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Query authentication is an essential component in outsourced database (ODB) systems. This arti-
cle introduces efficient index structures for authenticating aggregation queries over large data sets.
First, we design an index that features good performance characteristics for static environments.
Then, we propose more involved structures for the dynamic case. Our structures feature excellent
performance for authenticating queries with multiple aggregate attributes and multiple selection
predicates. Furthermore, our techniques cover a large number of aggregate types, including dis-
tributive aggregates (such as SUM, COUNT, MIN and MAX), algebraic aggregates (such as the
AVG), and holistic aggregates (such as MEDIAN and QUANTILE). We have also addressed the
issue of authenticating aggregation queries efficiently when the database is encrypted to protect
data confidentiality. Finally, we implemented a working prototype of the proposed techniques and
experimentally validated the effectiveness and efficiency of our methods.
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1. INTRODUCTION

The latest decade has witnessed tremendous advances in computer systems, net-
working technologies and, as a consequence, the Internet, sparkling a new infor-
mation age where people can access and process data remotely, accomplish critical
tasks from the leisure of their own home, or do business on the go. In order to
guarantee availability, reliability, and good performance for a variety of network
services, service providers are forced to distribute data and services across multiple
servers at the edge of the network, not necessarily placed under their direct con-
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trol, e.g., the cloud computing framework. Remotely accessing data through the
network inherently raises important security issues. Servers are prone to hacker
attacks that can compromise the legitimacy of the data residing therein and the
processing performed. The chances of even a meticulously maintained server being
compromised by an adversary should not be underestimated, especially as the ap-
plication environment and interactions become more complex and absolute security
becomes harder, if not impossible, to achieve. This problem is exacerbated by the
fact that time is in favor of attackers, since scrutinizing a system in order to find
exploits proactively is an expensive and difficult task.

An adversary gaining access to the data is free to deceive users who query the
data, possibly remaining unobserved for a substantial amount of time. For non-
critical applications, simple audits and inspections will eventually expose any at-
tack. On the other hand, for business critical or life critical applications such
sampling based solutions are not good enough. Consider a client taking business
critical decisions on financial investments (e.g., mutual funds and stocks) by ac-
cessing information from what he considers to be a trusted financial institution. A
single illegitimate piece of information might have catastrophic results when large
amounts of money are at stake. Similar threats apply to online banking applications
and more. In these examples information can be tampered with not only due to a
compromised sever, but also due to insecure communication channels and untrusted
entities that already have access to the data (e.g., system administrators).

It is reasonable to assume that in critical applications users should be provided
with absolute security guarantees on a per transaction basis, even at a performance
cost. Such demands cannot be satisfied by putting effort and money into developing
more stringent security measures and audits — in the long run subversion is always
possible. Hence, a fail-safe solution needs to be engineered for tamper-proofing the
data against all types of manipulation from unauthorized individuals at all levels
of a given system, irrespective of where the data resides or how it was acquired, as
long as it has been endorsed by the originator. Techniques for guaranteeing against
illegitimate processing need to be put forth. It is exactly in this direction that
this work focuses on, and more precisely, on query authentication: assuring end-
users that query execution on any server, given a set of authenticated data, returns
correct results, i.e., unaltered and complete answers (no answers have been mod-
ified, no answers have been dropped, no spurious answers have been introduced).
Correctness is evaluated on a per query basis. Every answer is accompanied by a
verification proof — an object that can be used to reconstruct the endorsement of
the data originator, and built in a way that any tampering of the answer will in-
validate an attempt to verify the endorsement. Verification objects are constructed
using a form of chained hashing, using ideas from Merkle trees [Merkle 1980] (cf.
Section 3). A by-product of ensuring query authentication is that the data is also
protected from unauthorized updates, i.e., changes made by individuals that do not
have access to the secret key used to endorse the data. Data owners may update
their databases periodically and, hence, authentication structures should support
dynamic updates. An important dimension of query authentication in a dynamic
environment is result freshness. Notice that an adversary acquiring an older version
of an authenticated database can provide what may appear to be correct answers,
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that contain in reality outdated results. Authenticated structures should protect
against this type of attack as well.

The query authentication problem has been recently examined by a variety of
works (see the detailed discussion in the related work section). Noticeably, exist-
ing literature concentrated on authenticating selection, projection and join (SPJ)
queries, e.g., “Retrieve all stocks with prices in the range $300-$600”.

An important aspect of query authentication in outsourced database systems that
has not been considered yet is handling aggregation queries. For example, “Retrieve
the total number of stocks sold with price between $300 and $600”. Currently
available techniques for selection and projection queries can be straightforwardly
applied to answer aggregation queries on a single selection attribute. Albeit, they
exhibit very poor performance. Additionally, they cannot be generalized to multiple
selection attributes without incurring high query cost as we discuss later. Hence
authenticating aggregation queries efficiently remains an open problem.

In this work, we formally define the aggregation authentication problem and pro-
vide efficient solutions that can be deployed in practice. We categorize outsourced
database scenarios into two classes based on data update characteristics, and design
solutions suited for each case. Concentrating on SUM aggregate, we show that in
static scenarios authenticating aggregation queries is equivalent to authenticating
prefix sums [Ho et al. 1997]. When updates become an issue, maintaining the prefix
sums and the corresponding authentication structure becomes expensive. Hence,
we propose more involved structures for efficiently handling the updates, based on
authenticated B-tree and R-tree structures. Finally, we extend the techniques for
aggregates other than SUM, and discuss some issues related to query freshness and
data encryption for protecting the data confidentiality and data privacy. Overall,
we present solutions for handling multi-aggregate queries with multiple selection
predicates, that work for a variety of aggregates like SUM, COUNT, AVG, MIN,
MAX, any QUANTILE and MEDIAN.

The rest of the paper is organized as follows. Section 2 gives the formal problem
definition. Section 3 presents the background and related work. Section 4 discusses
static outsourced database scenarios, while Section 5 presents the dynamic case.
Section 6 generalizes the discussion for aggregates other than SUM, and Section
7 discusses issues related to query freshness and data encryption. An empirical
evaluation is presented in Section 8. Finally, Section 9 concludes the paper.

2. PROBLEM DEFINITION

Consider the following SQL statement:

SELECT SUM(sales) FROM stocks WHERE price>$300 and price<$600

This statement contains one aggregated attribute (sales) and one selection at-
tribute (price), in the form of a range predicate. In general, any aggregation query
can be represented as follows: Q = 〈⊗(A1), · · · ,⊗(Ac)|S1, · · · , Sd〉, where

⊗

is
the associated aggregation operation, Ais correspond to the aggregated attributes
and Sjs to the selection attributes in the predicates of the query. Attributes Ai, Sj

may correspond to any fields of a base table T and they could refer to the same
field. For simplicity and without loss of generality, we assume that the schema of
T consists of fields T(S1, . . . , Sd) with domains D1, . . . , Dd, respectively. Both the
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aggregated attributes and the selection attributes are a subset of these fields. We
refer to a query Q with d selection attributes as a d-dimensional aggregation query.

In general, there are three different types of aggregation operations: distributive,
algebraic, and holistic. Distributive aggregates (like SUM, COUNT, MAX, MIN)
can be computed in a divide and conquer fashion, i.e., by partitioning the data into
disjoint sets, aggregating each set individually and combining partial results to get
the final answer. Algebraic aggregates can be expressed as a function of distributive
aggregates, e.g., AVG ≡ SUM/COUNT. Holistic aggregates (like MEDIAN and
QUANTILE) are harder to compute in general as they require knowing all values
in the query attribute w.r.t. the query range. In this work, we firstly concentrate on
distributive aggregates. Algebraic aggregates are easily computed once distributive
aggregates are addressed. Then, we extend our techniques to authenticate holistic
aggregates in Section 6.

We focus on SQL queries with range predicates only. That is, given selection
attributes Sj, each predicate that Sj appears in is of the form aj ≤ Sj ≤ bj ,
aj , bj ∈ Dj , j ∈ [1, d]. For simplicity and without loss of generality, we let Sj denote
both the attribute name and the query predicate in which Sj appears (assuming
that each attribute appears in one predicate only). The meaning will be clear from
context. The set of tuples from T that satisfy all query predicates Sj is denoted
by SAT (Q), and the final answer to Q as ANS(Q).

The problem of authenticating aggregation queries in outsourced database sys-
tems is defined as follows. A data owner compiles some authenticated structures
for its data that are disseminated along with its database to servers. Clients pose
queries Q to the servers, which in turn use the authenticated structures to provide
users with the answer to Q and special Verification Objects VO w.r.t. ANS(Q).
VOs enable the clients to verify the correctness, completeness and freshness of
ANS(Q), meaning that clients can be assured that ANS(Q) has been indeed
computed solely from SAT (Q). The problem is to design efficient authentication
structures for aggregation queries, as well as to define the appropriate verification
objects for this purpose. In an outsourced database scenario we measure efficiency
using the following metrics: query cost, that includes the server’s query execution,
the communication between server and clients and the verification at the client side,
storage cost, and update cost of the authentication structures at the server side.

3. BACKGROUND AND RELATED WORK

The Merkle hash tree (MHT) [Merkle 1980] (see Figure 1) is used for authenticating
a set of data values. It is a binary tree where each leaf contains the hash of a data
value, and each internal node contains the hash of the concatenation of its two
children (using a collision-resistant hash function). The hash value of the root
is signed and published. To prove the authenticity of any data value the prover
provides the verifier, in addition to the data value itself, with a Verification Object
VO that contains the hashes stored in the siblings of the path that leads from
the root of the tree to the requested value. The verifier, by iteratively computing
all the appropriate hashes up the tree, at the end can simply check if the hash
computed for the root node matches the published signature of the root. Given the
collision resistance property of the hash function and the guarantee of the public-
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h3 h4 = H(r4)h2

h12 h34 = H(h3|h4)

h1

h1234 = H(h12|h34), σ = sign(h1234, sk)

Fig. 1. A Merkle hash tree: H is a collision resistant hash function; sk is the owner’s secret key.

key signature scheme, it is computationally infeasible for an adversary (in certain
computational models) to fool the verifier by modifying any of the data in the path
from the leaf to the root.

Most previous work on query authentication has focused on studying the gen-
eral selection and projection queries. The proposed techniques can be categorized
into two groups: the signature-based approaches [Pang et al. 2009; Pang et al.
2005; Mykletun et al. 2004a; Narasimha and Tsudik 2005] by using the aggregation
signature techniques [Mykletun et al. 2004b] and the index-based approaches [De-
vanbu et al. 2000; Li et al. 2006b; Miklau 2005; Yang et al. 2008; Martel et al. 2004;
Papadopoulos et al. 2009; Mouratidis et al. 2009; Pang and Mouratidis 2008; Singh
and Prabhakar 2008; Atallah et al. 2008] by generalizing the merkle hash tree to
an f -way tree and embedding it into various indexes. Injecting random records by
the data owner into the database has also been proposed [Xie et al. 2007], that uses
a probabilistic approach for query authentication and hence it is more flexible and
easier to realize in practice. However, unlike other work in query authentication, it
does not guarantee absolute correctness for query authentication.

Query authentication in multi-dimensional spaces has been studied by extending
the signature-based [Narasimha and Tsudik 2005; Cheng et al. 2006] and the index-
based [Yang et al. 2008; 2009] approaches. In particular, Yang et al. [Yang et al.
2008; 2009] integrated an R-tree with a merkle hash tree for authenticating multi-
dimensional range queries. However, they did not address aggregation queries.

Recent studies have also addressed other challenging problems in query authen-
tication, such as dealing with XML documents [Bertino et al. 2004], text data
[Pang and Mouratidis 2008], join queries [Yang et al. 2009; Pang et al. 2009] and
handling dynamic updates [Pang et al. 2009; Xie et al. 2008] efficiently. Improve-
ments to existing techniques were proposed, such as separating the authentication
from query execution when there is a trusted third party [Papadopoulos et al.
2009], or partially materializing the authenticated data structures to reduce the
cost [Mouratidis et al. 2009]. The index-based approach has been implemented
for the PostgreSQL database [Singh and Prabhakar 2008]. Query authentication
for outsourced databases has also been studied in the context of streaming data
model [Papadopoulos et al. 2007; Li et al. 2007]. However, none of these works has
explored aggregation queries.

There has been some work on main memory authenticated data structures fol-
lowing the work of Naor and Nissim [Naor and Nissim 1998]. However, these
works [Anagnostopoulos et al. 2001; Goodrich et al. 2003; Tamassia and Trian-
dopoulos 2005; 2007; Goodrich et al. 2008; Papamanthou et al. 2008; Goodrich
et al. 2010] focus on main memory structures and are not directly applicable to
external memory databases.

The problem of computing aggregations over encrypted databases using homo-
morphic encryption has been studied in [Mykletun and Tsudik 2006; Ge and Zdonik
2007]. For most of this work, we consider unencrypted databases; one of our
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proposed techniques does provide query authentication efficiently over encrypted
databases and this issue is discussed in Section 7.1. Note that an encrypted database
does not provide query authentication, but it guarantees data confidentiality, i.e.,
except the data owner and the clients that have the authorized decryption key, no
one else can obtain the content for any plain record in the database.

Besides data confidentiality, other security goals can be considered in parallel
with query authentication in the ODB framework. For example, it is possible to
implement access control policies. How to efficiently authenticate query results
without violating access control policies is an interesting and challenging problem.
Pang et al. [Pang et al. 2005] has addressed this problem for the selection query;
Kundu et al. [Kundu and Bertino 2008] introduced the concept of structure con-
fidentiality while providing integrity for a tree-based index, where the goal is to
enable an user to authenticate a subtree S from a tree T without leaking any other
nodes from T − S (“−” refers to the “cut” operation). In this work, we do not
consider issues related with access control policies.

An orthogonal problem is query execution assurance, studied by Sion [Sion 2005]
where the goal is to provide guarantees on the amount of effort the server has spent
in query execution. This work, though, does not guard against malicious servers
that can return incorrect query results, and hence does not provide authentication.

3.1 A Trivial Solution

Any solution for authenticating selection queries could provide a straightforward
but very inefficient solution for authenticating aggregation queries. The server
answers the aggregation query Q as selection queries and returns SAT (Q) along
with the VO for the selection queries. The client authenticates the set SAT (Q) and
then computes the aggregation locally. Note that by using any existing techniques
for authenticating selection queries, such as the approach from [Li et al. 2006b; Pang
et al. 2005], the client is able to verify both the correctness and the completeness of
the result. Hence, the aggregate computed locally by the client will be the correct
answer if the result of the corresponding selection query has been authenticated.

However, this approach is not desirable because: 1. The communication and ver-
ification costs are linear in |SAT (Q)| (e.g., if the query is a SELECT * statement the
cost might be prohibitive); 2. The cost for multi-dimensional aggregation queries
is even higher in the relative sense compared to an approach that authenticates
aggregation directly. It is thus desirable to design a solution that: 1. Has commu-
nication/verification cost sub-linear in |SAT (Q)|; 2. Supports multi-dimensional
aggregation queries efficiently.

4. THE STATIC CASE

In the static case, once the owner has initially created the database and published
it to the servers there are no or very few updates in the system. In this section we
address the problem of authenticating aggregation queries in such environments.

4.1 The APS-tree: Authenticated Prefix Sums

Assume for simplicity discrete domains Dj = [0, Mj) (for continuous or categorical
domains existing values are just ordered and assigned distinct identifiers), and query
Q = 〈SUM(Aq)|S1 = [a1, b1], . . . , Sd = [ad, bd]〉. Each tuple in the database can
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be viewed as a point in a d-dimensional space D1 × · · · × Dd, and the selection
query as a d-dimensional range query. The d-dimensional space can be reduced
to a |D1| × · · · × |Dd| array C. Every coordinate of the array that contains one
or more database tuples stores the SUM of attribute Aq of these tuples. The
rest of the elements are initialized to zero. The answer of the query is equal to
∑b1

i1=a1
. . .

∑bd

id=ad
C[i1, . . . , id]. Answering the query requires accessing

∏d
i=1(bi −

ai + 1) elements.
Alternatively, a prefix sums array can be used [Ho et al. 1997]. The prefix sum

array PS of C has the same structure as C and in every coordinate it stores:
∀xj ∈ Dj , j ∈ [1, d] :

PS[x1, . . . , xd] =

x1
∑

i1=0

. . .

xd
∑

id=0

C[i1, i2, . . . , id].

In other words, an entry PS[x1, . . . , xd] in the prefix sum array PS stores the total
sum of all entries before C[x1, . . . , xd], including C[x1, . . . , xd] itself.

It has been shown in [Ho et al. 1997] that any range sum query on PS requires
at most 2d element accesses. For all j ∈ [1, d], let I(j) = 1 if xj = bj and I(j) = −1
if xj = aj − 1, and PS[x1, . . . , xd] = 0 if xj = −1; then:

〈SUM(Aq)|S1 = [a1, b1], . . . , Sd = [ad, bd]〉 =
X

∀xj∈{aj−1,bj}

{(
d

Y

i=1

I(i)) ∗ PS[x1, . . . , xd]}.(1)

We use some examples to illustrate the meaning of Equation 1. When d = 1,
each entry in the prefix sum array simply stores the sum of all preceding elements
in the database up to this entry. Hence, a range sum query Q = 〈SUM(Aq)|[a1, b1]〉
can be simply answered by PS[b1]−PS[a1− 1]. When d = 2, the range sum query
Q = 〈SUM(Aq)|[a1, b1], [a2, b2]〉 can be computed by PS as follows:

PS[b1, b2] − PS[b1, a2 − 1] − PS[a1 − 1, b2] + PS[a1 − 1, a2 − 1].

Intuitively, in two-dimension, given the prefix sum array, a range sum query could
be answered by considering only the four corner points in the prefix sum array
from the rectangle area defined by the query range. Similarly, in d-dimensions,
one only needs to consider the 2d corner points in the prefix sum array from the
d-dimensional hyper-cube defined by the query range.

Having computed PS for the aggregation attribute Aq, any query Q = 〈SUM(Aq)|
S1, . . . , Sd〉 can be answered efficiently. Furthermore, authenticating the answers
becomes equivalent to authenticating these 2d prefix sums required by Equation 1.
However, as we discuss next, we need to authenticate both their values and their
locations in the array. To authenticate the elements of PS, we convert PS into
a one-dimensional array PS′, where element PS[i1, . . . , id] corresponds to element

PS′[k], k =
∑d−1

j=1 (ij ×
∏d

n=j+1 Mn) + id, and build an f -way MHT on top of PS′.
We call this structure the authenticated prefix sums tree (APS-tree).

Suppose that a single element PS′[k] needs to be authenticated. Traversing the
tree to find the k-th element requires computing the correct path from the root to
the leaf containing the entry, and can happen efficiently by using the following tree
encoding scheme. Let h be the height of the tree (with 0 being the height of the
root) and f its fanout. Every node is encoded using a unique label, which is an
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12 22
21

2111

ǫ

111 112 121 122 211 212 221

Fig. 2. The tree encoding scheme.

Fig. 3. Merging the overlapping paths. At every
black node the remaining hashes can be inserted
in the VO only once for all verification paths.

integer in a base-f number system. The root node has no label. The 1st level nodes
have base-f representations 1, 2, . . . f , from left to right respectively. The 2nd level
nodes have labels 11, . . . , 1f, 21, . . . , 2f, . . . , f1, . . . , ff , and so on all the way to the
leaves (see an example in Figure 2 with f = 2). Straightforwardly, a leaf entry with
PS′ offset k is converted into a base-f number λ1 · · ·λh with h digits (each digit,
in our notation, ranging from 1 to f , and computed as λi = 1 + ⌊k/fh−i⌋ mod f).
Since the tree is full, element k lies in the ⌊k/f⌋ leaf node, and this leaf node lies in
the ⌊k/f2⌋ index node one level up, and so on. Retrieving PS′[k] is possible now
by following the node with label that is the prefix of the label for k.

Given a query Q, the server will find all the 2d elements that are needed to
answer the query and for each one of them will create a part of the VO object.
In particular, the VO will contain the hash values of the MHT that are needed
to authenticate each such element k, i.e., hash values for the sibling entries in the
nodes along the query path from the root to leaf node k. In addition, the VO
will include the encoding of the path for each element. That is, for the element
PS′[k], the encoding is exactly the label λ1 · · ·λh of k. After the retrieval of all the
elements and the creation of the VO object, the server returns all of them to the
client. The encoding must be included in the VO to allow the client to correctly
recompute the hash values for nodes along the query path back to the root, as at
each level, the client must know where the computed hash value for the node from
the lower level should be placed.

Assuming that the hash function is collision resistant and the signature on the
tree root is unforgeable, it can be shown that any change to the structure of the
APS-tree (such as tampering with the content of any index or leaf nodes, deleting
an existing node or inserting a new node), or the structure of a constructed VO
(such as changing the sequence of objects in the VO, modifying the content of any
object in the VO, inserting or deleting objects to or from the VO) will cause the
authentication procedure to fail, in exactly the same way as for the normal MHT.
The fact that the encoding path of an element must be included in the VO for
successful verification ensures the next lemma:

Lemma 1. Given
∏d

i=1 Mi number of ordered elements in PS′, the APS tree can

authenticate both the value and the position of the k-th element ∀k ∈ [1,
∏d

i=1 Mi].

For the client to authenticate the query result, it needs to know (i) the signature of
the MHT, (ii) the size of each domain (Mj), and (iii) the fanout f (note that domain
sizes and fanout of the tree are static information, both could be authenticated only
once directly from the owner). Essentially, the client needs to authenticate each
of the 2d elements of the answer set. First, the client verifies each element by
computing the hash of the root for each path and then comparing it with the
digital signature. During this step, the client also infers the position k for each
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element in PS′ based on its encoding and f . Next, using the query ranges [ai,
bi] and the domain sizes, the client maps each element’s position value k back to
the coordinate in the d dimensional prefix sum array. Then, if all the elements are
verified correctly, the client can check whether all required elements are returned
(according to Equation 1) and compute the answer to the query using Equation 1.

Correctness and Completeness: Based on Lemma 1 and Equation 1, we can
claim that the APS-tree guarantees both completeness and correctness.

Optimizations: A naive VO construction algorithm would return an individual
VO for each of the prefix sum values needed. Since the authentication paths of
these values may share a significant number of common edges (as shown in Figure
3), a substantial improvement in the communication and authentication cost can be
achieved by combining their VOs using one tree traversal. A sketch of this process
is shown in Algorithm 1. In the algorithm, SAT (Q) refers to the set of prefix sums
required to answer the aggregation query, which is equivalent to the actual set of
tuples satisfying the query, according to Equation 1.

Algorithm 1: APSQuery(Query Q; APS-tree T; Stack VO; Stack SAT )

VO = ∅, SAT = ∅, h = T.height1

VO.push(h), VO.push(domain sizes)2

for kx = i1, . . . , id ∈ {a1 − 1, b1}, . . . , {ad − 1, bd} do3

Compute matrix K = λ1
1 · · ·λ

n
h for keys k1, . . . , kn

4

Compute G1 = {11, . . . , 1x} using K5

// set G1 contains x groups named 11, . . . , 1x

for S ∈ G1 do6

Recurse(root, 2, S, K)7

Recurse(Node N , Level l, Set S, Matrix K):8

begin9

Compute G = {S1, . . . , Sy} using K10

// group names will become {111, . . . , 11z}, {1111, . . . , 111w}, and so on

VO.push(l), VO.push(N .children - |G|)11

for λl ≡ S′ ∈ G do12

// for λls corresponding to each S′
in G

VO.push(λl)13

if l = h then SAT .push(N [λl].k)14

// value λx
h is the offset of key kx in the leaf

for 1 ≤ i ≤ N .children do15

if i 6= λl, ∀λl ∈ G then VO.push(N [i].η)16

if l < h then17

for λl ≡ S′ ∈ G do Recurse(N [λl], l + 1, S′)18

end19

Let k1, . . . , kn be the indices of the PS′ values that need to be authenticated.
The construction algorithm essentially computes the base-f numbers corresponding
to indices k1, . . . , kn as already explained, and defines a n × h matrix K with the
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base-f representations:

K =











λ1
1 λ1

2 . . . λ1
h

λ2
1 λ2

2 . . . λ2
h

...
...

. . .
...

λn
1 λn

2 . . . λn
h











The paths that need to be followed at every step can be found by calculating the
longest common prefixes in the rows of K. Let G1 = {11, . . . , 1x} be a set of groups,
where each group contains all elements with equal λi

1 values in the first column of
K, and continue recursively for each of these groups and for all remaining columns.
Continue accordingly for all Gj , j ≤ h. The size of every set Gj gives the number
of paths that need to be followed every time a split occurs in the verification paths
of elements k1, . . . , kn. For every group Gj the algorithm proceeds by normally
constructing a VO for the common nodes until a split occurs. The procedure is
repeated recursively for all subtrees that need to be explored, according to the
remaining digits of the base-f numbers. The verification procedure at the client
follows similar reasoning, but in a bottom-up fashion.

Furthermore, extending the APS-tree to support multiple aggregate attributes is
straightforward. A set of aggregate values and hash values is associated with every
data entry PS′[k] at the leaf level of the tree, one pair of values for every aggregate
attribute one wishes to be able to answer queries for. This enables answering multi-
aggregate queries with only one traversal of the tree. (Alternatively, to reduce
storage requirements at the expense of larger VOs, a single hash value per node,
hashing all the aggregate attributes together, can be stored; then the VO will
have to include all the aggregate attributes, not just the ones in which the client is
interested in). The APS-tree can be used to authenticate COUNT and AVG as well,
as COUNT is a special case of SUM and AVG is authenticated as SUM/COUNT.

4.2 Cost Analysis

Query cost: The query cost can be broken up into communication and verifica-
tion costs. The communication depends on the size of sets VO and SAT . From
Algorithm 1, the worst case communication cost can be expressed as:

Ccommunication = |VO| + |SAT | ≤

⌈logf M⌉
X

j=1

[(f − |Gj |) · |H| + (|Gj | + 1) · ∆] + 2d∆,

where M (= M1 × . . . × Md) is the size of the PS′ array, |H| is the size of a hash
value, ∆ the size of the largest prefix sum value (all in bytes), f is the fanout of the
tree and Gj are the longest common prefix groups at each column of matrix K.

The verification cost at the client in the worst case is:

Cverification ≤

⌈logf M⌉
X

j=1

|Gj | · CH + CV ,

where CH and CV denote the cost of one hashing operation and the cost of one
verification operation respectively.
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Storage cost: The size of an APS-tree is equal to:

Cstorage =

⌈logf M⌉
X

l=0

f
l(|H| + ∆) + M∆,

including one hash and one pointer per tree entry. Clearly, overall the APS-tree
is storage-expensive, especially if the original d-dimensional array C is sparse (i.e.,
when only a few coordinates contain database tuples).

Update cost: The update cost of the APS-tree depends on the update properties
of the prefix sums array. Updating a single element of the prefix sums array requires
updating the values of all other elements that dominate this entry. Assume that
element PS[i1, . . . , id] is updated. Then, elements PS[x1, . . . , xd] for ij < xj <

Mj , 1 ≤ j ≤ d also need to be updated, for a total of
∏d

j=1 (Mj − ij) values.
Hence, the cost of updating the APS-tree is:

Cupdate =

d
Y

j=1

(Mj − ij)⌈logfM⌉ · CH + CS ,

where CS denotes the cost of a signing operation.

5. THE DYNAMIC CASE

The APS-tree is a good solution for non-sparse, static environments because it has
very small querying cost. It will not work well though for dynamic settings. In the
worst case, updating a single tuple in the database might necessitate updating the
whole tree. This section creates advanced structures that overcome this limitation.

5.1 One dimensional Queries: Authenticated Aggregation B-tree

Consider Q = 〈SUM(Aq)|S1 = [a, b]〉, that has one selection predicate with contin-
uous or discrete domain D1, where the number of tuples contained in the database
is N ≤ M1 (recall that M1 is the domain size of attribute S1). An Authenticated
Aggregation B-tree (AAB-tree) is an extended B+-tree structure of fanout f with
key attribute S1, bulk-loaded bottom-up on the base table tuples. The bulk-loading
is done in exactly the same fashion as that of the classical bulk-loading algorithm
for the normal B+-tree, however, with the hash and aggregate values for entries
in the leaf and index nodes computed as follows. AAB-tree nodes are extended
with one hash value and one aggregate value per entry. The exact structures of a
leaf and an index node are shown in Figure 4. Each leaf entry corresponds to one
database tuple t with key k = t.S1, aggregate value α = t.Aq, and an associated
hash value η = H(k|α). Hence the AAB-tree has exactly N data entries. Index
entries have keys k computed in the same way as in the normal B+-tree and each
key is associated with an aggregate value α = α1 + . . . + αf (which is the sum of
the aggregate values of its children), and a hash value H(η1|α1| . . . |ηf |αf ), which
is to compute the hash value over the concatenation of both the hash values and
the aggregate values of the children.

To locate an entry with key k, a point B+-tree query is issued. Authenticating
this entry is done in a MHT fashion. The only difference is that the VO includes
both the hash values η and aggregate values α associated with every index entry, and
the key values k associated with every leaf entry. In addition, auxiliary information
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Fig. 4. The AAB-tree. On the top is an index node. On the bottom is a leaf node. ki is a key, αi

the aggregate value, pi the pointer, and ηi the hash value associated with the entry.
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Fig. 5. Labeling scheme and the MCS entries.

is stored in the VO, so that the client can find the right location of each hash
value during the verification phase. For ease of discussion, we use the same tree
encoding scheme as in the previous section (see Figure 5). The only difference
is that in an AAB-tree any node could be incomplete and contain fewer than f
entries. However, the labeling scheme is imposed on the logical complete tree. As
the auxiliary information tells the client at each level where the computed hash
value should be placed, this ensures that:

Lemma 2. The AAB-tree can authenticate both the value of the aggregate at-
tribute and the label of any entry in the tree, including entries at the index nodes.

Next, we present a method to authenticate aggregation queries efficiently using
the AAB-tree. The basic idea is that the aggregate information at the index nodes
of the tree can be used to answer and authenticate range queries without having to
traverse the tree all the way to the leaves. The next two definitions and proposition
are not new; they apply to aggregation trees in general, with or without authenti-
cation. As we shall see shortly, however, authentication interacts very nicely with
the aggregation-related structures.

Definition 1. The Label Cover LC of entry λ = λ1 · · ·λl is the range of labels
of all data entries that have λ as an ancestor. The label cover of a data entry is
the label of the entry itself.

Given a label λ, the range of labels in its LC can be computed by padding it
with enough 1s to get an h-digit number for the lower bound, and enough fs to get
an h-digit number for the upper bound. For example, LC of λ = 12 in Figure 5 is
{121, 122, 123}.

Definition 2. The Minimum Covering Set MCS of the data entries in query
range S is the set of entries whose LCs satisfy: 1. They are disjoint; 2. Their
union covers S completely; 3. Their union covers only entries in S and no more.

Given the labels λ−, λ+ of the entries as the lower and upper bound of Q,
MCS(Q) can be computed by traversing the tree top-down and inserting in the
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MCS all entries whose LC is completely contained in [λ−, λ+] (and whose ances-
tors are not in MCS). An entry with LC that intersects with [λ−, λ+] is followed to
the next level. An entry with LC that does not intersect with [λ−, λ+] is ignored.
An example is shown in Figure 5. {λ−, λ+} for Q is {113, 212}. MCS(Q) will be
the entries with label {113, 12, 13, 21}. One can show that:

Proposition 1. Given λ−, λ+ as the labels for entries of the lower and upper
bound of Q,

ANS(Q) =
X

n∈MCS(Q)

αn,

[λ−
, λ

+] ∈
[

n∈MCS(Q)

LC(n) ∈ [λ−
, λ

+],

∀n, m ∈ MCS(Q), m 6= n,LC(m) ∩ LC(n) = ∅.

Based on Proposition 1, the authentication of Q can now be converted to the
problem of authenticating MCS(Q). Next, we discuss the algorithm for retrieving
MCS(Q) and the sibling set SIB needed to verify it, in one pass of the tree.

Given a query Q, the server first identifies the labels of the lower λ− and upper
λ+ bounds of the query range using two point B+-tree queries (note that these
labels might correspond to keys with values a ≤ k− and k+ ≤ b). Starting from
the root, the server follows the following modified algorithm for constructing the
MCS, processing entries using a pre-order traversal of the tree. When a node is
visited, the algorithm looks at its LC and [λ−, λ+]: if its LC is fully contained in
[λ−, λ+], then the node is added to the MCS; if its LC intersects, but is not fully
contained in [λ−, λ+], then the node’s children are visited recursively; and if its
LC and [λ−, λ+] do not intersect at all, then the node’s hash value (or key value
for leaf nodes) and aggregate value is added to the SIB. In our running example,
the hash values (or key values for leaf entries) and the aggregate values of entries
{111, 112, 22, 23, 3} are included in SIB.

The VO for the aggregation query contains MCS and SIB. For every node in
MCS or SIB, we include its label; this will enable the client to find its correct
position in the tree and reconstruct the hash value of its ancestors. Finally, to
ensure completeness, the server also includes in the VO verification information for
the two boundary data entries that lie exactly to the left of λ− and to the right of
λ+. Denote these entries by λ−

l , λ+
r respectively (for the left-most and right-most

entries in the tree, dummy records are used).
Before discussing the verification algorithm at the client side, we define:

Definition 3. Two entries (or their labels) are neighbors if and only if: 1.
They are at the same level of the tree and no other entry at that level exists in
between, or 2. Their LCs are disjoint and the left-most and right-most labels in the
LC of the right and left entry respectively are neighbors.

For example, in Figure 5 entries with labels {11, 12} are neighbors, same for
{212, 221}. Entries {113, 12} are neighbors too (since the left-most label, 121, in
the LC of entry 12, is a neighbor of entry 113). An interesting observation is that:

Lemma 3. All consecutive entries in MCS (in the increasing order of their la-
bels) are neighbors in the tree.
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Proof. Suppose that two consecutive MCS entries m, n are not neighbors.
Hence, at some level of the tree there exists an entry p that is a neighbor of m
and is not contained in the MCS. Clearly, the LC of p contains a data entry that is
in between two data entries that belong to the LCs of m and n. This also stems from
two B+-tree construction properties: 1. The fact that in an incomplete B+-tree the
missing subtrees are always the right-most entries of a node and never intermediate
entries; 2. p has at least one data entry as a descendant, since otherwise p would
have been deleted. Thus, p or a descendant of p should also be an MCS entry since
it contains a data entry in the query range. This is a contradiction since m and n
are consecutive.

The client is able to check whether two entries are neighbors or not if both entries
are authenticated. The key point is that the client could infer and authenticate these
entries’ labels, and with the help of the auxiliary information, which is ensured to
be correct if authentication succeeds in the previous steps, the client could check
whether it is possible to have another entry in the tree between the two.

Lemma 4. Given two entries and associated VO from AAB tree, if the VO au-
thenticates both entries, the client can verify whether these two entries are neighbors
in the AAB tree or not, given the knowledge of the fanout f .

Proof. Successful authentication of these two entries provides the client with:
1. their labels, by Lemma 2; 2. the auxiliary information in VO is correct and
complete, otherwise the authentication should have failed. This information enables
the client performing the verification as claimed. If their labels are consecutive to
each other, e.g. {11, 12} or {13, 21} the verification is trivial. If their labels are not
consecutive, e.g. entries {212, 221} from Figure 5, the auxiliary information from
the VO must have included the information that the leaf node containing entries
{211, 212} contains only two entries. This effectively helps the client eliminate the
possibility of the existence of an entry 213 in the tree. Given the fanout f (f = 3
in this example), the client could immediately infer that {212, 221} are neighbors.
Other cases could be similarly argued.

The authentication at the client is a mirror process of that at the server. The
client first authenticates boundary entries: {λ−, λ−

l , λ+, λ+
r } and identifies the cor-

responding keys, e.g, k+ is the key for label λ+, etc. After successful authentication,
the client first checks that k−

l < a ≤ k− and k+ ≤ b < k+
r and that the entries

{k−

l , k−} (similarly for {k+, k+
r }) are neighbors. If this is satisfied (otherwise the

client rejects the answer), the client derives the labels of {λ−

l , λ+}. The second step
is to verify each entry in the MCS. This is simply a reverse process of the query
steps at the server side. With the returned VO, the client can recompute the hash
value of the root node and verify it against the signature of the tree. If it fails, the
client rejects the answer. Otherwise the client infers the label for each entry in the
MCS and checks whether consecutive MCS are neighbors or not using Lemma 4.
If there are consecutive MCS entries that are not neighbors, the client rejects the
result (missing MCS entry) based on Lemma 3. The last step is to infer the LCs
of all MCS entries using their labels, and check Proposition 1. If it is satisfied,
the client computes the final result from MCS. Otherwise, the client rejects the
answer.
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The complete algorithm for query and VO construction is presented in Algorithm
2 and the algorithm for client side verification is presented in Algorithm 3.

Algorithm 2: AABQuery(Query Q; AAB-tree T; Stack VO)

Compute [λ−, λ+] from Q1

Recurse(T.root, VO, [λ−, λ+])2

Push information for verifying λ−

l , λ+
r into VO3

//

Recurse(Node N , Stack VO, Range R):4

begin5

VO.push(node start); VO.push(N .children)6

for N.children ≥ i ≥ 1 do7

if LC(N [i]) ∈ R then8

if N is a leaf then9

VO.push(N [i].k);10

else VO.push(N [i].η)11

else if LC(N [i]) ∩R 6= ∅ then12

Recurse(N [i], VO, R)13

else VO.push(N [i].η);14

VO.push(N [i].α)15

end16

Algorithm 3: AABAuthenticate(Query Q; Stack VO)

Retrieve and verify λ−, λ−

ℓ , λ+, λ+
r from VO1

MCS = ∅2

η = Recurse(VO, MCS)3

Remove entries from MCS according to [λ−, λ+]4

Verify neighbor integrity of MCS or Reject5

Verify η or Reject6

//

Recurse(Stack VO, Stack MCS):7

begin8

c = VO.pop()9

η = ∅10

for 1 ≤ i ≤ c do11

e = VO.pop()12

switch e do13

case node start: η = η| Recurse(VO, R)14

α = VO.pop()15

η = η|e|α16

MCS.push(e)17

Return H(η)18

end19
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The AAB-tree can be used for authenticating one-dimensional aggregate queries
in a dynamic setting since the owner can easily issue deletions, insertions and up-
dates to the tree, which handles them similarly to a normal B+-tree. In addition,
extending the AAB-tree for multiple aggregate attributes Aq can happen similarly
to the APS-tree. Other than COUNT and AVG, AAB-tree supports authentica-
tion of MIN and MAX as well, simply replacing the SUM aggregate in each entry
with the MIN/MAX aggregate. The final answer could be, again, computed and
authenticated using MCS.

Correctness and Completeness: Based on Lemma 2, 3, 4 and Proposition 1,
AAB-tree ensures correctness and completeness.

5.1.1 Cost Analysis. To authenticate any aggregate value either in a leaf entry
or an index entry, or the key of a leaf entry, in the worst case the VO constructed
by the AAB-tree has size:

|VO| ≤ ⌈logf N⌉[f(|H| + 2I) + 2I ], (2)

where N is the distinct number of values in attribute S and I is the size of an
integer value in bytes. In addition, the size of the MCS can be upper bounded as
well. For any key range [a, b]:

|MCS| ≤ 2(f − 1)⌈logf (b − a + 1)⌉. (3)

The subtree containing all entries in range [a, b] has height ⌈logf (b − a + 1)⌉. In
the worst case at every level of the tree the MCS includes f − 1 entries for the left
sub-range, and f − 1 for the right sub-range, until the two paths meet.

Query cost: By combining Equations 2 and 3 the communication cost can be
bounded by:

Ccommunication ≤ 2|VO| + |MCS| · |VO|,

for the VOs corresponding to the boundary labels, and the VO for the MCS.
The verification at the client, counting hashing and verification operations only, is
bounded by:

Cverification ≤ (|MCS| + ⌈logf

N

b − a + 1
⌉) · CH + 2 logf N · CH + 3CV ,

including the hashes for the nodes containing MCS entries, the remaining hashes
in the path to the root, and the authentication cost of the boundary entries.

Storage cost: The size of the AAB-tree is:

Cstorage =

⌈logf N⌉
X

l=1

f
l(|H| + 4I),

which includes the hash value, aggregate value, key and one pointer per entry. The
AAB-tree has much better space utilization than the APS-tree, given that the size
of the tree is a function of the base table size and not of the domain size.

Update cost: Updating the AAB-tree is similar to updating a normal B+-tree
with the additional cost of recomputing the hash values and aggregate values when
nodes merge or split. The cost is bounded by:

Cupdate ≤ 2⌈logf N⌉CH + CS ,

given the worst case update cost of a B+-tree.
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Fig. 6. AAR-tree.

5.1.2 Optimization. A potential optimization to reduce the VO size of a given
range Q, is to authenticate a special complement range of Q. Define the following:

Definition 4. The Least Covering Ancestors LCA of the data entries in range
Q is the two entries whose LCs satisfy the following: 1. They are disjoint; 2. They
completely cover the data entries in [λ−, λ+] of Q; 3. Their union has the minimum
number of entries covered.

It can be shown that set LCA contains at most two entries in the worst case.
Denote with R the range of data entries covered by LCA(Q). In Figure 5, LCA(Q)
contains entries 1 and 21. Range R covers data entries 111 to 212. Depending on
the size of MCS(Q), it might be beneficial to answer the query by authenticating
the aggregate of range R, then the aggregate of range R − Q (denoted by Q), and
subtract the result for the final answer. It is possible to estimate the size of these
sets using statistical information about the average per level utilization of the tree.
Hence the server can decide without having to traverse the tree. Furthermore, if
the tree is complete, the exact size of these sets can be analytically computed.
Nevertheless, for both cases the server first has to run two point B+-tree queries for
identifying the labels of the boundary entries, which in some cases might negatively
affect the server side querying cost.

5.2 Multi-dimensional Queries: Authenticated Aggregation R-tree

For the purpose of answering multi-dimensional queries in the dynamic environment
we extend the Aggregate R-tree (AR-tree)[Lazaridis and Mehrotra 2001; Tao and
Papadias 2004] to get the Authenticated Aggregation R-tree (AAR-tree).

Let Q = 〈SUM(Aq)|S1 = [a1, b1], . . . , Sd = [ad, bd]〉, be a d-dimensional aggregate
query. AAR-tree indexes all tuples in the base table, according to the selection
attributes Si where i ∈ [1, d]. Every dimension of the tree corresponds to a single
attribute, and every node entry is associated with an aggregate value α and a
hash value η. The hash value is computed on the concatenation of the entry’s
children node MBRs (minimum bounding rectangles) mi, aggregate values αi and
hash values ηi (η = H(. . . |mi|αi|ηi| . . .)). The structure of an AAR-tree node looks
the same with that of the AAB-tree in Figure 4 after replacing keys k with MBRs
m. The MBR of each entry is included in the hash computation because the client
should have the capability to authenticate the extent of the tree nodes in order
to verify completeness of the results, as will be seen shortly. Notice that in a d-
dimensional space, the MBR m is simply a d-dimensional rectangle represented by
two d-dimensional points. The query Q becomes a d-dimensional query rectangle.
An example AAR-tree is shown in Figure 6.
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We can define the concept of MCS similarly to the AAB-tree. It is the minimum
set of nodes whose MBRs totally contain the points covered by the query rectangle,
not less and not more. The VO construction is similar to that of the AAB-tree,
and uses the concept of computing the answer by authenticating the MCS entries.
Even though correctness verification for any range query can be achieved simply
by authenticating the root of the tree, completeness in the AAR-tree requires extra
effort by the client. Specifically, the client needs to check if the MBR associated with
each node in the VO intersects or is contained in the query MBR. If it is contained,
it belongs in the MCS. If it intersects, then the client expects to have already
encountered a descendant of this node which is either fully contained in the query
range or disjoint. This check is possible since the MBRs of all entries are included in
the hash computation. The server has to return all MBRs of the entries encountered
during the querying phase in order for the client to be able to recompute the hash
of the root, and to be able to check for completeness. Therefore, the VO contains
all the MBRs (with their hash values), for all the nodes of the R-tree visited during
the search process. Extending the AAR-tree to support multi-aggregate queries
can be achieved with the techniques discussed for the APS-tree and AAB-trees.

Correctness and Completeness: The method described above gives an authen-
tication procedure that guarantees correctness and completeness. The basic idea
behind proving this, is that the server has to authenticate every entry of the AAR-
tree that it accesses in order to answer the query. The proof is a special case of
[Martel et al. 2004, Theorem 3], which holds for more general structures (any DAG
with a single entry node) and can be directly applied to the AAR-tree method.

5.2.1 Cost Analysis. Next we present the cost model for the AAR-tree for au-
thentication of aggregation queries in the multi-dimensional space.

Query cost: Let an AAR-tree indexing N d-dimensional points, with average fan-
out f and height h = logP (N

f ) (where P is the page size, and once more the level of

the root being zero and the conceptual level of the data entries being h). The size
of the VO for authenticating one AAR-tree entry at level l (equivalent to a node
at level l + 1), either a data entry or an index entry, is upper bounded by:

|VO| ≤ fl[2d · I + I + |H|],

(assuming that MBRs are represented by I-byte floating point numbers). The
cost is equal to the level of the entry times the amount of information needed for
computing the hash of every node on the path from the entry to the root.

The size of the MCS is clearly related to the relationship between the query range
MBR q and the MBRs of the tree nodes. Let m be a node MBR, and P (m ⊙ q)
represent the probability that the query MBR fully contains m. Assuming uniformly
distributed data, it has been shown in [Jürgens and Lenz 1999] that

P (m ⊙ q) =

{
∏d

j=1(qj − mj) , if ∀j : qj > mj

0 , otherwise.

where qj , mj represent the length of q and m on the j-th dimension. Furthermore, it
has been shown in [Kamel and Faloutsos 1993] that the probability of intersection

between q and m is P (m ⊕ q) =
∏d

j=1(qj + mj). Thus, the probability of an
intersection but not containment is equal to P (m⊖ q) = P (m⊕ q)−P (m⊙ q). Let
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ml be the average length of the side of an MBR at the l-th level of the tree. It has
been shown by [Theodoridis and Sellis 1996] that ml = min {(fh−l/N)1/d, 1}, 0 ≤
l ≤ h − 1, which enables us to estimate the above probability for any MBR m. In
particular, let Pl(m⊖ q), Pl(m⊕ q) and Pl(m⊙ q) be the probabilities for an MBR
m from the l-th level of tree.

Clearly, Jl = Jl−1 · f · Pl(m ⊖ q), 1 ≤ l ≤ h, J0 = P0(m ⊖ q) is the number
of nodes that intersect with query q at level l, given that all its ancestors also
intersect with q. The expected size of the MCS can be estimated as |MCS| =
∑h

l=0 Jl · f · Pl(m ⊙ q). In the special case when the root node is fully contained
by the query, i.e., P0(m ⊖ q) = 0, MCS = 1. Essentially, we estimate the number
of children entries that are contained by the query, for every node that intersects
with the query at a given level (and all its ancestors intersect with, but are not
contained by, the query).

Hence, the expected communication cost can be estimated by:

Ccommunication = |MCS| · |VO|.

The verification cost is similarly estimated by:

Cverification = |MCS| · CH + CV .

Storage cost: Every entry has a hash value and an aggregate value, and includes
the d-dimensional MBRs and one pointer per entry. Hence, the storage cost is:

Cstorage =
h−1
X

l=0

N

fh−l
· f · [|H| + 2d · I + I + I ],

Update cost: Updating the AAR-tree is similar to updating an R-tree. Hence:

Cupdate = logP (
N

f
) · CH + CS .

6. OTHER AGGREGATES AND AUTHENTICATING SELECTION QUERIES

So far, we have presented solutions for SUM queries which can support multiple
aggregated predicates, with multiple selection predicates on discrete and continuous
domains. Next, we extend to other aggregate queries (including holistic aggregates,
such as the MEDIAN and QUANTILE). We also show how our index structures
support selection queries without the need of making any changes.

Support for Authentication of Selection Queries: Both the AAB-tree and
AAR-tree also support the authentication of range selection queries without the
need to make any changes to their structures. Essentially, by adding the sibling
hash values for the two boundary query paths to the VO, with all leaf entries in the
query range (they are returned to the client since it is a range selection query), the
client is able to authenticate this result by reconstructing the subtree that covers
the query range (the corresponding aggregate values in any entry can be easily
computed, and hence the hash values), and eventually the hash value of the root
node with the help of the sibling hash values from the boundary query paths. The
overall correctness and completeness are established by the reconstructed root hash
value and the root signature in the VO.

COUNT, AVG and MIN/MAX: COUNT is a special case of SUM and is
thus handled similarly. The combination of SUM and COUNT provides a solution
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for AVG. AAB-tree and AAR-tree can support MIN and MAX queries, simply
by replacing the aggregate values stored in the index nodes of the trees, with the
MIN/MAX of their children. The APS-tree cannot handle MIN/MAX aggregates.

Multiple Aggregates in One AAB-(AAR-)tree: A very appealing feature for
the AAB-tree and APS-tree is that they can authenticate multiple aggregates si-
multaneously using just one index. For instance, we can make an AAB-tree support
the authentication of both COUNT and SUM simultaneously. In order to achieve
this, we modify the structure for entries in the AAB-tree node. For an index node,
each entry simply stores two pairs of (aggregate, hash), instead of just one. One
pair is for the COUNT aggregate and the other is for the SUM aggregate. Every
such pair is computed as illustrated in Figure 4, however, using the pairs that cor-
respond to the same aggregate from its children nodes. For a leaf node, each entry
also stores two pairs of (aggregate, hash), one for each aggregate. The hash value
in each pair is computed by applying the hash function on the concatenation of the
key value for this leaf entry and the corresponding aggregate value for this entry.
Finally, two signatures are produced at the root level, one for each aggregate. The
authentication procedure is done in exactly the same fashion as that in the tree
with just one aggregate type, however, using only the hash values for the querying
aggregate to construct the VO. The case for the AAR-tree is similar.

Authentication for MEDIAN and QUANTILE: Given the discussion above,
we can finally present our solution to the authentication of holistic aggregates,
like MEDIAN and QUANTILE. The trivial solution as outlined in Section 3.1 can
obviously be applied, by treating the range QUANTILE query as a range selection
query. Then, let the client authenticate the result of the selection query first and
find the QUANTILE locally. However, as argued in Section 3.1, this approach
suffers high communication and verification costs.

Since MEDIAN is a special case of QUANTILE (i.e., it is the 50% QUANTILE),
we concentrate on the general QUANTILE case. Note that QUANTILE is well-
defined for one-dimensional data. In higher dimensions, QUANTILE cannot be
directly defined on the original data, unless some score function is specified to turn
them into one dimensional data. Hence, in this work we concentrate on the classical
QUANTILE definition on one-dimensional data (i.e., only one aggregate attribute).
We use θ(Aq) to denote a θ-quantile value from attribute Aq, for θ ∈ [0, 1], and
illustrate our idea using one selection attribute. In this case, a range aggregate
query has the following form:

Q = 〈θ(Aq)|S1 = [a1, b1]〉, (4)

which asks for the θ-quantile w.r.t. attribute Aq for all records whose values for
the attribute S1 are within the query range [a1, b1].

Since any quantile requires a total ordering on the attribute Aq, there could be
an ambiguity in the definition when there are duplicate values among records on
their Aq field. Typically, such ambiguity is addressed by applying the standard
geometric perturbation method, i.e., adding a tiny amount of random perturbation
to each record’s Aq value so that they are guaranteed to be distinct and a total
ordering could be derived. At the same time, the perturbations are small enough
so that they will not affect the ordering of records that have different Aq values to
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start with. For example, for three records with their Aq values as {7, 7, 8}. They
could be transformed to {7.01, 7.05, 8.02} by the geometric perturbation and a total
ordering is clearly derived. In general, any tie-breaking method by the data owner
could be used first; then, the derived order of tuples is explicitly imposed using
geometric perturbation. Note that such an approach has no impact to the storage
cost, the query cost and the authentication cost for the query authentication in the
ODB system. It also does not affect the accuracy of the query result. The data
owner and the clients could easily agree on a pre-defined threshold value τ , so that
once the client has authenticated the query result from the server, the client can
then remove the last τ digits from the query answer to get the precise record as it
was before the geometric perturbation.

That said, we assume that the aggregate attribute for the range quantile query
has distinct values for all records in the database. Before discussing the solution
for the general quantile query as shown in Equation 4, we first address a special
case when Aq = S1, i.e., when the aggregate attribute and the selection attribute
are the same field. When this is the case, the θ-quantile query becomes:

Q = 〈θ(Aq)|Aq = [a1, b1]〉, (5)

We next show that the AAB-tree provides a solution to this query for any value
of θ ∈ [0, 1]. First, the data owner builds an AAB-tree T , with both the indexing
attribute and aggregate attribute as Aq. The aggregate type used in the AAB-tree
construction is COUNT. T is then forwarded to the server and used by the server
to answer queries and construct the VO. When a client would like to request a
θ-quantile query, as shown in Equation 5, it sends two queries to the server:

(1) Q1 = 〈COUNT(∗)|Aq = [a1, b1]〉, (2) Q2 = 〈θ(Aq)|Aq = [a1, b1]〉.

The server needs to answer both queries, but only construct VO1 for Q1. Suppose
the server finds c1 as the answer to Q1 and v as the answer to Q2 (v can be found
easily by a leaf-level sequential scan starting from a1 in the tree T to b1). It then
has to answer the following two queries:

(3)Q3 = 〈COUNT(∗)|Aq = [a1, v)〉, (4)Q4 = 〈COUNT(∗)|Aq = [v, v]〉,

The server needs to find both the answers and the corresponding VO’s for queries
Q3 and Q4 — suppose they are (c3,VO3) and (c4,VO4) respectively. Next, the
server returns {(c1,VO1), (c3,VO3), (c4,VO4), v} to the client. Note that the client
understands the protocol and hence knows the syntax for queries Q3 and Q4. Given
all of the above, the authentication step at the client is rather straightforward. It
first authenticates the correctness of c1, c3, c4 using VO1, VO3, VO4 and the query
range from the syntax of Q1, Q3, Q4 respectively, by the AAB-tree’s authentication
algorithm (Algorithm 3). If all of them are valid (otherwise the client rejects the
answer), it then checks the following:

(a) ⌊θc1⌋ = c3 or ⌈θc1⌉ = c3, (b) c4 = 1.

If both conditions hold, the client then accepts the answer v as the correct answer
to the θ-quantile query Q2.

The correctness of this scheme is almost immediate. First, the server cannot
manipulate the values of c1, c3, c4 without being caught by the authentication guar-
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antee of the AAB-tree T . Second, given that the values for c1, c3, c4 are correct
for their corresponding queries Q1, Q3, Q4, condition (a) asserts that there are θ
percent of records in the query range [a1, b1] that are ranked before the value v;
condition (b) then asserts that the value v indeed exists in the database. Note
that the verification by the condition (b) is necessary, otherwise the server could
return all correct values for c1, c3, c4, but an incorrect value v′ as the θ-quantile.
The query Q4 could also be constructed using a SELECTION query instead, i.e.,
Q4 =SELECT * FROM T WHERE Aq = v, T is the base table. Since the AAB-tree
can authenticate the SELECTION query without any changes (as discussed at the
beginning of this section), this approach is also possible.

The additional challenge for the general θ-quantile query, as the one shown in
Equation 4 when Aq 6= S1, is that records in the AAB-tree are ordered according
to their attribute S1, but the θ-quantile verification needs to authenticate the order
for records within the query range w.r.t. their attribute Aq. Our idea outlined
above for the special case can still be applied, with the help of one AAB-tree and
one AAR-tree, T1 and T2. The AAB-tree T1 has S1 as the indexing attribute and
Aq as the aggregate attribute. It stores two aggregate types, both the COUNT and
the MIN, as shown at the beginning of this section how AAB-tree and AAR-tree
support the authentication of multiple aggregates in one tree. The AAR-tree T2 is in
the 2-dimensional space defined by attributes S1 and Aq, and stores/authenticates
the COUNT aggregate w.r.t. Aq.

For a θ-quantile query as shown in Equation 4, the client sends the following two
queries to the server:

(1) Q5 = 〈COUNT(∗)|S1 = [a1, b1]〉, (2) Q6 = 〈θ(Aq)|S1 = [a1, b1]〉.

The server answers both queries with tree T1. For Q5, it finds the answer c5 and
also constructs VO5. For Q6, it first finds all records with their attribute S1 having
the values in the range [a1, b1] (using a range selection query on T1, but there is no
need to construct the VO for it), then sorts these records based on their attribute
Aq and identifies the θ-quantile as value v. The server also finds the smallest value
vmin from these records w.r.t. the attribute Aq; it needs to authenticate this result
to the client. Hence, a query Q7 is used to find VO7 for vmin, using again tree T1

(T1 stores, hence can answer and authenticate, both COUNT and MIN on Aq):

(3) Q7 = 〈MIN(Aq)|S1 = [a1, b1]〉.

Next, the server processes the following queries using tree T2:

(4)Q8 = 〈COUNT(∗)|Aq = [vmin, v), S1 = [a1, b1]〉, (5)Q9 = 〈COUNT(∗)|Aq = [v, v], S1 = [a1, b1]〉

and finds their answers and the corresponding VO’s, suppose they are (c8,VO8) and
(c9,VO9) respectively. Finally, the server returns {(c5,VO5), (vmin,VO7), (c8,VO8),
(c9,VO9), v} to the client.

Since the client understands the protocol, it can easily reconstruct the syn-
tax for queries Q7, Q8, Q9. It first authenticates c5, vmin, c8, c9 with the help of
VO5,VO7,VO8,VO9 and the corresponding query range syntax from Q5, Q7, Q8, Q9

respectively. Next, it simply checks:

(a) ⌊θc5⌋ = c8 or ⌈θc5⌉ = c8, (b) c9 = 1.
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If both conditions hold, the client accepts v as the correct answer for Q6. The
correctness of this approach is similarly argued as that for the special case when
Aq = S1. The only additional trick is that the client has to authenticate the validity
of vmin, which is achieved with the help of Q7 and VO7.

An alternative solution when S1 and Aq are different is to only use the AAR-tree
T2. But in this case we store both COUNT and MIN w.r.t. Aq in T2. Clearly, the
server can still answer Q5, Q6 and Q7 using only T2 and build VO5, VO7 for Q5

and Q7, by adding a selection range on Aq to Q5, Q6 and Q7 as Aq = [dl, dr], where
dl (dr) is the smallest (largest) value for the domain of Aq. We can assume that
the client knows dl and dr as well (since they are static values that never change,
the data owner can broadcast them once to all clients during the system set-up).
The rest of the algorithm stays unchanged (except that the client now uses the
authentication method from the AAR-tree). This solution eliminates the need of
building and maintaining the AAB-tree T1, however, the query and authentication
costs for Q5, Q6 (no authentication cost) and Q7 are expected to be much higher
than the previous solution (2D queries vs. 1D queries).

The cost analysis of our method for authenticating the θ-quantile query is straight-
forward, given the cost analysis for AAB-tree and AAR-tree. In the special case,
it uses just one AAB-tree. Its authentication cost is equal to three range COUNT
queries; its query cost for the server is equal to three range COUNT queries, plus
the sequential scan in the leaf level starting at a1 to find the θ-quantile which is
inexpensive. The storage, update, and communication costs are the same as one
AAB-tree. In the general case, it uses either one AAB-tree and one AAR-tree, or
just one AAR-tree. Its authentication cost and query cost can be similarly derived
(three range COUNT queries and one range MIN query). The storage, update and
communication costs are equivalent to one AAB-tree plus one AAR-tree, or just
one AAR-tree. Note that the one more query cost in the range quantile query —
the server has to answer a range selection query (Q2 or Q6) — is almost necessary
in order to answer a quantile query even without the authentication requirement,
unless some other pre-processing methods or indices have been used. Hence, this
cost is also insignificant, especially given that it can be efficiently answered by the
AAB-tree (just like answering a range selection query using an B+-tree).

The above idea easily generalizes to range quantile queries with one aggregate
attribute and more than one selection attributes. We simply use one AAR-tree
in the multi-dimensional space defined by the aggregate attribute and all selection
attributes. The rest of the algorithm follows the same methodology.

7. ENCRYPTED DATABASES AND QUERY FRESHNESS

We next address issues related to encrypted databases and query freshness.

7.1 Handling Encrypted Data

In some scenarios it might be necessary for the owner to publish only encrypted
versions of its data for privacy preservation purposes or protecting the data con-
fidentiality [Hacigümüs et al. 2002; Agrawal et al. 2005]. It should be made clear
that an encrypted database does not provide a solution to the query authentica-
tion problem — the servers could still purposely omit from the results tuples that
actually satisfy the query conditions.
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APS-tree can work without modifications with encrypted data as long as the
client knows the encryption key. Since the APS-tree indexes the data only based
on their indices in the one dimensional array which maps the prefix sum array,
and the authentication algorithm in the APS-tree only requires and depends on
a few (2d if the data is in a d-dimensional space) indices of the prefix sum array
(which the user can easily infer based on the query condition without knowing either
the structure or the content of the database), the data confidentiality is perfectly
preserved in the APS-tree if the data owner uses any standard encryption scheme
to encrypt each record in the database. Furthermore, this does no have any impact
regarding query performance (both the query cost and the authentication cost) of
the APS-tree on the server side even if the database is encrypted. As the server
does not need to access the data or perform any computations or comparisons on
the data. It only needs to retrieve the encrypted data at a specific location of the
one-dimensional prefix sums array, which can be provided by the client.

In general, MHT will reveal certain information for the underlying data if the
index was built directly on the original data content (either the plaintext or the
encrypted version). However, the APS-tree is built based on the indices on the
prefix-sum array. In other words, the APS-tree will potentially reveal the index
values in the prefix-sum array of the retrieved, encrypted element, but nothing
else about the content of this element since the comparison in the APS-tree is
done w.r.t. the index values in the prefix-sum array and not on the content of the
elements. Hence, this information does not help to decrypt the plain-text value of
the encrypted element.

On the other hand, the AAB-tree and the AAR-tree structures cannot support
encrypted data. Using homomorphic encryption [Hacigümüs et al. 2004], we can
allow the server to compute aggregate values without learning any information.
However, the difficulty arises in enabling the server to traverse the index structure
for finding the data entries contained in the query result. This requires the server
to perform comparisons on encrypted data, which by definition leaks information
on plain-texts from a security/privacy point of view. Hence, we do not consider
here techniques like order-preserving encryption [Agrawal et al. 2004].

7.2 Query Freshness

Query freshness is a problem that stems from the fact that in dynamic environments
the servers, having obtained a correct authenticated structure, may choose to ignore
further updates from the owners and answer client queries on stale data. In this
situation, the client has no way of knowing that the query answers are not “fresh”.
Various solutions for solving this problem are based on certain signature certificate
techniques. It has been shown that the cost of solving the query freshness problem
is proportional to the number of signatures used to authenticate the structure.
Since all of the techniques proposed here utilize only one signature, query freshness
can easily be addressed.

8. PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed approaches with respect
to query, authentication, storage, and update cost. We implemented the APS-tree,
AAB-tree and AAR-tree. We also evaluate the previous solutions that can be used
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for authenticating aggregation queries, namely the authentication structures for
selection queries.

8.1 Setup

First, in all experiments, we use the density δ of the database to control how many
records are in the database and how dense the database is with respect to its domain
space (this is necessary in order to study the performance of the APS-tree, since
the size of the prefix sum array depends on the size of the domain). The database
density δ is defined as δ = N

Q

d
i=1

Mi
. Recall that N is the number of tuples in the

database and Mi is the domain size for the ith dimension.
For all experiments related to query performance, we use the query selectivity,

denoted as ρ ∈ [0, 1], to control the query range. For a database with N tuples in
any dimension d, the query selectivity for a range aggregate query Q is defined as
|SAT (Q)|/N , i.e., the number of tuples that satisfy the query range over N .

We use both real and synthetic datasets. The real data sets were obtained from
the open street map project. Each data set contains the road network and streets
for a state in the USA. Each point has its longitude and latitude coordinates. We
normalized each data set into the space L = (0, 0)×(105, 105). For our experiments,
we have used the Texas (TX) and California (CA) data sets. The TX data set has
14 million points and the CA data set has 12 million points. The real data sets
are in two dimensions. We used them for the one-dimensional space to evaluate
the performance of the APS-tree and AAB-tree. Given a database density value
δ, since the one-dimensional domain has a size 105, we randomly sample δ × 105

number tuples from the CA or TX data sets, and retain their X coordinate values
as the indexing attribute and the Y coordinate values as the aggregate attribute.

For synthetic data sets in d-dimensional space, we generate d-dimensional tuples,
with different sizes Mi for the attribute domains Di, of values that are generated
based on the following two distributions: uncorrelated uniform distribution (UU)
or the randomly clustered distribution (RC). The number of tuples we generate

is based on the database density δ, i.e., N = δ ×
∏d

i=1 Mi. We also generate
synthetic query workloads with one aggregate attribute Aq and up to three selection
attributes. The query range is controlled by the query selectivity as discussed
above. Every workload contains 100 queries, and we report averages in the plots.
All experiments were performed on a Linux box with a 2.8GHz Intel Pentium4
CPU. The page size of the structures is set to 1KByte. We use the OpenSSL
[Levitte et al. ] and Crypto++ [Dai ] libraries for hashing, verification and signing
operations (SHA1 and RSA, respectively).

The distribution of the datasets does not affect our authentication techniques.
It only affects the base indexing structures. Furthermore, for the storage cost,
the query cost and the authentication cost, they are determined by the database
density δ and the query selectivity ρ. Hence, different data sets actually have similar
results if using the same δ and ρ parameters. Therefore, in one-dimensional space,
we only report the result for the CA data set. For three-dimensional space, we
only report the result for the UU data set. Finally, we use the SUM as the default
aggregate type, since it is the fundamental query type (COUNT is a special case for
SUM) for all aggregates we have discussed. The MIN/MAX aggregate has similar
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Fig. 8. 1d queries: Comm. and verification cost.

storage, update, query, communication and authentication costs. The storage and
update costs of the MEDIAN and QUANTILE aggregate types for our technique
are about two times of the cost for the COUNT aggregate in the general case.
Its query, communication and authentication costs are about 3 − 4 times of the
corresponding COUNT aggregate with the same query range. For details, please
refer to our relevant cost analysis in Section 6.

Lastly, in some figures, the performance of competing methods is significantly
different. To clearly illustrate the trend for every method, we use a smaller figure
inside a larger figure to have different scale on the y-axes. However, in all these
cases, both the smaller and larger figures have the same scale on their x-axes.

8.2 One-dimensional Queries

First, we evaluate one-dimensional queries. Candidates are the APS-tree, the AAB-
tree, and the structures for selection queries, like the MB-tree, and EMB−-tree [Li
et al. 2006b]. For the naive approaches to authenticate a query, first we answer
the range query and report all values to the client, who authenticates them and
computes the aggregate. For the AAB-tree we evaluate both the structure based on
MCS and the optimization based on LCA. We generate a database with domain
size of M = 100, 000, N = δM . We vary the density of the database δ ∈ [0.1, 0.9]
and the query selectivity ρ ∈ [0.1, 0.9].

Figure 7(a) shows the I/O cost at the server side. The best structure overall is
the APS-tree, since it only needs to verify two PS entries, with a cost proportional
to the height of the tree. The naive approaches are one to two orders of magnitude
more expensive than the other techniques, since they need to do a linear scan on
the leaf pages, which increases the cost as the queries become less selective. For the
AAB-trees it is interesting to note that the optimized version has slightly higher
query I/O, due to the extra point queries that are needed for retrieving the query
range boundaries. In this case, reducing the size of the VO did not reduce the I/O
overall. In addition, for both AAB-tree approaches the cost decreases as queries
become less selective, since the MCS (and its complement MCS ∪ LCA) become
smaller at the same time due to larger aggregation opportunities. This is clearly
illustrated in Figure 7(b) that shows the actual sizes of MCS, MCS ∪ LCA, and
the best of the two for the average case over 100 queries.

Figures 8(a) and 8(b) show the communication cost and verification cost at the
client side. For the communication cost we observe similar trends with the MCS
size, since the size of the VO is directly related to the size of MCS. Notice also
that the optimized version has smaller communication cost. The same is true for
the verification cost for the APS-tree and AAB-tree. For the naive approaches the
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communication cost increases linearly with the query selectivity, which is simply
explained by the fact that they have to return ρN number of aggregate values and
keys. The verification cost is several orders of magnitude slower in terms of hash
computations, due to the fact that all the results in the query range need to be
authenticated, which is an overhead when queries are not very selective.

The query efficiency of the APS-tree comes with the penalty of high storage and
update cost. This is indicated in Figures 9(a) and 9(b). For this set of experiments
we vary the database density δ. The storage cost of the APS-tree depends only
on the domain sizes and is not affected by δ. The other approaches have storage
that increases linearly with δ. Notice that, as expected, for very dense datasets all
the trees have comparable storage cost. AAB-tree consumes slightly more space
than MB-tree and EMB−-tree, since it has to store aggregate values for entries in
index nodes. For the update experiment, we uniformly at random generate 100
updates and report the average cost of one update. The update cost is measured
in number of hash computations required. The APS-tree has to update half of the
data entries on average for just one update in the one-dimensional space. For the
AAB-tree and MB-tree the update cost is bounded by the height of the tree. The
EMB−-tree has slightly increased cost due to the embedded trees stored in every
node that conceptually increase the height of the tree. We can see that the AAB-
tree has competitive storage and update cost compared to the naive approaches,
and is orders of magnitude better than the APS-tree in terms of update cost.

8.3 Multi-dimensional Queries

We next compare the APS-tree and AAR-tree for 3-dimensional queries. The naive
approach based on authenticating range selection queries becomes very expensive
in high-dimensional spaces, so we do not consider it here. To have similar database
size as the experimental study in one-dimensional queries, we generate synthetic
datasets with maximum unique elements of

∏3

i=1 Mi = 125, 000 tuples, query work-
load with 100 queries with variable ρ values on a database with δ = 0.8. The storage
and update costs are studied for databases with different density values of δ.

The I/O cost of the structures as a function of query selectivity is reported in
Figure 10(a). The APS-tree once again has the best performance overall, since it
only needs to authenticate eight PS elements. The AAR-tree has much higher I/O
since it needs to construct the MCS which requires traversing many different paths
of the R-tree structure, due to multiple MBR overlaps at every level of the tree.
Notice also that the I/O of the AAR-tree increases as queries become less selective,
since larger query rectangles result into a larger number of leaf node MBRs included
in the MCS as indicated in Figure 10(b). This becomes clear in Figure 10(a) which
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Fig. 11. 3d queries: Comm. and verification cost.
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Fig. 12. 3d queries: Storage and update cost.

shows that most I/O operations come from the leaf level of the tree.
The authentication and verification costs are shown in Figure 11. The APS-tree

has small communication cost and verification cost, both bounded by eight times
the height of the tree; notice that our algorithm by merging the common paths
has reduced the costs from this worst case bound. The AAR-tree has much higher
communication cost due to larger MCS sizes and because it has to return the MBRs
of all MCS entries. The verification costs follow similar trends, since the number
of hash computations is directly related to the number of entries in the MCS.

Figure 12(a) shows the storage cost as a function of δ, for the APS-tree and AAR-
tree. In higher dimensions the AAR-tree consumes more space when the database
becomes relatively dense. This is due to the fact that the AAR-tree has to store
the 3-dimensional MBRs for all nodes. In our experiments we use 8-byte floating
point numbers and a small page size, but the trend is indicative.

Figure 12(b) plots the update cost as a function of δ. We generate 100 up-
dates uniformly at random and report the average update cost of one update. The
superior query cost of the APS-tree is offset by its extremely high update cost.
Regardless of database density, the APS-tree has to update 1/8-th of its data en-
tries on average for one update in the three dimensional space. In contrast, the
AAR-tree inherits the good update characteristics of the R-tree.

8.4 Discussion

Our experimental results clearly indicate the efficiency of the proposed authenti-
cated aggregation index structures over the straightforward approaches. In general,
our approach has multiple orders of magnitude smaller query cost with almost the
same storage and update cost as the existing approaches. Among the new tech-
niques proposed, the APS-tree has very small query cost and supports encrypted
data, but it has expensive updates and considerable space overhead in the case of
sparse datasets. The AAB-tree and AAR-tree have higher query cost but better
space usage, especially for sparse datasets, and superior update cost.

9. CONCLUSION

In this paper, we proposed several authenticated indexing schemes for aggregation
queries. We provided a structure with excellent query performance in static environ-
ments. However, it has high space utilization for sparse databases and high update
overhead. Therefore, we presented structures for dynamic settings that gracefully
adapt to data updates and have better space utilization for sparse datasets. We
also showed how to extend these techniques to handle multiple aggregates and
multiple selection predicates per query. Our approach could handle literally all
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aggregate types, such as SUM, COUNT, AVG, MIN, MAX, MEDIAN and QUAN-
TILE. We have also shown how to authenticate aggregation queries efficiently when
the database is encrypted to protect data confidentiality.
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