
1

Leonid Reyzin

Information-Theoretic
Key Agreement

from
Close Secrets

January 5, 2018
IISc

2

Information-Theoretic
Key Agreement

from
Close Secrets:

A Survey
Alice Bob
w0 w1assume these

are “close”
and partially secret

3

Information-Theoretic
Key Agreement

from
Close Secrets:

A Survey
Alice Bob
w0 w1

4

Information-Theoretic
Key Agreement

from
Close Secrets:

A Survey
Alice Bob
w0 w1

r r

5

Information-Theoretic
Key Agreement

from
Close Secrets:

A Survey
Alice Bob
w0 w1

r rinfo-theoretic
guarantees

How do we get here?
• Alice and Bob have a partially secret and partially noisy

channel between them [Wyner 1975]
• Alice and Bob are running quantum key distribution
• Alice and Bob listen to a noisy beacon
• Alice and Bob are two cell phones shaken together
• Alice knows Bob’s iris scan

6

Alice Bob
w0 w1

7

basic paradigm

Alice Bob
w0 w1w0

Eve

8

basic paradigm

Alice Bob
w0 w1w0

Eve

w0 w1

9

basic paradigm: passive adversary

Alice Bob
Conversation about

their differences
w walso known as

information reconciliation

Eve

w0 w1

10

basic paradigm: passive adversary

Alice Bob
Conversation about

their differences
w w

some information
E about w

also known as
information reconciliation

Eve

w0 w1

11

basic paradigm: passive adversary

Alice Bob
Conversation about

their differences
w w

some information
E about w

Conversation about
removing Eve’s information

r r

also known as
information reconciliation

also known as
privacy amplification

Eve

w0 w1

12

basic paradigm: passive adversary

Alice Bob
Conversation about

their differences
w w

some information
E about w

Conversation about
removing Eve’s information

r r

also known as
information reconciliation

also known as
privacy amplification

Eve

privacy amplification
wnot uniform

Goal: from a nonuniform secret w
agree on a uniform secret r

Eve(e.g., knows some E about it)

Alice Bob
E

14

privacy amplification
wnot uniform

Goal: from a nonuniform secret w
agree on a uniform secret r

Eve(e.g., knows some E about it)

w
rExtseed

jointly uniform

minentropy k

Alice Bob

Solution: use a strong extractor

15

privacy amplification
wnot uniform

Goal: from a nonuniform secret w
agree on a uniform secret r

Eve(e.g., knows some E about it)

w
rExtseed

seed
w RExti

w rExtseed

jointly uniform

minentropy k

seed r

Alice Bob

Solution: use a strong extractor

E

privacy amplification
wnot uniform

Eve

w RExti
w rExtseed seed r

Alice Bobseed
E

If average min-entropy Hmin(W |E) is sufficiently high,
and Ext is an average-case strong extractor, this works!

Using universal hashing:

If Hmin(W|E) ≥ k, we get (R, Seed, E) ≈𝜀 (Um, Seed, E)
for m = k − 2 log (1/𝜀)

privacy amplification
wnot uniform

Eve

w RExti
w rExtseed seed r

Alice Bobseed
E

• Early work for specific distributions of w and classes of Eve’s knowledge,
motivated by quantum key agreement

• [Ozarow-Wyner 84]: nonconstructive solution

• [Bennett-Brassard-Robert 85]: universal hashing for any Eve’s knowledge

• Early analysis used Shannon entropy for W as an input assumption
and low mutual information between E and R as an output guarantee.
Problem: Shannon entropy and mutual information are not great for security

• [Maurer 93, Bennett-Brassard-Crépeau-Maurer 95]: modern security notions

note the two views of extractors

Ext
poor quality
randomness

indistinguishable
from uniform

Extrandomness
(maybe uniform)

indistinguishable from
uniform given leakage

Eve

[Santha-Vazirani]:

[Wyner]:

The equivalence of these two views wasn’t obvious at first

w0 w1

19

basic paradigm: passive adversary

Alice Bob
Conversation about

their differences
w w

Conversation about
removing Eve’s information

r r

also known as
information reconciliation

also known as
privacy amplification

Eve

Outline
• Passive adversaries

– Privacy amplification
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Privacy amplification
– Information reconciliation

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation

20

w0 w1

21

basic paradigm: passive adversary

Alice Bob
Conversation about

their differences
w walso known as

information reconciliation

Eve

r r

seed to a strong extractor

w0 w1

22

basic paradigm: passive adversary

Alice Bob
Conversation about

their differences
w walso known as

information reconciliation

Eve

r r

seed to a strong extractor

w0 w1

23

basic paradigm: passive adversary

Alice Bob
Conversation about

their differences
w walso known as

information reconciliation

Eve

r r

seed to a strong extractor
Goal: minimize amount of information

leaked about w,
i.e., maximize Hmin(W|protocol messages)

w0 w1

24

information reconciliation

Alice Bob

w w

Eve

Goal: minimize amount of information
leaked about w,

i.e., maximize Hmin(W|protocol messages)

focus today: single-message,
starting with Bennett-Brassard-Robert 85

(interactive protocols more rare
e.g., Brassard-Salvail 93)

w0 w1

25

information reconciliation

Alice Bob

w w

Eve

Goal: minimize amount of information
leaked about w,

i.e., maximize Hmin(W|protocol messages)

focus today: single-message,
starting with Bennett-Brassard-Robert 85

(interactive protocols more rare
e.g., Brassard-Salvail 93)

Sketch(w0)

Aside: chain rule for Hmin

Def: Hmax(E) = log |{e | Pr[E = e]>0} = log |support(E)|
Lemma: Hmin(X | E) ≥ Hmin(X, E) − Hmax(E)
Proof: Reduction. Suppose Pr(x,e) [A(e) → x] = p.
Let B = pick a uniform g support(E); output (A(g), g)
Pr(x,e)[B → (x,e)]

26

≥ Pr(x,e,g)[e=g and A(g) → x]

= Pr(x,e,g)[e=g and A(e) → x]

= p/| support(E)| ⃞

= Pr(x,e,g)[e=g] Pr(x,e,g) [A(e) → x]

Lemma: Hmin(X | E1, E2) ≥ Hmin(X, E2 | E1) − Hmax(E2)

w0

27

definition: secure sketch is a pair (Sketch, Rec)

Alice Bob

c

w0 cSketch
w1

w0 ≈ w0

28

definition: secure sketch is a pair (Sketch, Rec)

Alice Bob

c

w0 cSketch same definition
for every notion of “≈”

w1

w0 ≈ w0

29

definition: secure sketch is a pair (Sketch, Rec)

Alice Bob

c

w0 cSketch

c w0Recw1

same definition
for every notion of “≈”

w1

w0 ≈ w0

30

definition: secure sketch is a pair (Sketch, Rec)

Alice Bob

c

w0 cSketch

c w0Recw1

Def [Dodis-Ostrovsky-R-Smith 04]:
(Sketch, Rec) is a (k, k − l)-secure sketch if

Hmin(W0 | E) ≥ k implies Hmin(W0 | E, Sketch(W0)) ≥ k − l

same definition
for every notion of “≈”

entropy loss l

w1

31

information-reconciliation + privacy amplification

Alice Bob
w0 w1

Eve

w0 rExtseed

cSketch

Recc
w1 w0 rExtseed

c,seed

32

information-reconciliation + privacy amplification

Alice Bob
w0 w1

Eve

w0 rExtseed

cSketch

Recc
w1 w0 rExtseed

Hmin(W0 | E) ≥ k ⇒ Hmin(W0 | E, Sketch(W0))≥ k − l
(k − l, 𝜀)- Ext ⇒ (R, C, Seed, E) ≈𝜀 (Um, C, Seed, E)
Thus can get m = k − l − 2 log (1/𝜀)

c,seed

33

information-reconciliation + privacy amplification

Alice Bob
w0 w1

Eve

c,seedw0 rExtseed

cSketch

Recc
w1 w0 rExtseed

All in one message!
Let’s take another view of what we’ve built…

information-reconciliation + privacy amplification

Alice Bob
w0 w1

w0 rExtseed

cSketch

Recc
w1 w0 rExtseed

w0
Ext

Sketch

r

p=(c,seed)

c,seed

information-reconciliation + privacy amplification

Alice Bob
w0 w1

w0 rExtseed

cSketch

Recc
w1 w0 rExtseed

w0
Ext

Sketch

r

p=(c,seed)

w1

c,seed

information-reconciliation + privacy amplification

Alice Bob
w0 w1

w0 rExtseed

cSketch

Recc
w1 w0 rExtseed

w0

Ext

Ext

w1

Sketch Rec
w0

r

p=(c,seed) r

c,seed

information-reconciliation + privacy amplification

Alice Bob
w0 w1

w0 rExtseed

cSketch

Recc
w1 w0 rExtseed

Gen

Repw0

Ext

Ext

w1

Sketch Rec
w0

r

p=(c,seed) r

c,seed

information-reconciliation + privacy amplification

Gen

Repw0

w1

r

p r

Fuzzy Extractors

Gen

Repw0

w1

r

p r

Single message information reconciliation + privacy amplification
= fuzzy extractor [Dodis-Ostrovsky-R-Smith 04]

Functionality requirement: if w0 and w1 are close, then Rep gets r
Security requirement: if Hmin(W0|E) ≥ k then (R,P,E) ≈𝜀 (Um,P,E)

Definition of fuzzy extractors:

includes “meaningful entropy”
and measurement noise – no

need to separate them

Fuzzy Extractors

Gen

Repw0

w1

r

p r

Single message information reconciliation + privacy amplification
= fuzzy extractor [Dodis-Ostrovsky-R-Smith 04]

Can think of other constructions (not sketch+extract, computational)
[Canetti-Fuller-Paneth-R.-Smith Eurocrypt ’15]

Single message p can be sent into the future!

Advantages of this view:

Advantages of single-message protocols

Physically Unclonable Functions (PUFs) Biometric Data

High-entropy sources are often noisy
– Initial reading w0 ≠ later reading reading w1, but is close

Fuzzy Extractor can derive a stable,
cryptographically strong output

– At initial enrollment of w0, use Gen, store p
– All subsequent readings w1, w2 … map to same output using Rep

Use r for any crypto scheme–e.g., a key to encrypt your sensitive data
– E.g., self-enforcing, rather than server-enforced, authorization

Outline
• Passive adversaries

– Privacy amplification
– Fuzzy extractors
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Privacy amplification
– Information reconciliation

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation

42

How to build a secure sketch?

w0 ≈ w0

44

How to build a secure sketch?

Alice Bob

c

w0 cSketch

c w0Recw1

Want:
Hmin(W0 | E) ≥ k implies Hmin(W0 | E, Sketch(W0)) ≥ k − l

w1

Focus for now: ≈ means Hamming distance
(w0 and w1 are strings over GF(q) that differ in ≤ t positions)

45

background: error-correcting codes
(n, µ, δ)q code GF(q)µ→ GF(q)n

• encodes µ-symbol messages into n-symbol codewords
• any two codewords differ in at least δ locations

– fewer than δ/2 errors ⇒ unique correct decoding

≥ δ

• Ignore the message space
• Think of decoding x as

finding nearest codeword
• Efficiency of decoding

and parameters n, µ, δ
depend on the code

46

background: error-correcting codes
(n, µ, δ)q code GF(q)µ→ GF(q)n

• encodes µ-symbol messages into n-symbol codewords
• any two codewords differ in at least δ locations

– fewer than δ/2 errors ⇒ unique correct decoding

≥ δ

x

47

building secure sketches
• Idea: what if w0 is a codeword in an ECC?
• Sketch = nothing; Rec = Decoding to find w0 from w1

• If w0 not a codeword, simply shift the ECC

w0

48

building secure sketches
• Idea: what if w0 is a codeword in an ECC?
• Sketch = nothing; Rec = Decoding to find w0 from w1

• If w0 not a codeword, simply shift the ECC

w0

49

building secure sketches
• Idea: what if w0 is a codeword in an ECC?
• Sketch = nothing; Rec = Decoding to find w0 from w1

• If w0 not a codeword, simply shift the ECC
• Sketch (w0) is the shift to

random codeword:
c = w0 – random codeword

w0

c

50

building secure sketches
• Idea: what if w0 is a codeword in an ECC?
• Sketch = nothing; Rec = Decoding to find w0 from w1

• If w0 not a codeword, simply shift the ECC
• Sketch (w0) is the shift to

random codeword:
c = w0 – random codeword

• Rec: dec(w1 – c) + c w0

c

–c
+c dec

w1

51

building secure sketches
• Idea: what if w0 is a codeword in an ECC?
• Sketch = nothing; Rec = Decoding to find w0 from w1

• If w0 not a codeword, simply shift the ECC
• Sketch (w0) is the shift to

random codeword:
c = w0 – random codeword

• Rec: dec(w1 – c) + c w0

c

–c
+c dec

w1

• Another view:
w0 is a one-time-pad
for a message that’s been
encoded with the error-correcting code, so w1 can decrypt

security analysis
(n, µ, δ)q code GF(q)µ→ GF(q)n

c = w0 – random codeword

Hmin(W0 | E, C) ≥ Hmin(W0 , C | E) – Hmax(C) =

= Hmin(W0 | E) + µ log q – n log q
= Hmin(W0 | E) – (n – µ) log q

= Hmin(W0 , C | E) – n log q

entropy loss l

optimization for linear codes
(n, µ, δ)q code GF(q)µ→ GF(q)n

c = w0 – random codeword
Suppose the codewords form a linear subspace of GF(q)n

Then there is a linear map
H: GF(q)n → GF(q)n – µ such that codewords = Ker H

c = uniform choice from {w0 – Ker H}
Observe that {w0 – Ker H} ={x: Hx = Hw0}

(l.h.s.⊆ r.h.s. by multiplication by H)
(l.h.s.⊇ r.h.s. because x = w0 – (w0 – x))

(called “parity check matrix”)

optimization for linear codes
(n, µ, δ)q code GF(q)µ→ GF(q)n

c = w0 – random codeword
Suppose the codewords form a linear subspace of GF(q)n

Then there is a linear map
H: GF(q)n → GF(q)n – µ such that codewords = Ker H

c = uniform choice from {w0 – Ker H}
Observe that {w0 – Ker H} ={x: Hx = Hw0}
Thus, Sketch(w0)can send Hw0

and Rec can sample x by solving linear equations
Hmin(W0 | E, H W0) ≥ Hmin(W0 | E) – Hmax(H W0)

=Hmin(W0 | E) – (n – µ) log q

(called “parity check matrix”)

(called ”syndrome of w0”)

55

syndrome or code-offset construction

• If ECC µ symbols → n symbols and has distance δ:
– Correct δ/2 errors; entropy loss l = n – µ symbols
– Higher error-tolerance means higher entropy loss

(trade error-tolerance for security)
– Can be viewed as redundant one-time pad
– Hard to improve without losing generality (e.g., working only

for some distributions of inputs, for example,
[Yu et al. CHES 2011, Fuller el al. Asiacrypt 2016, Woodage et al. Crypto 2017])

• Construction is old but keeps being rediscovered
– [Bennett-Brassard-Robert 1985] (from systematic codes),

[Bennet-Brassard-Crépeau-Skubiszewska 1991] (syndrome),
[Juels-Watenberg 2002] (code-offset)

Sketch(w) = Hw OR Sketch(w) = w – random codeword

56

1-message key agreement for passive adversaries

Alice Bob
w0 w1

Eve

w0

Ext

Sketch c
p=(c,seed)

r

ExtRec
w0

r

w1

57

1-message key agreement for passive adversaries

Alice Bob
w0 w1

Eve

w0 p

r r

w1

RepGen

58

1-message key agreement for passive adversaries

Alice Bob
w0 w1

w0 p

r r

w1

RepGen

- Fuzzy extractors exist for other distances besides Hamming,
including set difference, edit distance, point-set distance

- Some make specific assumptions on input distribution,
some are computational rather than info-theoretic

Outline
• Passive adversaries

– Privacy amplification
– Fuzzy extractors
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Privacy amplification
– Information reconciliation

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation

59

60

WHAT ABOUT ACTIVE ADVERSARIES?

Alice Bob
w0 w1

w0

r r

w1

RepGen p

61

WHAT ABOUT ACTIVE ADVERSARIES?

Alice Bob
w0 w1

w0 p

r r

w1

RepGen

Eve p'

62

WHAT ABOUT ACTIVE ADVERSARIES?

Alice Bob
w0 w1

w0 p

r r

w1

RepGen

Eve p'

Robustness: as long as w0 ≈ w1, if Eve(p) produces p' ≠ p

(with 1 – negligible probability over w0 & coins of Rep, Eve)
w1

⊥Repp'

63

Idea 0:
w

rExtseed

MAC

building robust fuzzy extractors

σ
p = (seed, σ)

64

Idea 0:
w

rExtseed

MAC

building robust fuzzy extractors

σ
p = (seed, σ)

Key???

65

Idea 0:
w

rExtseed

MAC

building robust fuzzy extractors

σ
p = (seed, σ)

Key???

r? But if adversary changes seed, then r will change

66

Idea 0:
w

rExtseed

MAC

building robust fuzzy extractors

σ
p = (seed, σ)

Key???

r? But if adversary changes seed, then r will change

Circularity!
seed extracts from w
w authenticates seed

w?

background: XOR-universal functions and MACs

• Define fa (•) with v-bit outputs to be XOR-universal if
(∀i ≠ j, y) Pra [fa(i) ⊕ fa(j) = y] = 1/2v

• Define MAC𝜅 (•) to be a δ-secure one-time message
authentication code (MAC) if Pr[Eve wins] is at most δ:
– Pick a random 𝜅 ; ask Eve for i and give Eve σi = MAC𝜅(i)
– Eve wins by outputting j ≠ i and σj = MAC𝜅(j)

• Claim: if fa (•) is XOR-universal then
MACa,b(i) = fa(i) ⊕ b is a 1/2v secure MAC

– Proof: guessing σj⇔ guessing fa(i) ⊕ fa(j), but b hides a

• Fact: fa (i) = ai is XOR-universal (b/c linear + uniform)

• Thus MACa,b(i)= ai+b is a 1/2v -secure MAC (|a|=|b|=|i|=v)

background: MACs with imperfect keys

• Pr[Eve wins] = E𝜅 chosen uniformly Pr[Eve wins for key = 𝜅] ≤ δ
• What if 𝜅 is not uniform but has min-entropy k?

68

E𝜅 chosen from some entropy-k distribution f (𝜅) = ∑ f (𝜅) Pr [𝜅]

≤ ∑ f (𝜅) 2 –k

= 2 |𝜅|–k E𝜅 chosen uniformly f (𝜅)

= 2 |𝜅|–k∑ f (𝜅) 2 –|𝜅|

(because f is nonnegative)

= 2 |𝜅|–k δ
• Security gets reduced by entropy deficiency!
• Thus MACa,b(i) = ai+b is (22v –k /2v = 2v – k)-secure

whenever Hmin(a,b) = k

Outline
• Passive adversaries

– Privacy amplification
– Fuzzy extractors
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Message authentication codes
– Privacy amplification
– Information reconciliation

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation

69

70

building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

i×

r = [ai]1
m

71

building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

i×

r = [ai]1
m

𝜀-uniform
if n/3 > m + g + 2loga1𝜀

72

building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

i×

r = [ai]1
m

𝜀-uniform
if n/3 > m + g + 2loga1𝜀

Extract if k > 2n/3

73

building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

× +
σ = bi + c

i×

r = [ai]1
m

𝜀-uniform
if n/3 > m + g + 2loga1𝜀

Extract if k > 2n/3

74

building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

× +
σ = bi + c

i×

r = [ai]1
m

δ-robust
if n/3 > g + loga1

δ

𝜀-uniform
if n/3 > m + g + 2loga1𝜀

Extract if k > 2n/3

75

building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

× +
σ = bi + c

i×

r = [ai]1
m i,

p

Extract if k > 2n/3

building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

× +
σ = bi + c

i×

r = [ai]1
m

Extract if k > 2n/3

a bw =
n – v v

i

[Dodis-Kanukurthi-
Katz-Reyzin-Smith ’12]

×

r = [ai]v+1
n–v

76

building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

× +
σ = bi + c

i×

r = [ai]1
m

Extract if k > 2n/3

a bw =
n – v v

i +
σ = [ai]1 + bv

[Dodis-Kanukurthi-
Katz-Reyzin-Smith ’12]

×

r = [ai]v+1
n–v

77

building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

× +
σ = bi + c

i×

r = [ai]1
m

Extract if k > 2n/3

a bw =
n – v v

i +
σ = [ai]1 + bv

[Dodis-Kanukurthi-
Katz-Reyzin-Smith ’12]

jointly 𝜀-uniform
if v > g + 2loga1𝜀

1
δ

δ-secure
if v > g+log

×

r = [ai]v+1
n–v

78

building robust fuzzy extractors

a bw =
n – v v

i +
σ = [ai]1 + bv

jointly 𝜀-uniform
if v > g + 2loga1𝜀

1
δ

δ-secure
if v > g+log

×

r = [ai]v+1
n–v

79

Analysis:
• Extraction: (R, σ)=ai + b is a universal hash family (few collisions)

(i is the key, w = (a, b) is the input)
• Robustness: σ = [ai]1 is XOR-universal

(w = (a, b) is the key, i is the input)
v

[ok by leftover hash lemma]

[ok by Maurer-Wolf]

building robust fuzzy extractors

a bw =
n – v v

i +
σ = [ai]1 + bv

×

r = [ai]v+1
n–v

80

Extract k – g

k>n/2 is necessary [Dodis-Wichs09]

?

– 2loga1
𝜀

building robust fuzzy extractors

a bw =
n – v v

i +
σ = [ai]1 + bv

×

r = [ai]v+1
n–v

81

Extract k – g

k>n/2 is necessary [Dodis-Wichs09]

w
rExti

MAC σ p = (i, σ)

key

key

?

– 2loga1
𝜀

Outline
• Passive adversaries

– Privacy amplification
– Fuzzy extractors
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Message authentication codes
– Privacy amplification
– Information reconciliation

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation

82

w0 ≈ w0

83

recall: secure sketch
Alice Bob

c

w0 cSketch

c w0Recw1

w1

84

building robust fuzzy extractors
w0

p = (i, c, σ)

rExti

MAC σ

key

key
Sketch c

How to MAC long messages? σ = [a2c + ai]1 + b
(recall w = a|b)

v

= MACw0(i, c)

85

building robust fuzzy extractors
w0

p = (i, c, σ)

rExti

MAC σ

key

key
Sketch c

How to MAC long messages? σ = [a2c + ai]1 + b
(recall w = a|b)

v

= MACw0(i, c)

rExti

Ver(σ) ok/⊥

key
w0

Rec

c

c
w1

key

How to Rep

86

building robust fuzzy extractors
w0

p = (i, c, σ)

rExti

MAC σ

key

key
Sketch c

How to MAC long messages? σ = [a2c + ai]1 + b
(recall w = a|b)

v

= MACw0(i, c)

rExti

Ver(σ) ok/⊥

key
w0

Rec

c

c
w1

^^

key

How to Rep

87

building robust fuzzy extractors
w0

p = (i, c, σ)

rExti

MAC σ

key

key
Sketch c

How to MAC long messages? σ = [a2c + ai]1 + b
(recall w = a|b)

v

= MACw0(i, c)

rExti

Ver(σ) ok/⊥

key
w0

Rec

c

c
w1

^^
^^

^^

key

How to Rep

88

building robust fuzzy extractors
w0

p = (i, c, σ)

rExti

MAC σ

key

key
Sketch c

How to MAC long messages? σ = [a2c + ai]1 + b
(recall w = a|b)

v

= MACw0(i, c)

rExti

Ver(σ) ok/⊥

key
w0

Rec

c

c
w1

^^
^^

^^

^^

key

How to Rep

89

building robust fuzzy extractors
w0

p = (i, c, σ)

rExti

MAC σ

key

key
Sketch c

How to MAC long messages? σ = [a2c + ai]1 + b
(recall w = a|b)

v

= MACw0(i, c)

rExti

Ver(σ) ok/⊥

key
w0

Rec

c

c
w1

^^
^^

^^

^^
^^key

How to Rep

90

building robust fuzzy extractors
w0

p = (i, c, σ)

rExti

MAC σ

key

key
Sketch c

How to MAC long messages? σ = [a2c + ai]1 + b
(recall w = a|b)

v

= MACw0(i, c)

rExti

Ver(σ) ok/⊥

key
w0

Rec

c

c
w1

^^
^^

^^

^^
^^key

How to Rep

^ ^
oops…

91

the MAC problem

σ = MACw(i, c) = [
(recall w = a|b)

i,
Ver(σ) ok/⊥w0Rec

c
c
w1^^

^^
^^

Authentication:

Verification:

Problem: circularity (MAC key depends on c, which
is being authenticated by the MAC)

Observe: knowing (w1⊕w0 and c ⊕ c)
gives knowledge of w0⊕w0 = u

Need: ∀u, given MACw(i, c), hard to forge MACw+u (i, c)^^^^

va2c + ai]1 + b

^^
^^

92

the MAC problem

σ = MACw(i, c) = [
(recall w = a|b)

i,
Ver(σ) ok/⊥w0Rec

c
c
w1^^

^^
^^

Authentication:

Verification:

Problem: circularity (MAC key depends on c, which
is being authenticated by the MAC)

a5+
Hard to forge for

any fixed u

Observe: knowing (w1⊕w0 and c ⊕ c)
gives knowledge of w0⊕w0 = u

Need: ∀u, given MACw(i, c), hard to forge MACw+u (i, c)^^^^

va2c + ai]1 + b

^^
^^

93

the MAC problem

σ = MACw(i, c) =
(recall w = a|b)

i,
Ver(σ) ok/⊥w0Rec

c
c
w1^^

^^
^^

Authentication

Verification:

Problem: circularity (MAC key depends on c, which
is being authenticated by the MAC)

Observe: knowing (w1⊕w0 and c ⊕ c)
gives knowledge of w0⊕w0 = u

Need: ∀u, given MACw(i, c), hard to forge MACw+u (i, c)^^^^

^^
^^

AMD-Code(a, c)+b
Generalization [Padro et al. ‘05] if i is public

Code that detects
additive change

94

the MAC problem

σ = MACw(i, c) =

i,
Ver(σ) ok/⊥w0Rec

c
c
w1^^

^^
^^

Authentication

Verification:

Problem: circularity (MAC key depends on c, which
is being authenticated by the MAC)

Observe: knowing (w1⊕w0 and c ⊕ c)
gives knowledge of w0⊕w0 = u

Need: ∀u, given MACw(i, c), hard to forge MACw+u (i, c)^^^^

^^
^^

RandomOracle(w, i, c)
Alternative [Boyenet al. ‘05]

Advantage: works even when Hmin(w) < n/2

95

building robust fuzzy extractors
w0

p = (i, c, σ)

rExti

MAC σ

key

key
Sketch c = MACw0(i, c)

Result: extract k – l– g

Problem: c reveals l bits about w⇒
k decreases, g increases ⇒

lose 2l
Can't avoid decreasing k, but can avoid increasing g
c = Sketch(w0) is linear. Let d = Sketch⊥(w0).
|d|=|w| – l, but d has entropy k – l. Use d instead of w0.

Recall: without errors, extract k – g – 2loga1
𝜀

– 2loga1
𝜀

96

Summary: robust fuzzy extractors

Alice Bob
w0 w1

w0
p

r r

w1

RepGen Eve

p'

Robustness: as long as w0 ≈ w1, if Eve(p

(with 1 – negligible probability over w0 & coins of Rep, Eve)
w1

⊥Repp'
) produces p' ≠ p

97

Summary: robust fuzzy extractors

Alice Bob
w0 w1

w0
p

r r

w1

RepGen Eve

p'

Robustness: as long as w0 ≈ w1, if Eve(p

(with 1 – negligible probability over w0 & coins of Rep, Eve)
w1

⊥Repp'

r ⊕“hello”

) produces p' ≠ p

98

Summary: robust fuzzy extractors

Alice Bob
w0 w1

w0
p

r r

w1

RepGen Eve

p'

Robustness: as long as w0 ≈ w1, if Eve(p

(with 1 – negligible probability over w0 & coins of Rep, Eve)
w1

⊥Repp'

r ⊕“hello”

) produces p' ≠ p,r
Post-Application

99

Post-application robustness

Alice Bob
w0 w1

w0
p

r r

w1

RepGen Eve

p'

Robustness:

r ⊕“hello”

Post-Application

[DKKRS12]: a similar construction extracts about (k–l–g)/2
(half as much as pre-application)

Outline
• Passive adversaries

– Privacy amplification
– Fuzzy extractors
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Message authentication codes
– Privacy amplification only when Hmin(w) > |w|/2
– Information reconciliation
– Two security notions (pre-application vs. post-application)

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation

100

w w
Alice Bob

Entropy Deficiency (”gap”)

Privacy Amplification

w w
Alice Bob

Protocol AUTHAuthenticate
seed

Authentically
receive seed

Entropy Deficiency (”gap”)

Privacy Amplification

w w
Alice Bob

Protocol AUTHAuthenticate
seed

Authentically
receive seed

Entropy Deficiency (”gap”)Entropy Loss

Privacy Amplification

w w
Alice Bob

Protocol AUTH

seed
r looks uniform

given seed

w Ext r

Authenticate
seed

Authentically
receive seed

seed
r looks uniform

given seed

w Ext r

Entropy Deficiency (”gap”)Entropy Loss

Privacy Amplification

w w
Alice Bob

Protocol AUTH

seed
r looks uniform

given seed

w Ext r

Authenticate
seed

Authentically
receive seed

seed
r looks uniform

given seed

w Ext r

Entropy Deficiency (”gap”)Entropy Loss

Entropy of r
Goal: Increase length of r
by minimizing entropy loss

Privacy Amplification

[Renner-Wolf ’03]

[RW03] Auth: Sub-Protocol Liveness Test

Alice Bob
ww

Want: If Alice accepts response, then Bob responded to a challenge
and is, therefore, still “alive” in the protocol

Idea: “Response” should be such that Eve cannot compute it herself

challenge x
response y

[RW03] Auth: Sub-Protocol Liveness Test

Alice Bob
ww

Want: If Alice accepts response, then Bob responded to a challenge
and is, therefore, still “alive” in the protocol

Idea: “Response” should be such that Eve cannot compute it herself

challenge x
response y

(seed) x
w Ext y= Extx(w) Accept if Extx(w) is correct

[RW03] Auth: Sub-Protocol Liveness Test

Alice Bob
ww challenge x

response y
(seed) x

w Ext y= Extx(w) Accept if Extx(w) is correct

w Extx′ y′
x′x

(seed) x
w Ext y y′y

Note: Active attack doesn’t help Eve defeat liveness test
Eve

[RW03] Auth: Sub-protocol ½ bit authentication

Alice Bob
ww

Guarantees: if Bob receives bit b = 1,
then Alice sent b = 1

Generate random seed x

(1, y) or
(0,⊥)

y = Extx(w) If b = 1, verify y = Extx(w)

x

bit-auth(b)

Eve

[RW03] Auth: From ½ bit to string

Alice Bob
ww

Guarantees: if Bob receives bit b = 1,
then Alice sent b = 1

Generate random seed x

(1, y) or
(0,⊥)

y = Extx(w) If b = 1, verify y = Extx(w)

x

bit-auth(b)
• Problem: Eve can’t change 0 to 1, but can change 1 to 0
• Solution: make the string balanced (#0s = #1s)

Eve

Eve

Alice Bob
ww

Bit-auth(b1)

• Problem:

Alice Bob

Bit-auth(b0)

wants to send 01

Eve can delete any bit (and insert a 0 bit)

• Solution: add a liveness test after each bit to check that Bob got it

Bit-auth(0)

Bit-auth(0)

Bit-auth(1)

Eve

but Bob gets 10

[RW03] Auth: From ½ bit to string

Alice BobEve

Liveness Test

Bit-auth(b0)

Liveness Test

Bit-auth(b1)

…
For 2–δ-security, each Ext output needs ≈δ bits. Loss ≈ 1.5 |seed| δ

[RW03] Auth: From ½ bit to string

w w
Alice Bob

Authenticate
seed

Authentically
receive seed

Privacy Amplification

• Does r look uniform given seed ?
• Need: seed independent of w
• Problem: Active Eve can play with AUTH to learn something

correlated to seed during AUTH
• Solution: If |r| > 2|Auth|, then r is >half entropic
• Use r as MAC key to authenticate the actual (fresh!) seed’

Eve
(controls Auth)

seed
w Ext r seed

w Ext r

w w
Alice Bob

seed
w Ext r

Authenticate
seed

Authentically
receive seed

seed
w Ext r

Privacy Amplification

• Total entropy loss (after some improvements from
[Kanukurthi-Reyzin 2009]): about δ2/2

Eve
(controls Auth)

• Theoretical improvement to O(δ) in
[Chandran-Kanukurthi-Ostrovsky-Reyzin 2014]
(but for practical values of δ, constants make it worse than δ2/2)

Outline
• Passive adversaries

– Privacy amplification
– Fuzzy extractors
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Message authentication codes
– Privacy amplification only when Hmin(w) > |w|/2
– Information reconciliation
– Two security notions (pre-application vs. post-application)

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation

115

w0 w1

Alice Bob

recover w0

Eve

c =Sketch(w0)

Information Reconciliation

w0 w1

Alice Bob

Authenticate
message

Authentically
receive messageProtocol AUTH

recover w0

Eve

c =Sketch(w0)

Information Reconciliation

To verify, Bob needs to recover w0 from w1
so Alice needs to send c,

w0 w1

Alice Bob

Authenticate
message

Authentically
receive messageProtocol AUTH

To verify, Bob needs to recover w0 from w1
so Alice needs to send c,

c'c recover w0???

Eve

c =Sketch(w0)

Information Reconciliation

w0 w1

Alice Bob

Authenticate
message

Authentically
receive messageProtocol AUTH

To verify, Bob needs to recover w0 from w1
so Alice needs to send c,

c'c recover w0???

Eve

c =Sketch(w0)

Information Reconciliation

so need authentication protocol!

Attempt 1: Error-Tolerant Authentication

w0 w1 ≈ w0
c

w* = Rec(w1, c)

Authenticate c
using w as key

Authentically receive
c using w* as key

Alice Bob

Protocol AUTH

c =Sketch(w0) ^^

• Alice runs Auth using w0 as key and Bob runs Auth using w* key

• Auth Guarantees: For Eve to change even a single bit of the
message authenticated, she needs to respond to an
extractor query. (Either Extx(w) or Extx(w*)).

• If Bob runs protocol Auth on w* (of high entropy, which Rec
provides), Eve cannot change the message authenticated.

w0 w1 ≈ w0
c

w* = Rec(w1, c)

Authenticate c
using w as key

Authentically receive
c using w* as key

Alice Bob

Protocol AUTH

c =Sketch(w0) ^^

Problem: Even if Eve’s errors constitute a small fraction of w,
Auth will lose more entropy than length of w

Attempt 1: Error-Tolerant Authentication

Solution [Kanukurthi-Reyzin ‘09]: Reduce entropy loss using a MAC

• MAC needs a symmetric key 𝜅

• Where does 𝜅 come from? Generate random 𝜅 and authenticate it

w0 w1 ≈ w0

Alice Bob

Attempt 2: Error-Tolerant Authentication

Solution [Kanukurthi-Reyzin ‘09]: Reduce entropy loss using a MAC

• MAC needs a symmetric key 𝜅

• Where does 𝜅 come from? Generate random 𝜅 and authenticate it

Protocol AUTH(𝜅)

c, MAC𝜅(c)

w0 w1 ≈ w0

Alice Bob

Attempt 2: Error-Tolerant Authentication

Solution [Kanukurthi-Reyzin ‘09]: Reduce entropy loss using a MAC

• MAC needs a symmetric key 𝜅

• Where does 𝜅 come from? Generate random 𝜅 and authenticate it

Protocol AUTH(𝜅)

c, MAC𝜅(c)

Auth reveals 𝜅 !

w0 w1 ≈ w0

Alice Bob

Attempt 2: Error-Tolerant Authentication

Solution [Kanukurthi-Reyzin ‘09]: Reduce entropy loss using a MAC

• MAC needs a symmetric key 𝜅

• Where does 𝜅 come from? Generate random 𝜅 and authenticate it

Protocol AUTH(𝜅)

c, MAC𝜅(c)

Auth reveals 𝜅 !

Liveness Test
w0 w1 ≈ w0

Alice Bob

Attempt 2: Error-Tolerant Authentication

Solution [Kanukurthi-Reyzin ‘09]: Reduce entropy loss using a MAC

• MAC needs a symmetric key 𝜅

• Where does 𝜅 come from? Generate random 𝜅 and authenticate it

Protocol AUTH(𝜅)

c, MAC𝜅(c)

Auth reveals 𝜅 !

By the time Eve learns 𝜅, it is too late for Eve to come up with forgery!

Liveness Test
w0 w1 ≈ w0

Alice Bob

Attempt 2: Error-Tolerant Authentication

Error-Tolerant
Authentication

seed

Use r as a MAC key to send the real extractor seed

w0 Ext r

Authenticate c
w0 = Rec(w1 , c)

seed
w0 Ext r

Protocol AuthSend seed Receive seed

information-reconciliation + privacy amplification

w0 w1 ≈ w0

Alice Bob

c =Sketch(w0)

Error-Tolerant
Authentication

seed

Use r as a MAC key to send the real extractor seed

w0 Ext r

Authenticate c
w0 = Rec(w1 , c)

seed
w0 Ext r

information-reconciliation + privacy amplification

w0 w1 ≈ w0

Alice Bob

c =Sketch(w0)

and seed

Outline
• Passive adversaries

– Privacy amplification
– Fuzzy extractors
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Message authentication codes
– Privacy amplification only when Hmin(w) > |w|/2
– Information reconciliation
– Two security notions (pre-application vs. post-application)

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation

129

