
Web Vulnerabilities

Agenda

Why hack the web?

SQL injection (SQLi)

Cross-site scripting (XSS)

Cross-site request forgery (CSRF)

Concurrency vulnerabilities/race conditions

A couple other fun things

But first…

Don’t try this on any site where you
don’t have explicit permission to do

so!!!
Consult site policies for major sites

E.g. you can test Microsoft’s sites as long as there is no impact to real users
Your account may get auto-banned though

Ask the security team if you’re not sure

Why hack the web?

Because it’s where the data is

Attackers want to:
Steal confidential information like credit card #s and “secret plans”

Vandalize for protest or notoriety

Websites often have lots of this stuff all in one place

More functionality moving to the web = more reasons to hack it

Another reason to hack the web

It’s easy

Websites are:
Always online

Rarely monitored by a person

Usually running a mix of commodity software and handwritten code
Web security is not widely understood by developers

Often the shared responsibility of many people
More cracks to fall through

SQL Quick Primer

SQL: Standard Query Language = how you access databases
SELECT: Fetch data

SELECT valuesYouWant FROM databaseTable WHERE conditions

INSERT: Add data
INSERT INTO databaseTable(columnList) VALUES(valuesToInsert)

--: comment i.e. ignore everything after this

;: end statement (just like C)

SQL Injection (SQLi)

Run your own SQL queries on the back end server
Steal data

Make yourself admin

Run code
MS SQL Server has the ability to run commands on Windows

Happens when developers concatenate user data into a literal statement

The main way that websites get hacked

SQLi Example

URL: http://example.com/getCreditCard.php?username=David
Function is to display the user’s credit card number

Code:
SELECT Number FROM CreditCards WHERE Username = ‘$username’

In PHP, $username is replaced by the actual data before execution

SQLi Example: Attack

Attack URL:
http://example.com/getCreditCard.php?username=‘ or 1=1;--

What gets executed?
SELECT Number FROM CreditCards WHERE Username = ‘‘ or 1=1;--’;

All credit card numbers are displayed!
Another attack using the same URL:

http://example.com/getCreditCard.php?username=‘; INSERT INTO Administrators(Name,
Password) VALUES(‘AttackerName’, ‘AttackerPassword’);--
SELECT Number FROM CreditCards WHERE Username = ‘‘; INSERT INTO Administrators(Name,
Password) VALUES(‘AttackerName’, ‘AttackerPassword’);--’;

SQLi: Detecting and Preventing

To find SQLi, replace parameters in URLs with ‘, ‘--, or other SQL delimiters.
If this causes an error, you might be looking at a SQL Injection bug

To prevent SQLi, use stored procedures.
Stored procedures avoid the need to convert user input to text

Do not try to strip dangerous characters out of user input – too easy to miss
something

If you have to, use a whitelist – only allow good characters e.g. alphanumeric

Javascript Security Primer

Javascript is code for web pages
<script>code();</script>

The entire page and all its functionality are accessible to the script

Can also add new content and replace existing content

Javascript Security Primer Continued

Same-domain only
If Javascript tries to access data from a different domain, the browser asks the user
for permission
https:// pages are considered a separate domain and there are additional
restrictions
Some exceptions:

Fetching images and similar common, normally safe operations

A site can explicitly give permission to access specific other domains

<iframe>
Allows embedding another web page, which can then be controlled by the script in
the parent frame
The iframe can fill the screen with the parent frame invisible

Cross-Site Scripting (XSS)

Run attacker script on some other site e.g. Hotmail
This script can do anything that the user can do

Happens when attacker data is displayed to a victim from a page in the
target domain

Two types:
Persistent/stored XSS: attacker script is stored on the server e.g. forum comment

Reflected XSS: attacker script is incorporated into a URL that the victim is lured
to click e.g.
http://example.com/target.php?value=<script>alert(“xss”);</script>

XSS Example: Stored XSS

In our example website, when you type a comment, it gets added to the
site and displayed to every user as text

Attacker submits the comment:
<script>commentsField=“I love Windows Vista!”;form.submit();</script>

Now when you visit the page, your browser sees:
<HTML><BODY>…stuff…<script>commentsField=“I love Windows
Vista!”;form.submit();</script>…

And executes it on your behalf!

And this happens for everyone who visits the site!

XSS Example: Reflected XSS

Same website, different page: this one lets you view comments specified in the URL
http://example.com/viewComment.php?comment=Hi everyone!

<HTML><BODY>…Hi everyone!…</BODY></HTML>

New attack:
http://example.com/viewComment.php?comment=<script>page.location=“http://exam
ple.com/addComment.php?comment=I love Windows Vista!”;</script>

<HTML><BODY>…<script>page.location=“http://example.com/addComment.php?comme
nt=I love Windows Vista!”;</script>…</BODY></HTML>

If I can get you to click this link, the script will execute, causing you to add a
comment proclaiming your love for Vista

XSS: Detecting and Preventing

To find XSS, try putting <script>alert(“xss”);</script> in URL parameters and
form fields.

To prevent XSS, turn all special characters into encoded equivalents
E.g. < and > into < and >

Or use a sanitizing library if some tags like are needed

Script in browsers runs by default: the website has to take active measures
to remove script from user-submitted content

Some frameworks like ASP.Net do this semi-automatically

XSS Variations

Encoding bugs
URL encoding: %20

Hex encoding:

Did the script filter check for these?

Javascript injection
Eval(“alert(‘this has a ‘ + crossSiteScript + ‘ flaw’);”)

Eval(“alert(‘this has a ‘);alert(‘XSS’);doEvilStuff();// flaw’);”)

alert(‘this has a ‘); alert(‘XSS’); doEvilStuff(); // flaw’);

Cross-Site Image Overlay (XSIO)

Like XSS, but instead of running a script, overlay other stuff on the page

E.g.
Put an attacker-controlled text box over the password box

On a “Grant permissions to attacker?” page, display a picture of the “Deny”
button over the real “Approve” button

Useful when you can XSS an HTTP site but the password is protected by SSL

Sometimes you can do XSIO when you can’t do XSS

Cross-Site Request Forgery

A URL that does something bad in a single click
http://bank.com/transferMoney.php?fromAccount=yours&toAccount=mine&
amount=100billiondollars

Then send this link to the user in an email claiming they’ve won the lottery and click
here to claim their prize…

Preventing CSRF:
Embed a random or secret token in every page that calls a sensitive function,
include the token in the form submission/URL, and check it before processing the
transaction

Check the referrer header for sensitive pages: the click should have come from your
own site

Not ideal as a standalone measure: e.g. the link could be posted in a forum on your site

Preventing CSRF example

http://bank.com/prepareMoneyTransfer.php:
<HTML><BODY>…<FORM>

<input type=“hidden” name=“secretToken” value=“13245”/>…

http://bank.com/transferMoney.php?fromAccount=yours&toAccount=mi
ne&amount=100billiondollars&secretToken=13245

Server validates that token matches

Needs some randomness, attacker can try brute force
Lure you to their own web page

Run a script loop trying guesses

Consistency Errors/Race Conditions

Asynchronous processing
Outsourced payment processing (e.g. Paypal)

Outsourced authentication/login (e.g. Facebook Connect)

Sites that let you log in before validating your email address

The part that “gives” needs to make sure the part that “takes” is happy
before allowing the user to proceed

Before giving access, make sure you got paid, got a real password, etc.

Here’s $5

How it should work

(widgets cost $5) Joe’s
Widget
Shop

PaypalMe

Charge him $5

Pay me $5

Dave paid $5
Here’s your $5 widgetI’d like a widget

How it can go wrong

The site doesn’t wait for

payment
Joe’s

Widget
Shop

PaypalMe

Charge him $5Here’s your $5 widget

Here’s $2

How it can go wrong

Let the user control the price! Joe’s
Widget
Shop

PaypalMe

Charge him $2

Pay me $2

Dave paid $2
Here’s your $5 widgetI’d like a $2 widget

Here’s $2

How it can go wrong

Pay less Joe’s
Widget
Shop

PaypalMe

Charge him $5

Pay me $5

Dave paid $2
Here’s your $5 widget

Fraud and Abuse

Not a vulnerability: a way to use the site’s intended functionality to do
something bad

Spam and scams

Review fraud: post something for sale, then post lots of positive reviews
Recent example: “Shake Your Phone to Recharge It” app

SEO: create a site selling something, then post lots of links to it on other pages to
trick search engines

Money/credit card laundering

CAPTCHA

Completely Automated Test to tell Computers and Humans Apart

Prevent automated generation of accounts for spam, etc.

ReCAPTCHA

ReCAPTCHA

Two words
One is known
One is unrecognizable text from a scanned document with historical merit

First word provides CAPTCHA function
Second word provides OCR function to help digitize books

Multiple samples per word filter out bad readers

The known word may be first or second
Hack: if it has punctuation it’s always the unknown word

Audio CAPTCHA for blind users

Problems with CAPTCHA

OCR has gotten good: hard to make text that computers can’t read but
humans can

Spammers might be okay with a 1% success rate since attempts are nearly free

Audio recognition is even better: Audio CAPTCHA cracked more than text
Hard for computers to generate speech that computers can’t understand

Even easier: use humans to solve it for you
Pay low-wage workers in poor countries

Require solving CAPTCHA to see valuable content, and instead of serving your
own CAPTCHA, host one from the service you’re trying to abuse

Benefits of problems with CAPTCHA

Massive increases in effectiveness of OCR and related machine learning
techniques!

Digitized books => Project Gutenberg (free public domain books)

Passwords

20% of all passwords are one of the 100 most common
People will tell you their password for a pen
Recommendation: a long, uncommon, non-plain-English password, using
uppercase, lowercase, numbers and symbols, different for every site.

Good luck with that.

Two-factor auth: something you know and something you have
Smart cards, cell phones, trusted PCs, dedicated keychain devices

Relatively expensive, hardware-specific

Biometrics: really good until compromised once, then useless forever
Implicit knowledge e.g. recognizing pictures of your friends

Social Engineering

“There’s no patch for human stupidity”

Talk the phone rep into resetting the password

Talk the victim into installing the backdoor

Lots of fun techniques and ruses
Search engine hacking: secret questions are usually weak

People want to be helpful, so let them!

People fear authority figures, so be one.

Social Engineering Tricks

Elicitation: build rapport and steer the conversation towards the topic at hand
Ideally, let the target steer the conversion there

Seed the conversation with keywords in innocuous contexts

Pretexting: pretending to be someone else
Useful roles:

Repairman

The boss

The tech support guy

Interview candidate

Don’t claim knowledge you don’t have.

DNS hacks/site defacements

Old old way: hack the registrar

Old new way: hack end users to use the wrong IP address
Kaminsky’s DNS attack

New way: SE the registrar into handing you control of the domain
A favorite of Anonymous

Reminder: Ethics

Don’t do this stuff if you don’t have permission
It is very often illegal (I am not an attorney)

You are physically present = if things go wrong they can go very wrong
Law enforcement officers are experts in social engineering

If you want to practice, do it in a situation where no harm is involved
E.g. try to get secret but harmless information from your friends, talk your way to
the front of the line at a nightclub, etc.

Open Floor

Ask Me Anything!

