes greater than 10%. The CG estimator in order to reduce
the grid to 5% of its original size has to become very coarse
thus its performance deteriorates due to very large bucket
lengths. For the rest of the graphs we compare all techniques
using estimators with 5% size (to be fair we used 2 bytes per
counter for DCF since this is enough to represent a maximum
reasonable threshold).

Figure 10 shows a scale-up experiment for increasing hori-
zon lengths. We tested all estimators with an SDQ set using
horizons of 10, 20 and 50 time instants, while keeping the
estimator sizes within 5% of the total number of cells. The
DCF performance remains unaffected; since a separate filter
is kept per time instant of the horizon, the horizon length
should not affect the accuracy in general. It is apparent that
LC is robust for uniform data (DENSE), but its performance
deteriorates for highly skewed distributions (ROAD). Also,
a much larger bucket size was needed in order to keep the
estimator within the 5% limit, without loosing some of the
correct answers. For CG there is a noticeable performance
penalty for both datasets. In order to keep the estimator size
within our space requirements the grid granularity has to
become very coarse. Moreover, this technique is very fluctuant,
which makes it even less attractive.

In Figure 11 we plot efficiency as a function of density
threshold. For this experiment we used an SDQ set and a
horizon length of 50 time instants. As expected, the larger
the density threshold the fewer false positives are reported.
If there is only a small number of dense cells at a specific
time instant, the estimators identify them with great accuracy.
The problem becomes more difficult as the number of cells
that have densities around that threshold becomes larger. For
thresholds larger than 2000 objects all estimators report very
few false positives. For the DENSE dataset DCF and LC give
the best results (almost no false positives are reported) while
CG does not perform well. Performance deteriorates though
for LC, especially for smaller thresholds. For the ROAD
dataset DCF gives again the best results; it reports less than
1% of the total number of cells in all cases. Even when exact
density answers are required, it is obvious that there is a
substantial benefit when using this technique as a pre-filtering
step to reduce the amount of cells that need to be checked.

9

Figure 12 plots the relative error in computing the exact
density for the dense cells (averaged over all queries), as
a function of density thresholds. All techniques report the
densities of the dense cells with less than 1% error (over the
exact density of that cell). The results reported by DCF and LC
were very close to the actual densities. CG was considerably
worse, but still below 1% error.

Figure 13 shows the update cost of the techniques as a
function of horizon length. For DCF and CG the update cost
does not grow substantially (CG is almost two times more
expensive than DCF). The cost for LC increases proportionally
for larger horizon lengths due to the larger bucket widths
needed. Moreover, LC is about three times slower than DCF.

Figure 14 plots the estimator performance for period queries
(PDQ) as a function of density threshold. We observe the same
trends as with snapshot queries. DCF is the best compromise
between accuracy, speed and robustness for increasing density
thresholds and highly skewed data (less than 3% answer size
for all cases). LC works very well for the DENSE dataset, but
its performance deteriorates for the ROAD dataset and small
density thresholds. CG, on the other hand, reported more than
8% false positives for all cases.

From our extensive experimental evaluation DCF presented
the most robust performance making it a quite accurate, fast
and reliable density estimation technique. LC gives very good
density estimates but has much higher update cost and does
not work well for highly skewed environments.

VI. CONCLUSIONS

We addressed the problem of on-line discovery of dense
areas in spatio-temporal environments. We simplified the prob-
lem by dividing the spatial universe into a uniform grid of
cells and considering a fixed horizon in the time domain. We
proposed efficient solutions that provide fast answers with high
accuracy. Our solutions are based on Dense Cell Filters and
Approximate Frequency counting algorithms. They guarantee
no false dismissals (but few false positives), provide fast
updates and are space efficient. An extensive experimental
evaluation was also presented, showing that the Dense Cell
Filter was the most robust solution. It gave fast and accurate
answers, with a minimal number of false positives. In future
work we will address Top-K density-based queries. Instead
of specifying a density threshold the query must report thek
most dense cells. Methods based on histograms [19], [28] or
sampling [13], [7] should be considered.

REFERENCES

[1] P. Agarwal, L. Arge, and J. Vahrenhold. Time responsive indexing
schemes for moving points. InProc. of WADS, 2001.

[2] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points.
In Proc. of the 19th ACM Symp. on Principles of Database Systems
(PODS), pages 175–186, 2000.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic
Subspace Clustering of High Dimensional Data for Data Mining Ap-
plications. In Proc. of ACM SIGMOD Conference, pages 94–105, June
1998.

[4] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. InJournal of Computer and
System Sciences, volume 58(1), pages 137–147, 1999.

[5] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[6] A. Broder and M. Mitzenmacher. Network Applications of Bloom
Filters: A Survey. InTo appear in Allerton 2002.

[7] C.-M. Chen and Y. Ling. A sampling-based estimator for Top-k query.
In Proc of IEEE ICDE, 2002.

[8] Yong-Jin Choi and Chin-Wan Chung. Selectivity estimation for spatio-
temporal queries to moving objects. InProc. of ACM SIGMOD, 2002.

[9] H. D. Chon, D. Agrawal, and A. El Abbadi. Storage and retrieval of
moving objects. InMobile Data Management, pages 173–184, 2001.

[10] C. Jensen (editor). Special issue on indexing moving objects.Data
Engineering Bulletin, 2002.

[11] K. Elbassioni, A. Elmasry, and I. Kamel. An efficient indexing scheme
for multi-dimensional moving objects.9th International Conference on
Database Theory, Siena, Italy (to appear), 2003.

[12] L. Fan, J. Almeida P. Cao, and A. Broder. Summary cache: a scalable
wide-area web cache sharing protocol.IEEE/ACM Transactions on
Networking, 8(3):281–293, 2000.

[13] P. Gibbons and Y. Matias. New sampling-based summary statistics for
improving approximate query answers. InProc. of ACM SIGMOD, April
1998.

[14] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing
Wavelets on Streams: One-Pass Summaries for Approximate Aggregate
Queries. InThe VLDB Journal, September 2001.

[15] O. Ibarra H. Mokhtar, J. Su. On moving object queries. InProc. 21st
ACM PODS Symposium on Princeples of Database Systems, Madison,
Wisconsin, pages 188–198, 2002.

[16] G. Kollios, D. Gunopulos, and V. Tsotras. Nearest Neighbor Queries
in a Mobile Environment. In Proc. of the Spatio-Temporal Database
Management Workshop, Edinburgh, Scotland, pages 119–134, 1999.

[17] G. Kollios, D. Gunopulos, and V. Tsotras. On Indexing Mobile Objects.
In Proc. of the 18th ACM Symp. on Principles of Database Systems
(PODS), pages 261–272, June 1999.

[18] G. S. Manku and R. Motwani. Approximate Frequency Counts over
Data Streams. InProc. of 28th VLDB, pages 346–357, August 2002.

[19] S. Chaudhuri N. Bruno and Luis Gravano. Top-k selection queries over
relational databases: Mapping strategies and performance evaluation.
ACM TODS, 27(2), 2002.

[20] K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying mobile objects in
spatio-temporal databases. InProc. of 7th SSTD, July 2001.

[21] S. Saltenis and C. Jensen. Indexing of Moving Objects for Location-
Based Services.Proc. of IEEE ICDE, 2002.

[22] S. Saltenis, C. Jensen, S. Leutenegger, and Mario A. Lopez. Indexing
the Positions of Continuously Moving Objects.In Proceedings of the
ACM SIGMOD, pages 331–342, May 2000.

[23] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling
and Querying Moving Objects. In Proceedings of the 13th ICDE,
Birmingham, U.K, pages 422–432, April 1997.

[24] Z. Song and N. Roussopoulos. K-nearest neighbor search for moving
query point. InProc. of the SSTD, pages 79–96, 2001.

[25] Y. Tao and D. Papadias. Time-parameterized queries in spatio-temporal
databases.Proc. of ACM SIGMOD, 2002.

[26] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search.
In Proc. of VLDB, 2002.

[27] Y. Tao, J. Sun, and D. Papadias. Selectivity estimation for predictive
spatio-temporal queries.Proceedings of 19th IEEE International Con-
ference on Data Engineering (ICDE), to appear, 2003.

[28] M. Wang, J.S. Vitter, L. Lim, and S. Padmanabhan. Wavelet-based cost
estimation for spatial queries. InProc. of SSTD, pages 175–196, 2001.

[29] W. Wang, J. Yang, and R. Muntz. STING: A statistical information grid
approach to spatial data mining. InThe VLDB Journal, pages 186–195,
1997.

10

5%
10%

15%

DCF

LC

CG

0

0.5

1

1.5

2

2.5

3

A
n

sw
er

 s
iz

e
(%

)

Estimator size (%)

DCF LC CG

(a) DENSE

5%
10%

15%

DCF

LC

CG

0

1

2

3

4

5

6

A
n

sw
er

 s
iz

e
(%

)

Estimator size (%)

DCF LC CG

(b) ROAD

Fig. 9. Performance evaluation as a function of estimator size for snapshot queries.

10
20

50

DCF

LC

CG

0

0.5

1

1.5

2

2.5

3

A
n

sw
er

 s
iz

e
(%

)

Horizon length

DCF LC CG

(a) DENSE

10
20

50

DCF

LC

CG

0

1

2

3

4

5

6

A
n

sw
er

 s
iz

e
(%

)

Horizon length

DCF LC CG

(b) ROAD

Fig. 10. Performance evaluation as a function of horizon length for snapshot queries.

1000
1500

2000
2500

DCF

LC

CG
0

0.5

1

1.5

2

2.5

3

A
n

sw
er

 s
iz

e
(%

)

Density threshold

DCF LC CG

(a) DENSE

1000
1500

2000
2500

DCF

LC

CG

0

1

2

3

4

5

6

A
n

sw
er

 s
iz

e
(%

)

Density threshold

DCF LC CG

(b) ROAD

Fig. 11. Performance evaluation as a function of density threshold for snapshot queries.

11

1000
1500

2000
2500

DCF

LC

CG
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
d

en
si

ty
 e

rr
o

r

Density threshold

DCF LC CG

(a) DENSE

1000
1500

2000
2500

DCF

LC

CG
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
el

at
iv

e
d

en
si

ty
 e

rr
o

r

Density threshold

DCF LC CG

(b) ROAD

Fig. 12. Relative density error as a function of density threshold for snapshot queries.

10
20

50

DCF

CG

LC

0

200

400

600

800

1000

1200

S
ec

o
n

d
s

Horizon length

DCF CG LC

(a) DENSE

10
20

50

DCF

CG

LC

0

500

1000

1500

2000

2500

3000

3500

4000

S
ec

o
n

d
s

Horizon length

DCF CG LC

(b) ROAD

Fig. 13. Estimator update cost as a function of horizon length.

1000
1500

2000
2500

DCF

LC

CG
0

0.5

1

1.5

2

2.5

3

A
n

sw
er

 s
iz

e
(%

)

Density threshold

DCF LC CG

(a) DENSE

1000
1500

2000
2500

DCF

LC

CG

0

1

2

3

4

5

6

A
n

sw
er

 s
iz

e
(%

)

Density threshold

DCF LC CG

(b) ROAD

Fig. 14. Performance evaluation as a function of density threshold for period queries.

