CS480 Solutions to Homework Assignment 1

1. We want to determine the transformation matrix for a reflection around an arbitrary line \(y = mx + b \). One way to solve this is to translate and rotate the problem into an easier coordinate system. If we translate and rotate the line to align it with the \(x \) axis, then we can employ the standard transform for reflection about the \(x \)-axis.

The homogeneous coordinate representation is more convenient here because we need to include translation in our formulation. Thus we can build a general reflection about a line as a concatenation of linear transforms. We begin by translating to the line’s \(y \) intercept to the origin using a translation matrix:

\[
T_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -b \\ 0 & 0 & 1 \end{bmatrix}.
\] (1)

We then need to rotate the line to align it with the \(x \) axis:

\[
R = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\] (2)

The sine and cosine for alignment can be found directly from the line equation:

\[
\sin \theta = \frac{-m}{\sqrt{1 + m^2}} \quad \text{and} \quad \cos \theta = \frac{1}{\sqrt{1 + m^2}}.
\] (3)

Now that we have a way to get between the line’s coordinate system and the world coordinate system, we can employ reflection about the \(x \)-axis:

\[
\text{Reflect}_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\] (4)

We then inverse rotate, back into the line’s orientation:

\[
R^{-1} = R^T = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\] (5)

And finally, translate from the origin back to the line’s \(y \) intercept:

\[
T_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix}.
\] (6)

Thus we build our arbitrary reflection as a concatenation of transforms. We first align the coordinate system of the line with the \(x \) axis, we then reflect, and then we return to the original coordinate system:

\[
\text{Reflect}_{\text{line}} = T_2 R^T \text{Reflect}_x R T_1
\] (7)
2. We need to show that $\mathbf{SR} = \mathbf{RS}$, only if $s_x = s_y$, or $\theta = n\pi$ for integer values of n. Start by multiplying the matrices:

\[
\mathbf{SR} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} \cos \theta & - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} s_x \cos \theta & -s_x \sin \theta \\ s_y \sin \theta & s_y \cos \theta \end{bmatrix},
\]

and

\[
\mathbf{RS} = \begin{bmatrix} \cos \theta & - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} = \begin{bmatrix} s_x \cos \theta & -s_y \sin \theta \\ s_x \sin \theta & s_y \cos \theta \end{bmatrix}.
\]

If $\mathbf{SR} = \mathbf{RS}$, then clearly

\[
\begin{bmatrix} s_x \cos \theta & -s_x \sin \theta \\ s_y \sin \theta & s_y \cos \theta \end{bmatrix} = \begin{bmatrix} s_x \cos \theta & -s_y \sin \theta \\ s_x \sin \theta & s_y \cos \theta \end{bmatrix}.
\]

Note that the diagonal elements of both matrices are the same, while the off-diagonal elements are different. This means that for the matrices to be equal, it must be the case that

\[
-s_x \sin \theta = -s_y \sin \theta \quad \text{and} \quad s_y \sin \theta = s_x \sin \theta.
\]

This will be true when $s_x = s_y$, or when $\sin \theta = 0$ (which happens only when $\theta = n\pi$ for integer values of n). Otherwise, the off diagonal elements of the matrices will not be equal, and therefore $\mathbf{SR} \neq \mathbf{RS}$.

3. First, we will recall from the textbook that:

1. $\mathbf{R}(\theta)\mathbf{R}(\phi) = \mathbf{R}(\theta + \phi)$. Since this is true, any sequence of rotations can be rewritten as one rotation matrix.

2. $\mathbf{T}(a_x, a_y)\mathbf{T}(b_x, b_y) = \mathbf{T}(a_x + b_x, a_y + b_y)$. Since this is true, any sequence of translations can be rewritten as one translation.

In addition, we must prove that any rotation followed by a translation can be rewritten in terms of a different translation followed by the rotation; e.g., $\mathbf{R}(\theta)\mathbf{T}(a_x, a_y) = \mathbf{T}(b_x, b_y)\mathbf{R}(\theta)$. The proof of this is given as follows.

\[
\mathbf{R}(\theta)\mathbf{T}(a_x, a_y) = \begin{bmatrix} \cos \theta & - \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & a_x \\ 0 & 1 & a_y \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
= \begin{bmatrix} \cos \theta & - \sin \theta & (a_x \cos \theta - a_y \sin \theta) \\ \sin \theta & \cos \theta & (a_x \sin \theta + a_y \cos \theta) \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
= \begin{bmatrix} 1 & 0 & (a_x \cos \theta - a_y \sin \theta) \\ 0 & 1 & (a_x \sin \theta + a_y \cos \theta) \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
= \mathbf{T}(b_x, b_y)\mathbf{R}(\theta)
\]

where, $b_x = a_x \cos \theta - a_y \sin \theta$ and $b_y = a_x \sin \theta + a_y \cos \theta$.

4. (a)

\[
M = \begin{bmatrix}
-1 & 0 & a \\
0 & -1 & b \\
0 & 0 & 1
\end{bmatrix}.
\]

4. (b) Rotate by 180° followed by translation by \((a, b)\).

4. (c)

\[
P' = \begin{bmatrix}
1 & 0 & c_x \\
0 & 1 & c_y \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x_x & g_x & 0 \\
x_y & g_y & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x_x & x_y & 0 \\
g_x & g_y & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 0 & -c_x \\
0 & 1 & -c_y \\
0 & 0 & 1
\end{bmatrix} P.
\]

5. (extra credit) In this problem, we need to find a concatenation of basic linear transforms (rotations, scalings, or translations) that is equivalent to the x-direction shearing matrix. The solution to this problem requires two rotations and one scale:

\[
Shear_x = R(\gamma)SR(\theta) = R(\gamma) \begin{bmatrix}
s_x & 0 & 0 \\
0 & s_y & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

Multiplying out \(SR(\theta)\) we get

\[
Shear_x = R(\gamma) \begin{bmatrix}
s_x \cos \theta & -s_x \sin \theta \\
s_y \sin \theta & s_y \cos \theta \\
\end{bmatrix}.
\]

We want to find \(R(\gamma)\) that rotates \(SR(\theta)\) into the \(x\) shear matrix:

\[
\begin{bmatrix}
1 & a \\
0 & 1
\end{bmatrix}.
\]

In general, multiplying by a rotation matrix takes the form:

\[
\begin{bmatrix}
\alpha & -\beta \\
\beta & \alpha
\end{bmatrix} \begin{bmatrix}
s_x \cos \theta & -s_x \sin \theta \\
s_y \sin \theta & s_y \cos \theta
\end{bmatrix} = \begin{bmatrix}
1 & a \\
0 & 1
\end{bmatrix}.
\]

The lower left corner of the resulting shear matrix must satisfy \(\beta s_x \cos \theta + \alpha s_y \sin \theta = 0\). This means that \(\alpha = s_x \cos \theta\) and \(\beta = -s_y \sin \theta\). Therefore the angle for the second rotation matrix is \(\gamma = \arctan \frac{-s_y \sin \theta}{s_x \cos \theta}\), and we need to scale the whole system by \(\rho = s^2_y \sin^2 \theta + s^2_x \cos^2 \theta\). We can now rewrite in terms of this rotation and scaling:

\[
\begin{bmatrix}
\alpha & -\beta \\
\beta & \alpha
\end{bmatrix} = \rho R(\gamma) = \begin{bmatrix}
s_x \cos \theta & s_y \sin \theta \\
-s_y \sin \theta & s_x \cos \theta
\end{bmatrix}.
\]
Plugging into Equation 21 and multiplying out, we get:

\[
\text{Shear}_x = \begin{bmatrix}
 s_x \cos \theta & s_y \sin \theta \\
 -s_y \sin \theta & s_x \cos \theta
\end{bmatrix} \begin{bmatrix}
 s_x \cos \theta & -s_x \sin \theta \\
 s_y \sin \theta & s_y \cos \theta
\end{bmatrix}
\]

\[
= \begin{bmatrix}
 s_x^2 \cos^2 \theta + s_y^2 \sin^2 \theta & (s_y^2 - s_x^2) \cos \theta \sin \theta \\
 0 & s_x s_y (\cos^2 \theta + \sin^2 \theta)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
 1 & a \\
 0 & 1
\end{bmatrix}.
\]

This gives us the equations:

\[
s_x^2 \cos^2 \theta + s_y^2 \sin^2 \theta = 1
\]

\[
(s_y^2 - s_x^2) \cos \theta \sin \theta = a
\]

\[
s_x s_y (\cos^2 \theta + \sin^2 \theta) = s_x s_y = 1
\]

From Equation 28, we see that \(s_x = \frac{1}{s_y} \). By plugging this into Equation 26, we find that

\[
\frac{1}{s_y^2} \cos^2 \theta + s_y^2 \sin^2 \theta = 1.
\]

This holds true when \(s_y = 1 \) or \(s_y = \frac{\cos \theta}{\sin \theta} = \cot \theta \). We prefer the case when \(s_y \neq 1 \), and plug into Equation 27:

\[
\left(\frac{\cos^2 \theta - \sin^2 \theta}{\sin^2 \theta - \cos^2 \theta} \right) \cos \theta \sin \theta = \frac{\cos^4 - \sin^4}{\cos \theta \sin \theta} = a.
\]

Using trigonometric identities, we find that

\[
\frac{\cos^4 - \sin^4}{\cos \theta \sin \theta} = \frac{2 \cos 2\theta}{\sin 2\theta} = 2 \cot(2\theta) = a.
\]

This means that

\[
\theta = \frac{1}{2} \arctan \frac{2}{a}.
\]

In summary, the \(x \) direction shear matrix can be written:

\[
\text{Shear}_x = \rho \mathbf{R}(\gamma) \mathbf{S}\mathbf{R}(\theta)
\]

where

\[
\theta = \frac{1}{2} \arctan \frac{2}{a}
\]

\[
\gamma = \arctan \left(-\frac{s_y \sin \theta}{s_x \cos \theta} \right)
\]

\[
s_x = \tan \theta
\]

\[
s_y = \cot \theta
\]

\[
\rho = s_y^2 \sin^2 \theta + s_x^2 \cos^2 \theta.
\]