On-Line Discovery of Dense Areas In
Spatio-temporal Databases

Marios Hadjieleftherioti, George Kollio, Dimitrios Gunopulos, Vassilis J. Tsotrds
* Computer Science Department
University of California, Riverside
Email: marioh, dg, tsotras@cs.ucr.edu
T Computer Science Department
Boston University
Email: gkollios@cs.bu.edu

Abstract—Moving object databases have received considerable [2], [17], [9], [22], [21], [20], nearest neighbor queries: “Find
attention recently. Previous work has concentrated mainly on the closest object(s) to a given location within the next five
modeling and indexing problems, as well as query selectivity minutes” [24], etc. The answer to such queries is based on the

estimation. Here we introduce a novel problem, that of addressing K led bout the obiect ts at the ti th
density-based queries in the spatio-temporal domain. For exam- <NOWI€dge about the object movements at the uime the query

ple: “Find all regions that will contain more than 500 objects, ten IS issued [25], [26].

minutes from now”. The user may also be interested in finding In this paper we present a framework for answedegsity-

the time period (interval) that the query answer remains valid. based queries in moving object databases. An area is dense
We formally define a new class of density-based queries and ¢ the nymber of moving objects it contains is above some
give approximate, on-line techniques that answer them efficiently. . . L . .
Typically the threshold above which a region is considered to be threshold. Discovering ‘?'ense areas has applllcgtlons In tr.a.fflc
dense is part of the query. The difficulty of the problem lies in control systems, bandwidth management, collision probability
the fact that the spatial and temporal predicates are not specified evaluation, etc. In these environments users are interested in
by the query. The techniques we introduce find all candidate optaining fast and accurate answers.

dense regions at any time in the future. To make them more We identify two interesting versions of the problem: Snap-

scalable we subdivide the spatial universe using a grid and limit A
queries within a pre-specified time horizon. Finally, we validate shot Density Queries (SDQ) and Period Density Queries

our approaches with a thorough experimental evaluation. (PDQ). In SDQ the user is interested in finding the dense areas
at a specified time instant in the future. Given a collection of

objects moving on a 2-dimensional space, an SDQ example
I. INTRODUCTION is: “find all regions that will have more than 1000 vehicles

r square mile at 3:30pm”. On the other hand, a PDQ query

Databases that manage moving objects have received i . .] .
s the dense areas along with the time periods (intervals)

siderable attention in recent years due to the emerge t th . id. F | basi "
and importance of location-aware applications like inteIIigelﬁ atine answers remain vafid. For €xample, a basic operation

traffic management, mobile communications, sensor-bad Fa cellular communication network is the identification of

surveillance systems, etc. Typically the location of a movin cells that will become dense and for how long.

object is represented as a function of time and the databas%or th? static versti)on offtge pr_(:blim (iae.,lwhter_e ObjeCtti a(;e
stores the function parameters [2], [1], [17], [9], [22], [21]no moving) a number of density based clustering methods

: - have been proposed in recent years. The most relevant is
16], [24], [15], [27], [23], [10]. This results into a tractable up- . . :
[16], [24], [151, [27], [23], [10]. Thi LS| Ub STING [29] algorithm that uses a hierarchical structure

date load. The system is updated only when an object chan e . :
store statistical information about the dataset. However,

any of its moving parameters (e.g., speed, direction, ett . thod b d directlv for th . biect
The alternative of storing the object’s continuously changin IS method cannot be used directly Tor the moving objects
vironment since the update and space overhead will be

location is practically infeasible since it would correspond t

one update per object for each time instant [23]. Most wor%rge' Anotr:ertatlgogthtm 'S; CljlthUE [3'.]’ s;'ted. bet]jO& h(;gh
assume that object trajectories are linear functions of tim mensional static datasets. The basic 1dea 1s 1o find dense

For example, given the locatiar(0) of objecto at timet — 0 areas in lower dimensions first and continue recursively for
and its current velocity vectary, its position at some future hlgljhiizg\llr;rier?; Ig?t?i.trary dense areas inside the universe is a
time ¢ can be computed by(t) = 0(0) 4+ oyt. A database e .
that maintains the moving functions can compute and th the(; difficult phroble_lr_?]. B%t_h_jTltl;l]G an_d CLlQU.IfE ar(T g_n?—
answer interesting queries about the locations of the movi seb app;rg_ag .e?' I e¥|’h vide ble uryve:rr]se un orll_”fr? ydlrt] 0a
objectsin the future Examples include range queries: “Find'tmPer o disjointcells fhe problem 1S thus simpiilied 1o

which objects will be in areal, ten minutes from now” [10] that of finding all thedense cellsWe use the same approach
' " for two reasons: For most cases (e.g., traffic management) the

This work was partially supported by NSF grants 11S-9907477, EIAgraHUIarity and arrangement _Of tlhe grid can be set according
9983445, 11S-0220148 and Career Award 0133825. to user needs. In other applications (e.g., cellular networks)

all cells are already available. purposes and simplicity, in the rest of the paper we refer to
For many practical applications tlesactdensity of a region linear trajectories only (without loss of generality).
is not of critical importance. For example, a query about The objective is to find regions in space and time that
potential traffic jams may tolerate a small approximation errorith high probability will satisfy interesting predicates. For
Our approach is to keep a small summary of the moving objezdimensional movements an interesting property is finding
dataset in main memory that can be used to answer querdesas where objects tend to be very close to each other. We
quickly. Also, due to high update rates, the data structures miémtmalize this notion with the following definition:
be easy to maintain in an on-line fashion. To achieve theseDefinition 1 (Region Density)The density of regionR
goals we use spatio-temporal grids and propose techniquiesing time intervalAT is defined as:Density(R, AT) =
based on Dense Cell Filters and Approximate Frequen@ﬁ‘eﬁ%, whereminar N is the minimum number of objects
Counting (Lossy Counting). These methods guarantee againside R during AT and Area(R) is the total area oR.
false negatives but have a few false positives. In applicationsHence, we define region density as the minimum concen-
where false positives cannot be ignored our techniques canttagion of objects inside the region during the time interval
used as a pre-filtering step. Our estimators can quickly identiy interest. An important observation is that regions with
the (typically few) candidate dense regions which must thé¥igh density are not necessarily interesting. For example, two
be passed through a post-filtering step. objects arbitrarily close to each other define a region with
To the best of our knowledge this is the first work thaarbitrarily high density. Therefore, we allow the user to define
addresses density-based queries in a spatio-temporal envitwoth the level of density and the minimum and maximum area
ment. Previous work has dealt with range, join and nearehlat a qualifying region must have. Given the above definition
neighbor queries. Related to density queries is recent watle can now state the following density based queries:
on selectivity estimationfor spatio-temporal range queries Definition 2 (Period Density Query)Given a set of N
[27], [8]. Spatio-temporal estimators compute the number ofoving objects in space, a horizdii and thresholdsyy, as
objects that will cross a user defined spatial region at a userd £, find regionsR = {rq,...,7,} and maximal time
defined time instant in the future. However, a density quemtervals AT = {6t1,. .., 0tx|0t; C [Thow, Tnow + H]} such
is “orthogonal” in nature since the user does not specify thieat: o; < Area(r;) < as and Density(r;,0t;) > & (where
spatial and temporal query predicates. One straightforwafy,,, is the current timej € [1, k] andk is the query answer
way to use a spatio-temporal estimator to identify dense aresiee).
is by computing the selectivity estimate feach cell in the Notice that in the above query we do not specify time or
spatio-temporal grid. While simplistic, this approach is clearlgpatial predicates. Any method for answering this query must
inefficient due to its large computational cost (the spatidind not only the dense regions but also the time periods that

temporal grid typically contains too many cells). these regions appear to be dense inside the specified horizon
The contributions of this paper can be summarized &$. Typically, we require the area to be within some size
follows: (a1, ap) since the most interesting cases are when a large

« We identify two novel query types for spatio-temporanumber of objects are concentrated in a small region of space.
databases based on the notion of density in space #Mg0, the reported time periods are required to be maximal.
time. We concentrate on tractable versions of the problehfie time interval associated with a dense region should include
based on a regular spatio-temporal grid. all time instants between the time the region will first become

« We propose solutions that provide fMproximatean_ dense (Wlth respect to threshqjid until it seizes to be so.
swers by building main memory summaries that can A special case of the period density query is:
accommodate large update rates and deliver fast queryPefinition 3 (Snapshot Density Query@iven a set of N

responses. moving objects in space, a horizaH, a time instantZ,
« We present an extensive experimental study that validafds € [Tnow, Thow + H]) and thresholdsy,, a; and¢, find
the accuracy and efficiency of our methods. The propostggions Ry, ..., 7} such thata; < Area(r;) < as and

Dense Cell Filter approach has the most robust perfdrensity(ri, Ty) > & (Wherei € [1, k| andk denotes the query

mance requiring limited space and yielding a very sma@nswer size). . '
number of false positives. In Figure 1 we show an example of objects moving on a

2-dimensional surface. The current timelisThe answer to
a PDQ withH = 3,£ =3 anda; = a; = 1 (i.e., we are

[I. PROBLEM DEFINITION ; . N
looking for regions 1 square unit in size), i5= {A, B} and

A. General Framework AT = {[2,2],[3,3]}. It should be clear that by increasing »
In this section we define the general density-based quenydecreasing, increases the size of the answer. Meaningful
framework and our notation. values fora; » and§ are, of course, application dependent.

We assume that a database stores a sat objects moving ~ The requirement for arbitrary region sizes along with the
on a 2-dimensional plane. We model these objects as poineed for discovering maximal time periods render the general
represented by tuples of the forfx;, y, v, v,), where(x, y) is density-based queries very difficult to answer and hint at
the current location and = (v,, v,) the velocity vector. In our exhaustive search solutions. In addition, the horizon is not
setting, objects can follovarbitrary trajectories in the future restricted and its upper boundary advances continuously as the
(represented by generic functions of time). For illustratioourrent time increases. We proceed with the simplified versions

|

|
|
\ /:

—~— A o o

R F1 | S
J | |
| |

1 2 3 T 1 2 3 T

Fig. 1. An example of objects moving linearly in 2-dimensional space ov&ig. 2. The space-time grid fdi ; = 3. The trajectory of the object inserted
time. att =1 will cross cells{A1, B2, C3}.

of density-based queries, based on spatio-temporal grids apécified threshold inside the fixed horizon, along with the
fixed horizons. time periods that the answers remain valid.

Definition 5 (Simple Snapshot Density Quer@iven a
fixed partitioning? of space into a humber of disjoint cells,
find the cells that contain a number of objects larger than a

We partition the universe using a number of disjoint cellgser specified thresholg at a user specified timé&, inside
(buckets) and consider the problem of finding the most denge fixed horizon.
cells. Assuming that the partitioning of space is done accord-Assuming uniform grids of cells from now on (without loss
ing to user requirements, fast on-line discovery of the most generality), first a grid granularity and an appropriate hori-
dense cells is the first, most important step for answering gefon length are decided. Conceptually we create a spatial grid
eral density queries. The solutions we propose are orthogoful every time instant inside the horizon. For example, assume
to the partitioning process. For simplicity we consider onlg horizon of three time instants and let the 2-dimensional
uniform grids of cells but the techniques work for generalpatial universe be 100 miles long in each direction, with a
partitions also, as long as the cells are disjoint and their sizgsd granularity of 1 square mile. This will divide the space-
remain fixed inside the horizon. The emphasis in our treatmefthe grid into 3 x 100 x 100 = 30,000 cells. All cells are
is in handling a very large number of cells efficiently. enumerated with unique IDs (Figure 2). One straightforward

We also choose éixed horizon during which user queriesapproach to address the problem is as follows. Since the speed
can be answered. Instead of letting the boundary of the horizand direction of a moving object are known at insertion time,
advance as the current time advances, a fixed horizon proviggs can extrapolate its trajectory and find all the cells that the
answers only inside a fixed time interydl,,.,, H| (the upper object will cross in the space-time grid. Every object update is
boundary remains constant). Simplified fixed horizons appijius converted into a set of cell IDs, one ID (at most) per time
to most practical moving object applications [22], [27], [8]instant of the horizon. By maintaining the number of crossings
the user is typically interested in the near future for whicper cell we know each cell’s density at any time instant in the
the current information holds. When the horizon expires therizon. The same technique is used for handling deletions
estimators should be rebuilt [27], [8]. It is reasonable tand updates (by adjusting the appropriate cells).
assume that the user can decide in advance the time periowhile simplistic, this approach has a major disadvantage.
during which most queries will refer to. A problem that arisem any practical application the total number of cells of the
with fixed horizons is that a$,,,,, advances closer and closespace-time grid is expected to be very large (millions of cells).
to the horizon boundary, inevitably, queries will refer to aieeping a density counter for each cell consumes unnecessary
ever decreasing time period into the future. One way to avaiphace. We could reduce space by keeping only the cells
this situation is by rebuilding the estimators halfway througthat have been crossed so far and discard cells with zero
the horizon. For example, iT},,,, is 1:00pm andH; is set density. However, for real datasets this will not decrease space
to 2:00pm, after half an hour (at 1:30pm) we can rebuild thsubstantially since most cells will be crossed at least once.
estimator for another 30 minutes, until 2:30pm. Essentiallther techniques, like concise and counting samples [13], can
we can answer queries for at least 30 minutes into the futuse used to compress the density information. Counting samples
at all times. would keep only a random sample of cetl 1D, count >

Using the spatio-temporal partitioning and the fixed horpairs in a straightforward way. This approach offers many
zons the queries we answer have the following two forms: advantages, but still, it is probabilistic and does not guarantee

Definition 4 (Simple Period Density Queryiven a fixed against false negatives.
partitioning P of space into a number of disjoint cells, find It is apparent that the granularity and arrangement of the
the cells that contain a number of objects larger than a usdrosen partitioningP directly affects the performance of

B. Simplified Queries

The coarse grid guarantees no false dismissals but may
introduce false positives. For example, the reported density
for cell A, is the value of counted; o, which increases once
. for every crossing of any cell4; or A,) that belongs to that

bucket. If the number of crosses of eithéf or A, exceeds

threshold¢, A, > will also exceeds, hence no false negatives
™ are created. On the other hand, very fast moving objects may
introduce false positives. If the slope of a trajectory is large,
the object might pass through a bucket without crossing all the
cells that belong to it. In such cases the densities of some cells
are overestimated. Obviously, the larger the bucket width (and
the faster the objects) the more false positives may be created.

Answering an SDQ is straightforward. We locate the cells
Fig. 3. A coarse grid of granularity 2. Cell4; and A2 are combined into that correspond to time instadf, and report the ones that
a single bucket with counted; 2. belong to dense buckets. To answer a PDQ we scan the grid
that corresponds to the beginning of the horizon (asstipg
for simplicity) and locate all the dense buckets. For every

any solution, for a given aPp"Ca“‘?”- A very fine gra'neqjense buckeB, we check later time instants to find how many
(and a very coarse) grid might fail to produce any den%%nsecutive buckets are also dense
cells. A very large number of cells will have a negative '

impact on answer speed, etc. We postulate, though, that for
most practical applications the partitioning is already (at lea8t Lossy Counting

vaguely) defined thus limiting available choices. Lossy counting is a deterministic algorithm introduced in
~ We propose several techniques that compress the dengiiy| for computing item frequencies over a stream of transac-
information by bundmg_esnmators that identify only th‘?tions. It guarantees an upper bOUhC%df)geL space, wherd
most dense cells and discard the rest. The penalty of usi@gne current length of the stream. The input to the algorithm
gstlmators is two fol_d. First, the reported densities are apprq¥-an error threshold. The output is a set containing the
imations. Second, in order to guarantee no false dismissgigs; frequent items. The estimated frequencies differ from
a number of false positives will be reported along with thge actual frequencies by at mest. The algorithm calculates
correct answers. the frequency of the items as a percentage.aind detects
the ones that appear with the highest rate fasontinuously
I1l. GRID-BASED TECHNIQUES increases). For example, a query has the following form: “Find
We first describe a simple improvement basedcoarse items that appeared until now in the stream for more than 70%

grids. We then present aApproximate Frequency CountingOf the time”. The answer to this query would be all items with
algorithm (termed Lossy Counting) that appeared in [18] adggauencyf > 0.7L.

can be modified and used in our setting. Finally, we introduce The actual algorithm appears in Figure 4. The incoming
another approach, theense Cell Filter stream is divided into consecutive buckets. Every budRet

consists ofw items, wherew = % is the width of each bucket.
. The algorithm maintains a séf of the most frequent items.
A. Coarse Grids Every entry inF has the formE =< id, f, A >, where
Coarse grids are a general technique that can be utilizelis the item identifier,f the estimated frequency anfl
by all subsequent estimators for decreasing their size. Instéhed maximum possible error iffi. Initially F is empty and
of keeping one density counter per cell for the whole spac& = 1. Whenever a new itenfi arrives, the algorithm checks
time grid (Figure 2), multiple consecutive cells in time aravhether! is in F. If it is, the entry is updated by increasing
combined into a single bucket associated with only one countity frequency E7.f). If it is not, a new entry is inserted in
(Figure 3). The granularity of the coarse grid is defined &. Every w items the bucket boundary is reached ahds
the number of consecutive cells in time that belong to thepdated by removing the items that are not frequent anymore.
same bucket. By making the buckets larger (decreasing theany point, the estimator can return all items that appeared
granularity) we can decrease the size of the original gridore thanpL times (wherep € [0,1] and is specified by the
substantially. It should be noted that coarse grids compregsery) by outputting all entries i for which E.f > (p—¢)L.
the grid in the time dimension only. Combining cells in the This technique works well for finding the most frequent
spatial dimensions is not applicable since it would invalidaieems. Once such items are inserted iffotheir frequency
the application dependent partitioning. is being calculated and, most probably, they will never be
Figure 3 shows an example of a coarse grid with granularitieleted fromF. Iltems that are not as frequent will be inserted
2 (buckets are illustrated by the shaded regions). Essentiadipd later removed fronF. We can apply the Lossy Counting
the number of total counters is reduced by half. An objeapproach for density queries with somedifications Instead
trajectory crosses bucketd; , and Bs 4, and thus these of a stream of items we have a sequence of object insertions
counters should be adjusted. and deletions. Every insertion is converted into a set of cell

Input: Stream of items{I;, I, ...}. Errore. 1 2 3 4 5 6 7 8 9 10
Output: Set F of entries £ =< id, f,A > Init
representing the most frequent items in the stream. c, h S on
F=0w=1)/\‘/}/\2~
B=1,L=0 Insert
New item I appears in stream: /91 L Cs - Cy
I/l Check for bucket boundary first. A - - T D St /
If L>0andL modw = 0: Query
For all £ € F:
If £.f+ E.A < B: removeFE from F Fig. 5. A Bloom Filter usingKl = 2 hash functions and/ = 10 bits.
B+ =1
/I Process the new item.
L+=1 corresponds to the beginning of the horizon (assling, for
If IeF. Erf+=1 simplicity) and locate all the dense cells. For every dense cell
Else: addE' =< I.id,1,B—1>in F Cr,,,» we probe the hash table at time instdit,, + 1 to see
if the corresponding cell’r, ., is also dense, and continue
Return the most frequent items: as long as the cell remains dense.
For all E € F: An interesting observation about Lossy Counting is that
If E.f > (p—e)L:retunk.id cells that may be false positives have densities in the interval
[(p—€)L, pL]. All cells with larger densities definitely belong
Fig. 4. The Lossy Counting algorithm. to the correct answer. However, in the worst case all reported

cells may have densities in the aforementioned interval. That
is, the method does not provide any guarantees on the number

IDs (Figure 2). We input the IDs that are being crossed kﬂf false positives, neither this number can be estimated.

the object trajectories as the streaming values of the Lossy
Counting algorithm. The dense cells, whose IDs appear m%:e
frequently, are kept inF. Less interesting cells are omitted.™
A deletion is straightforward. For a cell’ crossed by the To overcome some of the above limitations we introduce
old trajectory, ifC € F we decreas€.f by one. Cells that the Dense Cell Filter approach. This novel solution uses
become non-frequent will be deleted at the bucket boundary. modification of a basic Bloom Filter to create a small
This algorithm can find the cells that have been crossed symmary of the dense cells. A Bloom Filter [5] is a simple
more thanpL trajectories, wherd, ~ N H is the number of randomized data structure for representing a set in order to
IDs that have appeared on the stream, a number roughlysagport membership queries and it is very space efficient.
large as the number of object updaf€stimes the remaining Given a setS = {C4,...Cg} of E elements the problem
horizon lengthH. Since not all trajectories cross one cell peis to find if item X belongs taS (membership query). A basic
time instant of the horizon but some extend outside of ti&oom Filter is a hashing scheme that uses a bit-vector array
universe,l might be smaller than the above product. Howevewith A bits (initialized to zero) and a set df independent
user queries have a pre-specified density threshaldt rep- hash functionsH = {h;,...,hx}, that produce values in
resents an absolute number of objects, while Lossy Countitige range[1, M]. For everyC. (e € [1,E]) all K hash
can only produce entries that are frequent with respedt.to functions h(C.) (k € [1, K]) are computed, producing’
Thus, we have to expregsas a percentage df. In particular, numbers. Each number maps to a bit in the bit vector hence
in order to retrieve all the answers we need to finglich that the corresponding bits aet To find if X belongs toS the
pL < & However, sincep < % = lim;_..p = 0, as L hash functions are applied ox to produceK values. If all K
increases n@ may satisfy the query. To prove this supposealues map to bits that are séf,is in S with some probability.
we return all cells with frequenciesA = {C|C.f > { —eL}, If at least one bit is not set, thek is not inS.
while the correct answer i§'4 = {C|C.f > pL —e€L}. Since Figure 5 shows an example. The filter h&6 = 10 bits
pL < &, we get:Cardinality(A) < Cardinality(CA). This and usesk = 2 hash functions. Initially all bits areeset
means that we might miss some of the answers. Unfortunatelet to zero and depicted as white boxes). During the insertion
this pitfall cannot be avoided unless the estimator is rebustage we insert sef = {C,, C>}. Hash functionsh; (C;) =
more frequently such that does not become too large (sol, ho(C1) = 5 and hy(Cs) = 5,h2(C3) = 9 are computed
that ap exists that satisfies the query). and the resulting bits are set (shaded boxes). During the query
Regarding implementation, s¢f can be organized as astage three membership queries are performedCr@ndC;
collection of hash tables, one for every time instant of the resulting bits are already set thus these items might be in
horizon. To answer an SDQ with tim&, and threshold S or not. It is apparent thaf’; is a false positive since the
we find all cells with density larger thafiin the appropriate item was never inserted in the filter. On the other hafg,
hash table. To answer a PDQ we scan the hash table tbattainly does not belong 18 sinceh,(C4) = 7 is not set.

Dense Cell Filter

Input: Set of cellsS = {C4,...,Cg}. Number without affecting the filter. Deletions are straightforward. They

of stagesk’ and hash functions, k. Counters just reverse the effect of the corresponding insertion. If the
per stageM. Thresholdy. Horizon H. estimated density of a cell becomes less thanthis cell
Output: A dense cell list (DCL). is removed from the DCL. A detailed description of our
DCL =0 algorithm is shown in Figure 6.

Vi_._x — vectors of M counters One improvement for this algorithm is to keep a separate

.....

Fork —1 — Kom=1— M: Vim] =0 Bloom Filter per Flme instant of the horizon. As tlmg pro-
gresses, Bloom Filters that refer to the past can be discarded

Object insertion: i . :
to save space. Also, since fewer cells are associated with each

U C S = set of cell IDs crossed by object durirfg

. filter, we expect to have fewer false positives. Since the DCL

ForallC; e U : list | it should b ved tof |
If C; € DCL : C;.density+ — 1 ist can grow very large, it should be organized as a set of in
Else: memory hash_ tab_les, one for every time instant of the h_onzon.
Fork=1— K : Vi[hu(Co)l+ = 1 An interesting issue that arises with this approach is that

the DCL contains all cells that exceed threshgidspecified
Object deletion: at construction time. If the user poses a query v&jit{q 1, the
U C 8 = set of cell IDs crossed by object durirg DCL_cann(_)t report an answer. There are twq solutions for such
ForallC; € U : queries. Either the filter has to be rebuild with a full dat_abase
If ¢, € DCL - scan or [t has to adapt to the lower thres_r@@radually,_ while
C.density— = 1 pﬁjstpomng tEehan?}:ver to the query. With the adapuvr? thresh-
.) old approach the filter cannot guarantee anymore that some
If Ci.density < : removeC, from DC'L dense cells will not be missed. Nevertheless, the Dense Cell

Else:
_) N Filter is still a valuable approach since for most applications
Fork =1 — K Vihi(C)]- =1 the lower possible threshold can be decided at construction
time.

Fig. 6. The Dense Cell Filter algorithm. . .
9 ' gor In contrast to Lossy Counting the Dense Cell Filter can

provide certain probabilistic guarantees on the number of false
positives introduced. Below we show that the probability of a

Assuming perfect hash functions it can be shown that tleell with densityc < £ being reported is small and depends
probability of a false positive i§l — e~ o)K By knowing on the number of objects, the number of counterand¢.
the values ofE and M, the numberK of hash functions Lemma 1:Given N moving objects, a query threshold
that minimize the number of false positives can be computezhd a Bloom Filter with one stage dff counters per time
This is achieved fork = In 2(%) [6]. By increasingM we instant of the horizon, the probability that céll with density
decrease the probability of false positives, but at the same time< ¢ is being reported by the filter is in the worst case
the size of the Bloom Filter increases. P< L 12/ <

There are many interesting variations that improve on the Proof ConSIder the:-th update for cell”’ (which makes
basic Bloom Filter. For example, one problem is that twihe density of this cell equal te) and assume that after this
or more hash functions can map to the same bit causingdate the counter faf' (2(C)) has valug. The cell will be
a collision (as shown in Figure 5). To overcome this issuafdded to the DCL and thus reported by the filter. Since the cell
instead of usingK hash functions that map to the samé& already contains objects, the counter contains anotlder ¢
values we can us& bit vectors (each vector is referred to agbjects from other cells. We havé objects in total and in the
astage each one with a separate hash function and size equalrst caseV — c of those can be distributed == counters.
to 4. Another variation, directly related to our approach, i that case, the probability of being added to the DCL
the counting Bloom Filter[12]. Each bit of the bit vector is is equal to the probability o hashing to one of thé\ﬂ
replaced with a small counter (for example 2 bytes). Evenut of M counters, which is equal tg}N <. In the general
time a new element is inserted, the corresponding counteese of K stages per filter, this probablhty is generalized to
are incremented (instead of the bits just being set). When an< (- LN— C)K]
element is deleted, the counters are decremented. Note t%at the lemma provides an upper bound and the

In our environment we have a spatio-temporal grid consigirobability of false positives is much smaller in practice.
ing of a setS = {C4,...,Cg} of E distinct cells (or buckets Nevertheless, from the formula we can infer that be increasing
in case of coarse grids) and we want to store the densitytb® number of counters/ or the threshold, the probability
each cell using as little space as possible. We also wantféo false positives decreases. It is also apparent that increasing
identify the most dense cells quickly. We thus build a countirttpe number of stage&™ per filter will have a negative impact.
Bloom Filter that storesS, and maintain it on-line. Every time Both observations are validated by our experimental results
an object update is performed, we convert it into a sequenefer to Section V).
U c S of cell IDs and insert them into the filter. If the counter
of a cell C; becomes larger thap (specified at construction IV. DiscussION
time), we insertC; into the list of dense cells (DCL). From First we comment on the advantages and disadvantages of
that point, the frequency of’; is updated in the DCL only, each of the three grid-based techniques. Then, we consider

methods for eliminating false positives. While a range query provides the exact answer, it runs at time
proportional to the number of objects in the cell (and since
A. Comparison of Grid-Based Algorithms these are the denser cells, they will contain a lot of objects).

The coarse grid uses a simple idea to compress the space-
time grid. Since the compression process is independent of the V. EXPERIMENTAL RESULTS

actual cell densities, the number of false positives will increasey), experiments were run on an Intel Pentium(R) 4 1.60Ghz

substantially for large granularities. Furthermore, since onlyp(; with 1Gb of main memory. We generated various syn-
one density counter is kept per bucket, the estimated densitisiic gatasets of moving objects. For the first dataset we
will not be very accurate either. . i) initially pick a random number of dense locations and place
_An advantage of Lossy Counting is that (if certain condi; |5rge number of objects around them (a snapshot is shown
tions are met) it computes the estimated densities with gréaicig e 7(a)). We distribute the rest of the objects uniformly
accuracy, since the most dense cells are always storedijrynace and let them move freely on the plane. The dataset
memory. However, it provides no guarantees about the numbers +, simulate vehicles that disperse from dense areas. For
of false positives in the answer. Moreover, the estimator nee&cample, the downtown LA area at 3:00pm or a stadium after
to be rebuilt frequently so that it does not miss actual denﬁxpe end of a game. In the rest, we refer to this dataset as
cells. Since a large number of cells are added and dropRSENSE. The second dataset represents a network of highways
at the bucket boundaries continuously (i.e., these cells ajgy 5 rface streets (denoted as ROAD, Figure 7(b)). Each road
considered by the algorithm to be almost frequent but Nt o eqented by a set of connected line segments (231 line
frequent enough) their est!mated frequencies have a h'g%bments were generated in total). The 2-dimensional universe
error. If the user threshold is small epou-gh to b,e close 10 t]he"h otk gatasets is 100 miles long in each direction. Every
density of these cells, the algorithm will yield a higher numbefi, j ation lasts for 100 time instants. We generated 1 million
of false positives with an increased estimation error. F'nal%oving objects per dataset. Every time instant at least 1% of
the algorithm has a substantial computational overhead SiGe opiects issue an update (which changes the speed and/or
it has to perform one linear scan of the in memory list pejiection of the object). The velocities of the vehicles are
'?“C',‘et boundary. The cost will increase, of course, yvhen B€nerated using a skewed distribution, between 10 and 110
list is larger (for smaller user thresholds or a multitude iles per hour.

dense cells). . . For our measurements we use@® x 250 uniform grid;

In contrast, the Dense Cell Filter provides strong guaranteg: gives 62,500 cells in total, while every cell is 0.4 miles
on the_number of false .positives and can be easily adjus(xal e. The ho'rizon was fixed a't the start of each simulation.
accqrdmg _to space requwements. Moreover, wher_1 den;e Cﬁl time proceeds, queries refer to time instants that fall inside
are identified they are added in the DCL and their estimat horizon interval. For example, if the horizon was set to
densities are computed with high accuracy. Another benef%; '

that the algorithm | Hicient with ted » = 20 and the current time i§},,, = 9, the estimators
at the aigoriinm 15 very efficient with an eXpected SMayyq,iqe answers for queries that refer to time instants between
computational overhead. A drawback of Dense Cell Filt

and 20. When the current time reaches halfway through the

s th?t the threshold cannot be _dynamically set .(the_ IOWer?(Brizon, all estimators are automatically rebuild.This is typical
possible threshold has to be decided at construction time).; i 00 b cod solutions [22], [27], [8]

Figure 8 shows an actual density histogram from one of our

B. False Positives experiments. It plots the number of cells that have a specific

One approach for minimizing false positives is by usingensity between time instants 9 and 20 for the ROAD dataset,
a spatio-temporal histogram. Such histograms provide an g#/n the current information at tinig,,,, = 9 and H; = 20.
timate of the selectivity of each reported cell. Unfortunatelyince there are 12 time instants until the end of the horizon and
recently proposed techniques [27], [8] do not provide any gua&ach instant carries a grid with 62,500 cells, there are 750,000
antees on the selectivity estimates they report. An alternativec@ls in that plot. A good estimator should try to compress this
the use ofketchingproposed in [14] and based on the seminahformation by keeping only the most dense cells which are,
work of [4]). Sketches can be used to approximate the spatigpically, very few.
temporal grid by summarizing the information associated with We also created synthetic query workloads. For each ex-
the cells. The advantage of sketching is that the estimationperiment we set a fixed density threshold, both for period
highly accurate with high probability. The disadvantage is thahd snapshot queries. Each experiment is run multiple times
they are computationally expensive. varying the density threshold from 1000 to 2500 objects. For

If the objective is the full elimination of false positivessnapshot queries the time predicate is uniformly distributed
the user may run a spatio-temporal range query using tinside the remaining period of the current horizon. For every
spatial range of each cell being reported by the estimatosgnulation we run 200 queries in total.
Such a query finds the actual objects in that cell (i.e., an exactWe compare 3 techniques: Dense Cell Filters (denoted as
answer). Indexing techniques for moving points can be usBCF), Lossy Counting (LC), and coarse grids (CG). We
for that purpose (the TPR-tree [22], [21], the duality indexintested every technique using several configurations in order to
of [17] or the partitioning schemes in [11]). Those indice%optimally” tune their performance. We run DCF with several
are dynamically updated and index the whole moving dataseifferent combinations of stages and counters, LC with varying

(a) DENSE (b) ROAD

Fig. 7. Datasets.

1000
900
800
700
600
500
400
300
200
100

sizes greater than 10%. The CG estimator in order to reduce
the grid to 5% of its original size has to become very coarse
thus its performance deteriorates due to very large bucket
lengths. For the rest of the graphs we compare all techniques
using estimators with 5% size (to be fair we used 2 bytes per
counter for DCF since this is enough to represent a maximum
reasonable threshold).

Figure 10 shows a scale-up experiment for increasing hori-
zon lengths. We tested all estimators with an SDQ set using

Number of cells

' 201 401 oot horizons of 10, 20 and 50 time instants, while keeping the
Density (number of objects) . . iy s
estimator sizes within 5% of the total number of cells. The
Fig. 8. A horizon density histogram. DCF performance remains unaffected; since a separate filter

is kept per time instant of the horizon, the horizon length

should not affect the accuracy in general. It is apparent that
bucket widths and CG with decreasing granularities. In tHeC is robust for uniform data (DENSE), but its performance
rest of this section for every technique we plot the best resdgteriorates for highly skewed distributions (ROAD). Also,
given among all configurations with similar size. To compar@ much larger bucket size was needed in order to keep the
the efficiency of our techniques we use thieswer sizeas a €stimator within the 5% limit, without loosing some of the
measure. We define the answer size as the total number of fglggect answers. For CG there is a noticeable performance
positives plus the actual dense cells reported by each estima@enalty for both datasets. In order to keep the estimator size
In addition, we compute the answer size as a percentage of tithin our space requirements the grid granularity has to
total number of cells in the spatio-temporal grid. The answlecome very coarse. Moreover, this technique is very fluctuant,
size is an important indication of an estimator’'s robustne¥dlich makes it even less attractive.
since it gives a good feeling about the reduced processingn Figure 11 we plot efficiency as a function of density
cost required for finding an exact answer, after the estimatbreshold. For this experiment we used an SDQ set and a
has produced a result superset (compared with calculating Hegizon length of 50 time instants. As expected, the larger
exact answer exhaustively, without the help of the estimatothe density threshold the fewer false positives are reported.
In addition, since false positives tend to dominate the resifitthere is only a small number of dense cells at a specific
set, the smaller the answer size the better the estimator. Thime instant, the estimators identify them with great accuracy.
a direct comparison between estimators is realistic. The problem becomes more difficult as the number of cells

The efficiency of the techniques as a function of ththat have densities around that threshold becomes larger. For

estimator size for snapshot queries is shown in Figure 9. Ttheesholds larger than 2000 objects all estimators report very
size of the estimators is computed as a percentage of the $eae false positives. For the DENSE dataset DCF and LC give
of the entire spatio-temporal grid. For this graph we usedtlae best results (almost no false positives are reported) while
density threshold equal to 1500 objects and a fixed horizon©6G does not perform well. Performance deteriorates though
50 time instants (i.e., 3,125,000 cells). Assuming 4 bytes piewr LC, especially for smaller thresholds. For the ROAD
cell, the 5% estimator uses only 600KB of main memory. Weataset DCF gives again the best results; it reports less than
can deduce that for DCF and LC a 5% estimator size yield%s of the total number of cells in all cases. Even when exact
very few false positives (less than 2% answer size). Increasignsity answers are required, it is obvious that there is a
their size beyond 5% does not yield substantial improvemenssibstantial benefit when using this technique as a pre-filtering
especially for DCF. On the other hand, CG benefits even fstep to reduce the amount of cells that need to be checked.

Figure 12 plots the relative error in computing the exacts] A. Broder and M. Mitzenmacher. Network Applications of Bloom

density for the dense cells (averaged over all queries), as Filters: A Survey. InTo appear in Allerton 2002
f ti f d itv thresholds. All techniques report th 1 C.-M. Chen and Y. Ling. A sampling-based estimator for Top-k query.
a function or adensity sholds. Iques rep In Proc of IEEE ICDE 2002.

densities of the dense cells with less than 1% error (over the] Yong-Jin Choi and Chin-Wan Chung. Selectivity estimation for spatio-
exact density of that cell). The results reported by DCF and Lig temporal queries to moving objects. Rfoc. of ACM SIGMOD2002.

| h | o .)} H. D. Chon, D. Agrawal, and A. El Abbadi. Storage and retrieval of
were very close to the actual densities. CG was considerab moving objects. IMobile Data Managemenpages 173-184, 2001.

worse, but still below 1% error. [10] C. Jensen (editor). Special issue on indexing moving objeBtata
Figure 13 shows the update cost of the techniques as, a Engineering Bulletin2002.

. . 1] K. Elbassioni, A. Elmasry, and I. Kamel. An efficient indexing scheme
function of horizon Iength' For DCF and CG the Update COE for multi-dimensional moving object@th International Conference on

does not grow substantially (CG is almost two times more Database Theory, Siena, Italy (to appea2D03.

expensive than DCF). The cost for LC increases proportiona[l‘yz] L. Fan, J. Almeida P. Cao, and A. Broder. Summary cache: a scalable

. . wide-area web cache sharing protocolEEE/ACM Transactions on
for larger horizon lengths due to the larger bucket widths Newyorking 8(3):281-293, 2000.

needed. Moreover, LC is about three times slower than DGE3] P. Gibbons and Y. Matias. New sampling-based summary statistics for
Figure 14 plots the estimator performance for period queries improving approximate query answers.Rroc. of ACM SIGMODApril

(PDQ) as a function of density threshold. We observe the Saﬁ'@ A. C.l Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing

trends as with snapshot queries. DCF is the best compromise Wwavelets on Streams: One-Pass Summaries for Approximate Aggregate
between accuracy, speed and robustness for increasing dengsityQueries. InThe VLDB Journal September 2001.

: 151" O. Ibarra H. Mokhtar, J. Su. On moving object queries.Phoc. 21st
0,
thresholds and highly skewed data (less than 3% answer 4|zé ACM PODS Symposium on Princeples of Database Systems, Madison,

for all cases). LC works very well for the DENSE dataset, but wisconsin pages 188-198, 2002.
its performance deteriorates for the ROAD dataset and Sn{éﬂ] G. Kollios, D. Gunopulos, and V. Tsotras. Nearest Neighbor Queries

. in a Mobile Environment.In Proc. of the Spatio-Temporal Database
density thresholds. CG, on the other hand, reported more than \;,nagement Workshop, Edinburgh, Scotlapdges 119134, 1999,

8% false positives for all cases. [17] G. Kollios, D. Gunopulos, and V. Tsotras. On Indexing Mobile Objects.
From our extensive experimental evaluation DCF presented In Proc. of the 18th ACM Symp. on Principles of Database Systems

. . . (PODS) pages 261-272, June 1999.
the most robust performance making it a quite accurate, fash G s ‘anku and R. Motwani. Approximate Frequency Counts over

and reliable density estimation technique. LC gives very good Data Streams. IfProc. of 28th VLDB pages 346-357, August 2002.

density estimates but has much higher update cost and dd&k S Chaudhuri N. Bruno and Luis Gravano. Top-k selection queries over
relational databases: Mapping strategies and performance evaluation.

not work well for highly skewed environments. ACM TODS 27(2), 2002.
[20] K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying mobile objects in
VI. CONCLUSIONS spatio-temporal databases. Pnoc. of 7th SSTPJuly 2001.

. . [21] S. Saltenis and C. Jensen. Indexing of Moving Objects for Location-
We addressed the problem of on-line discovery of dense Based ServicesProc. of IEEE ICDE 2002.

areas in spatio-temporal environments. We simplified the prdB2] S. Saltenis, C. Jensen, S. Leutenegger, and Mario A. Lopez. Indexing

N the Positions of Continuously Moving Objecttn Proceedings of the
lem by dividing the spatial universe into a uniform grid of <\ SiGmoD pages 331-342, May 2000,

cells and considering a fixed horizon in the time domain. Wes] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling
proposed efficient solutions that provide fast answers with high and Querying Moving Objects. In Proceedings of the 13th ICDE,

. . Birmingham, U.K pages 422-432, April 1997.
accuracy. Our solutions are based on Dense Cell Filters e}%’i Z. Song and N. Roussopoulos. K-nearest neighbor search for moving

Approximate Frequency counting algorithms. They guarantee™ query point. InProc. of the SSTPpages 79-96, 2001.
no false dismissals (but few false positives), provide faB] Y. Tao and D. Papadias. Time-parameterized queries in spatio-temporal
updates and are space efficient. An extensive experimeg&g databasesProc. of ACM SIGMOD2002.

el

- . Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search.
evaluation was also presented, showing that the Dense In Proc. of VLDB 2002.

Filter was the most robust solution. It gave fast and accurd®é] Y. Tao, J. Sun, and D. Papadias. Selectivity estimation for predictive

. - o spatio-temporal queriesProceedings of 19th IEEE International Con-
answers, with a minimal number of false positives. In future o c"on Data Engineering (ICDE), to appe@no.

work we will address Top-K density-based queries. Instegmh] M. wang, J.S. Vitter, L. Lim, and S. Padmanabhan. Wavelet-based cost
of specifying a density threshold the query must reportithe estimation for spatial queries. Proc. of SSTDpages 175-196, 2001.

. [29] W. Wang, J. Yang, and R. Muntz. STING: A statistical information grid
most dense cells. Methods based on hIStOQramS [19]’ [28] %% approach to spatial data mining. Tine VLDB Journglpages 186-195,

sampling [13], [7] should be considered. 1997.

REFERENCES

[1] P. Agarwal, L. Arge, and J. Vahrenhold. Time responsive indexing
schemes for moving points. IAroc. of WADS 2001.

[2] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points.
In Proc. of the 19th ACM Symp. on Principles of Database Systems
(PODS) pages 175-186, 2000.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic
Subspace Clustering of High Dimensional Data for Data Mining Ap-
plications. In Proc. of ACM SIGMOD Conferencpages 94-105, June
1998.

[4] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. Journal of Computer and
System Sciencegolume 58(1), pages 137-147, 1999.

[5] B.H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM.3(7):422-426, 1970.

10

ODCF BmLC OCG ODCF BLC OCG

5

g g !
8 IR
2 E
2 i
< < . cG
o LC
5% DCF
10% 10%
Estimator size (%) 15% Estimator size (%) 15%
(a) DENSE (b) ROAD
Fig. 9. Performance evaluation as a function of estimator size for snapshot queries.
6
& 3
; »
B ®
2 2
2 2
< <
CG

10 10

Horizon length Horizon length 50
(a) DENSE (b) ROAD
Fig. 10. Performance evaluation as a function of horizon length for snapshot queries.

Answer size (%)
Answer size (%)

CG

1000

1500

1500
2000

2000
Density threshold 2500 Density threshold

DCF

2500

(a) DENSE (b) ROAD

Fig. 11. Performance evaluation as a function of density threshold for snapshot queries.

11

ODCF BLC OCG ODCF ELC OCG

Relative density error
Relative density error

[
1000
1500

Density threshold 2500 Density threshold 2500
(a) DENSE (b) ROAD

Fig. 12. Relative density error as a function of density threshold for snapshot queries.

ODCF OCG ELC ODCF OCG ELC

1200
1000
800

600

Seconds
Seconds

400

200

500

0
10

20
Horizon length 50 Horizon length 50

(a) DENSE (b) ROAD

Fig. 13. Estimator update cost as a function of horizon length.

ODCF BLC OCG ODCF ELC OCG

Answer size (%)
Answer size (%)

CG

1000
1500 1500

2000 2000
Density threshold 2500 Density threshold 2500

DCF

(a) DENSE (b) ROAD

Fig. 14. Performance evaluation as a function of density threshold for period queries.

