1. (a) Given points $p_1 = (1, 4, 6)$ and $p_2 = (3, 4, 8)$, solve for v_1 the vector from p_1 to p_2.
(b) Given a third point $p_3 = (-3, 4, 10)$, solve for v_2 the vector from p_1 to p_3.

2. (a) Find the value for the magnitude of v_1.
 (b) Find the value for the magnitude of v_2.

3. (a) Solve for the unit vector in the direction of v_1.
 (b) Solve for the unit vector in the direction of v_2.

4. (a) Solve for the vector (cross) product $v_1 \times v_2$.
 (b) Solve for $v_2 \times v_1$.

5. Solve for the scalar (dot) product $v_2 \cdot v_1$.

6. Which of the following are unit vectors?
 \[
 \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right), \quad (1, -1, 0), \quad \frac{1}{5}(0, 3, 4), \quad (-1, 0, 0) \]

7. We are given two non-zero vectors $u, v \in \mathbb{R}^3$. Assume the angle between u and v satisfies $0 < \theta < \frac{\pi}{2}$. Use dot products and/or cross products of u and v to give expressions for:
 (a) $\cos \theta$
 (b) $\sin \theta$
 (c) A vector perpendicular to both u and v

8. Given three square matrices $Q, R, S \in \mathbb{R}^{n\times n}$, which statements are true in general?
 (a) $Q(R + S) = QR + QS$
 (b) $QR = RQ$
 (c) $(QRS)^T = Q^T R^T S^T$
 (d) $(QRS)^{-1} = S^{-1} Q^{-1} R^{-1}$

9. Given a square matrix $A \in \mathbb{R}^{n\times n}$ whose columns form an orthonormal basis
 (a) What is the determinant of A?
 (b) What is the dot product of any pair of columns in A?
 (c) What is the inverse of A?