Information-Theoretic

Key Agreement

from

Close Secrets

Leonid Reyzin

BOSTON
 UNIVERSITY

January 5, 2018
IISc

Close Secrets

Close Secrets

w_{0}

Key Agreement

from

Close Secrets

Information-Theoretic

Key Agreement
from

Close Secrets

How do we get here?

- Alice and Bob have a partially secret and partially noisy channel between them [Wyner 1975]
- Alice and Bob are running quantum key distribution
- Alice and Bob listen to a noisy beacon
- Alice and Bob are two cell phones shaken together
- Alice knows Bob's iris scan

basic paradigm

basic paradigm

basic paradigm: passive adversary

basic paradigm: passive adversary

basic paradigm: passive adversary

Alice		Bob
w_{0}	Conversationabout	w_{1}
	their differences	
w	also known as	w
	formation reconciliation	

basic paradigm: passive adversary

Bob
w
Conversationabout \longrightarrow
removing Eve's information also known as
privacy amplification
some information
Eve

privacy amplification

privacy amplification

Goal: from a nonuniform secret w agree on a uniform secret r

Solution: use a strong extractor

privacy amplification

Goal: from a nonuniform secret w agree on a uniform secret r

Solution: use a strong extractor

privacy amplification

If average min-entropy $H_{\min }(W \mid E)$ is sufficiently high, and Ext is an average-case strong extractor, this works!

Using universal hashing:

If $H_{\min }(W \mid E) \geq k$, we get $(R$, Seed, $E) \approx_{\varepsilon}\left(U_{m}\right.$, Seed, $\left.E\right)$ for $m=k-2 \log (1 / \mathcal{E})$

privacy amplification

- Early work for specific distributions of w and classes of Eve's knowledge, motivated by quantum key agreement
- [Ozarow-Wyner 84]: nonconstructive solution
- [Bennett-Brassard-Robert85]: universal hashing for any Eve’s knowledge
- Early analysis used Shannon entropy for W as an input assumption and low mutual information between E and R as an output guarantee. Problem: Shannon entropy and mutual information are not great for security
- [Maurer 93, Bennett-Brassard-Crépeau-Maurer 95]: modern security notions

note the two views of extractors

The equivalence of these two views wasn't obvious at first

basic paradigm: passive adversary

Eve

Outline

- Passive adversaries
- Privacy amplification
- Information reconciliation
- Active adversaries, w has a lot of entropy
- Privacy amplification
- Information reconciliation
- Active adversaries, w has little entropy
- Privacy amplification
- Information reconciliation

basic paradigm: passive adversary

seed to a strong extractor

r r

Eve

basic paradigm: passive adversary

Alice		Bob
w_{0}	Conversation about	w_{1}
	their differences	
w	also known as	w
	formation reconciliation	

seed to a strong extractor

Eve

basic paradigm: passive adversary

information reconciliation

| Alice | focus today: single-message, | Bob |
| :---: | :---: | :---: | :---: |
| w_{0} | starting with Bennett-Brassard-Robert 85
 (interactive protocols more rare
 e.g., Brassard-Salvail 93) | |

information reconciliation

Aside: chain rule for $H_{\min }$

Def: $H_{\text {max }}(E)=\log |\{e \mid \operatorname{Pr}[E=e]>0\}=\log | \operatorname{support}(E) \mid$
Lemma: $H_{\text {min }}(X \mid E) \geq H_{\text {min }}(X, E)-H_{\max }(E)$
Proof: Reduction. Suppose $\operatorname{Pr}_{(x, e)}[A(e) \rightarrow x]=p$.
Let $B=$ pick a uniform g support (E); output $(A(g), g)$

$$
\begin{aligned}
\operatorname{Pr}_{(x, e)}[B \rightarrow(x, e)] & \geq \operatorname{Pr}_{(x, e, g)}[e=g \text { and } A(g) \rightarrow x] \\
& =\operatorname{Pr}_{(x, e g)}[e=g \text { and } A(e) \rightarrow x] \\
& =\operatorname{Pr}_{(x, e, g)}[e=g] \operatorname{Pr}_{(x, e, g)}[A(e) \rightarrow x] \\
& =p / \mid \text { support(} E) \mid
\end{aligned}
$$

Lemma: $H_{\min }\left(X \mid E_{1}, E_{2}\right) \geq H_{\min }\left(X, E_{2} \mid E_{1}\right)-H_{\max }\left(E_{2}\right)$

definition: secure sketch is a pair (Sketch, Rec)

Bob
w_{1}

definition: secure sketch is a pair (Sketch, Rec)

definition: secure sketch is a pair (Sketch, Rec)

definition: secure sketch is a pair (Sketch, Rec)

Def [Dodis-Ostrovsky-R-Smith 04]:
entropy loss l
(Sketch, Rec) is a $(k, k-l)$-secure sketch if
$H_{\text {min }}\left(W_{0} \mid E\right) \geq k$ implies $H_{\text {min }}\left(W_{0} \mid E\right.$, Sketch $\left.\left(W_{0}\right)\right) \geq k-l$
information-reconciliation + privacy amplification

information-reconciliation + privacy amplification

$H_{\text {min }}\left(W_{0} \mid E\right) \geq k \Rightarrow H_{\text {min }}\left(W_{0} \mid E\right.$, Sketch $\left.\left(W_{0}\right)\right) \geq k-l$
$(k-l, \varepsilon)-$ Ext $\Rightarrow(R, C$, Seed, $E) \approx_{\varepsilon}\left(U_{m}, C\right.$, Seed, $\left.E\right)$
Thus can get $m=k-l-2 \log (1 / \varepsilon)$
information-reconciliation + privacy amplification

All in one message!
Let's take another view of what we've built...
information-reconciliation + privacy amplification

Fuzzy Extractors

Single message information reconciliation + privacy amplification = fuzzy extractor [Dodis-Ostrovsky-R-Smith 04]

Definition of fuzzy extractors:

Functionality requirement: if w_{0} and w_{1} are close, then Rep gets r Security requirement: if $H_{\min }\left(W_{0} \mid E\right) \geq k$ then $(R, P, E) \approx_{\varepsilon}\left(U_{m}, P, E\right)$ includes "meaningful entropy" and measurement noise - no Gen

Fuzzy Extractors

Single message information reconciliation + privacy amplification = fuzzy extractor [Dodis-Ostrovsky-R-Smith 04]

Advantages of this view:
Can think of other constructions (not sketch+extract, computational)
[Canetti-Fuller-Paneth-R.-Smith Eurocrypt'15]
Single message p can be sent into the future!

Advantages of single-message protocols

Physically Unclonable Functions (PUFs)

High-entropy sources are often noisy

Biometric Data

- Initial reading $w_{0} \neq$ later reading reading w_{1}, but is close

Fuzzy Extractor can derive a stable, cryptographically strong output

- At initial enrollment of w_{0}, use Gen, store p
- All subsequent readings $w_{1}, w_{2} \ldots$ map to same output using Rep

Use r for any crypto scheme-e.g., a key to encrypt your sensitive data

- E.g., self-enforcing, rather than server-enforced, authorization

Outline

- Passive adversaries
- Privacy amplification
- Fuzzy extractors
- Information reconciliation
- Active adversaries, w has a lot of entropy
- Privacy amplification
- Information reconciliation
- Active adversaries, w has little entropy
- Privacy amplification
- Information reconciliation

How to build a secure sketch?

How to build a secure sketch?

\qquad

$$
\frac{\mathrm{Bob}}{w_{1} \approx w_{0}}
$$

C

Want:
$H_{\text {min }}\left(W_{0} \mid E\right) \geq k$ implies $H_{\text {min }}\left(W_{0} \mid E\right.$, Sketch $\left.\left(W_{0}\right)\right) \geq k-l$
Focus for now: \approx means Hamming distance
(w_{0} and w_{1} are strings over $\mathrm{GF}(q)$ that differ in $\leq t$ positions)

background: error-correcting codes

$(n, \mu, \delta)_{q} \operatorname{code~} \mathrm{GF}(q)^{\mu} \rightarrow \mathrm{GF}(q)^{n}$

- encodes μ-symbol messages into n-symbol codewords
- any two codewords differ in at least δ locations
- fewer than $\delta / 2$ errors \Rightarrow unique correct decoding

background: error-correcting codes

$(n, \mu, \delta)_{q} \operatorname{code} \operatorname{GF}(q)^{\mu} \rightarrow \mathrm{GF}(q)^{n}$

- encodes μ-symbol messages into n-symbol codewords
- any two codewords differ in at least δ locations
- fewer than $\delta / 2$ errors \Rightarrow unique correct decoding
- Ignore the message space
- Think of decoding x as finding nearest codeword
- Efficiency of decoding and parameters n, μ, δ depend on the code

building secure sketches

- Idea: what if w_{0} is a codeword in an ECC?
- Sketch = nothing; Rec = Decoding to find w_{0} from w_{1}
- If w_{0} not a codeword, simply shift the ECC

building secure sketches

- Idea: what if w_{0} is a codeword in an ECC?
- Sketch = nothing; Rec = Decoding to find w_{0} from w_{1}
- If w_{0} not a codeword, simply shift the ECC

building secure sketches

- Idea: what if w_{0} is a codeword in an ECC?
- Sketch = nothing; Rec = Decoding to find w_{0} from w_{1}
- If w_{0} not a codeword, simply shift the ECC
- Sketch $\left(w_{0}\right)$ is the shift to random codeword:
$c=w_{0}-$ random codeword

building secure sketches

- Idea: what if w_{0} is a codeword in an ECC?
- Sketch = nothing; Rec = Decoding to find w_{0} from w_{1}
- If w_{0} not a codeword, simply shift the ECC
- Sketch $\left(w_{0}\right)$ is the shift to random codeword:
$c=w_{0}$ - random codeword
- Rec: $\operatorname{dec}\left(w_{1}-c\right)+c$

building secure sketches

- Idea: what if w_{0} is a codeword in an ECC?
- Sketch = nothing; Rec = Decoding to find w_{0} from w_{1}
- If w_{0} not a codeword, simply shift the ECC
- Sketch $\left(w_{0}\right)$ is the shift to random codeword:
$c=w_{0}-$ random codeword
- Rec: $\operatorname{dec}\left(w_{1}-c\right)+c$
- Another view:
w_{0} is a one-time-pad
for a message that's been encoded with the error-correcting code, so w_{1} can decrypt

security analysis

$(n, \mu, \delta)_{q}$ code $\mathrm{GF}(q)^{\mu} \rightarrow \mathrm{GF}(q)^{n}$
$c=w_{0}-$ random codeword

$$
\begin{aligned}
H_{\min }\left(W_{0} \mid E, C\right) & \geq H_{\min }\left(W_{0}, C \mid E\right)-H_{\max }(C)= \\
& =H_{\min }\left(W_{0}, C \mid E\right)-n \log q \\
& =H_{\min }\left(W_{0} \mid E\right)+\mu \log q-n \log q \\
& =H_{\min }\left(W_{0} \mid E\right)-(n-\mu) \log q
\end{aligned}
$$

optimization for linear codes

$(n, \mu, \delta)_{q}$ code $\mathrm{GF}(q)^{\mu} \rightarrow \mathrm{GF}(q)^{n}$
$c=w_{0}$ - random codeword
Suppose the codewords form a linear subspace of GF $(q)^{n}$
Then there is a linear map (called "parity check matrix") $H: \mathrm{GF}(q)^{n} \rightarrow \mathrm{GF}(q)^{n-\mu}$ such that codewords $=$ Ker H
$c=$ uniform choice from $\left\{w_{0}-\operatorname{Ker} H\right\}$
Observe that $\left\{w_{0}-\operatorname{Ker} H\right\}=\left\{x: H x=H w_{0}\right\}$
(I.h.s. \subseteq r.h.s. by multiplication by H)
(I.h.s. \supseteq r.h.s. because $x=w_{0}-\left(w_{0}-x\right)$)

optimization for linear codes

$(n, \mu, \delta)_{q}$ code $\mathrm{GF}(q)^{\mu} \rightarrow \mathrm{GF}(q)^{n}$
$c=w_{0}$ - random codeword
Suppose the codewords form a linear subspace of GF $(q)^{n}$
Then there is a linear map (called "parity check matrix") $H: \mathrm{GF}(q)^{n} \rightarrow \mathrm{GF}(q)^{n-\mu}$ such that codewords $=$ Ker H $c=$ uniform choice from $\left\{w_{0}-\operatorname{Ker} H\right\}$
Observe that $\left\{w_{0}-\operatorname{Ker} H\right\}=\left\{x: H x=H w_{0}\right\}$
Thus, Sketch (w_{0}) can send $H w_{0}$ (called "syndrome of $w_{0}{ }^{\text {" }}$) and Rec can sample x by solving linear equations

$$
\begin{array}{r}
H_{\min }\left(W_{0} \mid E, H W_{0}\right) \geq H_{\min }\left(W_{0} \mid E\right)-H_{\max }\left(H W_{0}\right) \\
=H_{\min }\left(W_{0} \mid E\right)-(n-\mu) \log q
\end{array}
$$

syndrome or code-offset construction

$\operatorname{Sketch}(w)=H w$ OR Sketch $(w)=w$ - random codeword

- If ECC μ symbols $\rightarrow n$ symbols and has distance δ :
- Correct $\delta / 2$ errors; entropy loss $l=n-\mu$ symbols
- Higher error-tolerance means higher entropy loss (trade error-tolerance for security)
- Can be viewed as redundant one-time pad
- Hard to improve without losing generality (e.g., working only for some distributions of inputs, for example, [Yu et al. CHES 2011, Fuller el al. Asiacrypt 2016, Woodage et al. Crypto 2017])
- Construction is old but keeps being rediscovered
- [Bennett-Brassard-Robert 1985] (from systematic codes), [Bennet-Brassard-Crépeau-Skubiszewska 1991] (syndrome), [Juels-Watenberg 2002] (code-offset)

1-message key agreement for passive adversaries

Alice
w_{0}

Bob
w_{1}

Eve

1-message key agreement for passive adversaries

Alice
w_{0}

Bob
w_{1}

1-message key agreement for passive adversaries

- Fuzzy extractors exist for other distances besides Hamming, including set difference, edit distance, point-set distance
- Some make specific assumptions on input distribution, some are computational rather than info-theoretic

Outline

- Passive adversaries
- Privacy amplification
- Fuzzy extractors
- Information reconciliation
- Active adversaries, w has a lot of entropy
- Privacy amplification
- Information reconciliation
- Active adversaries, w has little entropy
- Privacy amplification
- Information reconciliation

WHAT ABOUT ACTIVE ADVERSARIES?

Alice
w_{0}

Bob
w_{1}

WHAT ABOUT ACTIVE ADVERSARIES?

Alice
w_{0}

Bob
w_{1}

WHAT ABOUT ACTIVE ADVERSARIES?

Robustness: as long as $w_{0} \approx w_{1}$, if $\operatorname{Eve}(p)$ produces $p^{\prime} \neq p$

(with 1 - negligible probability over $w_{0} \&$ coins of Rep, Eve)

building robust extractors

Idea 0 :

building robust extractors

Idea 0 :

building robust extractors

Idea 0 :

$$
p=(\text { seed }, \sigma)
$$

r ? But if adversary changes seed, then r will change

building robust extractors

Idea 0 :

$$
p=(\text { seed }, \sigma)
$$

r ? But if adversary changes seed, then r will change w ?

Circularity!
seed extracts from w
w authenticates seed

- Define $f_{a}(\cdot)$ with v-bit outputs to be XOR-universal if

$$
(\forall i \neq j, y) \operatorname{Pr}_{a}\left[f_{a}(i) \oplus f_{a}(j)=y\right]=1 / 2^{v}
$$

- Fact: $f_{a}(i)=a i$ is XOR-universal (b/c linear + uniform)
- Define $\mathrm{MAC}_{\kappa}(\cdot)$ to be a δ-secure one-time message authentication code (MAC) if $\operatorname{Pr}[E v e ~ w i n s] ~ i s ~ a t ~ m o s t ~ \delta: ~$
- Pick a random κ; ask Eve for i and give Eve $\sigma_{i}=\mathrm{MAC}_{k}(i)$
- Eve wins by outputting $j \neq i$ and $\sigma_{j}=\operatorname{MAC}_{k}(j)$
- Claim: if $f_{a}(\cdot)$ is XOR-universal then

$$
\operatorname{MAC}_{a, b}(i)=f_{a}(i) \oplus b \text { is a } 1 / 2^{v} \text { secure MAC }
$$

- Proof: guessing $\sigma_{j} \Leftrightarrow$ guessing $f_{a}(i) \oplus f_{a}(j)$, but b hides a
- Thus $\mathrm{MAC}_{a, b}(i)=a i+b$ is a $1 / 2^{v}$-secure MAC $(|a|=|b|=|i|=v)$

background: MACs with imperfect keys

- $\operatorname{Pr}[$ Eve wins $]=\mathrm{E}_{\kappa}$ chosen uniformly $\left.\operatorname{Pr[Eve~wins~for~key~}=\kappa\right] \leq \delta$
- What if κ is not uniform but has min-entropy k ?
E_{κ} chosen from some entropy-kdistribution $f(\kappa)=\sum f(\kappa) \operatorname{Pr}[\kappa]$
(because f is nonnegative) $\leq \sum f(\kappa) 2^{-k}$

$$
\begin{aligned}
& =2^{||k|-k} \sum f(\kappa) 2^{-|\kappa|} \\
& =2^{|k|-k} \mathrm{E}_{\kappa \text { chosen uniform|y }} f(\kappa) \\
& =2^{||\kappa|-k} \delta
\end{aligned}
$$

- Security gets reduced by entropy deficiency!
- Thus $\mathrm{MAC}_{a, b}(i)=a i+b$ is $\left(2^{2 v-k} / 2^{v}=2^{v-k}\right)$-secure whenever $H_{\text {min }}(a, b)=k$

Outline

- Passive adversaries
- Privacy amplification
- Fuzzy extractors
- Information reconciliation
- Active adversaries, w has a lot of entropy
- Message authentication codes
- Privacy amplification
- Information reconciliation
- Active adversaries, w has little entropy
- Privacy amplification
- Information reconciliation

building robust extractors

Notation: $|w|=n, H_{\min }(w)=k$, "entropy deficiency" $n-k=g$
[Maurer-Wolf97]

building robust extractors

Notation: $|w|=n, H_{\min }(w)=k$, "entropy deficiency" $n-k=g$
[Maurer-Wolf97]

building robust extractors

Notation: $|w|=n, H_{\min }(w)=k$, "entropy deficiency" $n-k=g$
[Maurer-Wolf97]
Extract if $k>2 n / 3$

building robust extractors

Notation: $|w|=n, H_{\min }(w)=k$, "entropy deficiency" $n-k=g$
[Maurer-Wolf97]
Extract if $k>2 n / 3$

if $n / 3>m+g+2 \log \frac{1}{\varepsilon}$

building robust extractors

Notation: $|w|=n, H_{\min }(w)=k$, "entropy deficiency" $n-k=g$
[Maurer-Wolf97]
Extract if $k>2 n / 3$

building robust extractors

Notation: $|w|=n, H_{\min }(w)=k$, "entropy deficiency" $n-k=g$
[Maurer-Wolf97]
Extract if $k>2 n / 3$

building robust extractors

Notation: $|w|=n, H_{\min }(w)=k$, "entropy deficiency" $n-k=g$
[Maurer-Wolf97]
Extract if $k>2 n / 3$

building robust extractors

Notation: $|w|=n, H_{\min }(w)=k$, "entropy deficiency" $n-k=g$
[Maurer-Wolf97]
Extract if $k>2 n / 3$

building robust extractors

Notation: $|w|=n, H_{\min }(w)=k$, "entropy deficiency" $n-k=g$
[Maurer-Wolf97]
Extract if $k>2 n / 3$

building robust extractors

Analysis:

- Extraction: $(R, \sigma)=a i+b$ is a universal hash family (few collisions) (i is the key, $w=(a, b)$ is the input) [ok by leftover hash lemma]
- Robustness: $\sigma=[a i]_{1}$ is XOR-universal ($w=(a, b)$ is the key, i is the input) [ok by Maurer-Wolf]

building robust extractors ?

$k>n / 2$ is necessary [Dodis-Wichs09]

building robust extractors ?

$k>n / 2$ is necessary [Dodis-Wichs09]

$$
D=(i, \sigma)
$$

Outline

- Passive adversaries
- Privacy amplification
- Fuzzy extractors
- Information reconciliation
- Active adversaries, w has a lot of entropy
- Message authentication codes
- Privacy amplification
- Information reconciliation
- Active adversaries, w has little entropy
- Privacy amplification
- Information reconciliation

recall: secure sketch

building robust fuzzy extractors

How to MAC long messages? $\sigma=\left[a^{2} c+a i\right]_{1}^{v}+b$
(recall $w=a \mid b$)

building robust fuzzy extractors

How to MAC long messages? $\sigma=\left[a^{2} c+a i\right]_{1}^{v}+b$
How to Rep
(recall $w=a \mid b$)

building robust fuzzy extractors

How to MAC long messages? $\sigma=\left[a^{2} c+a i\right]_{1}^{v}+b$
How to Rep
(recall $w=a \mid b$)

building robust fuzzy extractors

How to MAC long messages? $\sigma=\left[a^{2} c+a i\right]_{1}^{v}+b$
How to Rep
(recall $w=a \mid b$)

building robust fuzzy extractors

How to MAC long messages? $\sigma=\left[a^{2} c+a i\right]_{1}^{v}+b$
How to Rep
(recall $w=a \mid b$)

building robust fuzzy extractors

How to MAC long messages? $\sigma=\left[a^{2} c+a i\right]_{1}^{v}+b$
How to Rep
(recall $w=a \mid b$)

building robust fuzzy extractors

How to MAC long messages? $\sigma=\left[a^{2} c+a i\right]_{1}^{v}+b$
How to Rep
(recall $w=a \mid b$)

the MAC problem

Authentication:

$$
\begin{aligned}
& \sigma=\operatorname{MAC}_{w}(i, c)=\left[a^{2} c+a i\right]_{1}^{v}+b \\
& (\text { recall } w=a \mid b)
\end{aligned}
$$

Verification:

$$
\xrightarrow{\substack{\frac{w}{\Lambda \wedge}}} \operatorname{Rec} \xrightarrow{\stackrel{\wedge \wedge}{w_{0}} \xrightarrow{i,{ }_{c}^{\wedge}} \operatorname{Ver}(\sigma)} \mathrm{ok} / \perp
$$

Problem: circularity (MAC key depends on c, which is being authenticated by the MAC)
Observe: knowing $\left(w_{1} \oplus w_{0}\right.$ and $\left.c \oplus{ }^{\wedge} \mathcal{C}\right)$
gives knowledge of $w_{0} \oplus \hat{w}_{0}=u$
Need: $\forall u$, given $\operatorname{MAC}_{w}(i, c)$, hard to forge $\operatorname{MAC}_{w+u}(\hat{i}, c)$

the MAC problem

Authentication:

$$
\begin{aligned}
& \sigma=\operatorname{MAC}_{w}(i, c)=\left[a^{5}+a^{2} c+v i\right]_{1}+b \\
& (\text { recall } w=a \mid b)
\end{aligned}
$$

Verification:

$$
\xrightarrow{\substack{\frac{w}{c \mid}}} \operatorname{Rec} \xrightarrow{\stackrel{\wedge}{w_{0}} \xrightarrow{i,{ }_{c}^{\wedge}} \operatorname{Ver}(\sigma)} \longrightarrow \mathrm{ok} / \perp
$$

Problem: circularity (MAC key depends on c, which is being authenticated by the MAC)
Observe: knowing ($w_{1} \oplus w_{0}$ and $c \oplus{ }^{\wedge}{ }_{c}$)
gives knowledge of $w_{0} \oplus \hat{w_{0}}=u$
Need: $\forall u$, given $\operatorname{MAC}_{w}(i, c)$, hard to forge $\left.\operatorname{MAC}_{w+u}(\hat{i}, c) c\right)$

the MAC problem

Authentication Generalization [Padro et al. '05] if i is public

$$
\sigma=\operatorname{MAC}_{w}(c)=\operatorname{AMD}-\operatorname{Code}(a, c)+b
$$

$($ recall $w=a \mid b)$
Verification:

$$
\xrightarrow{\substack{\frac{w}{\Lambda \wedge}}} \operatorname{Rec} \xrightarrow{\stackrel{\wedge}{w_{0}} \xrightarrow{i,{ }_{c}^{\wedge}} \operatorname{Ver}(\sigma)} \longrightarrow \mathrm{ok} / \perp
$$

Problem: circularity (MAC key depends on c, which is being authenticated by the MAC)
Observe: knowing ($w_{1} \oplus w_{0}$ and $c \oplus{ }^{\wedge}{ }_{c}$)
gives knowledge of $w_{0} \oplus \hat{\hat{w}_{0}}=u$
Need: $\forall u$, given $\operatorname{MAC}_{w}(i, c)$, hard to forge $\operatorname{MAC}_{w+u}(\hat{i}, c \wedge \hat{\wedge})$

the MAC problem

Authentication Alternative [Boyenet al. '05]
$\sigma=\operatorname{MAC}_{w}(i, c)=$ RandomOracle (w, i, c)
Advantage: works even when $H_{\text {min }}(w)<n / 2$
Verification:

Problem: circularity (MAC key depends on c, which is being authenticated by the MAC)
Observe: knowing ($w_{1} \oplus w_{0}$ and $c \oplus{ }^{\wedge}{ }_{c}$)
gives knowledge of $w_{0} \oplus \hat{w_{0}}=u$
Need: $\forall u$, given $\operatorname{MAC}_{w}(i, c)$, hard to forge $\operatorname{MAC}_{w+u}(\hat{i}, c)$

building robust fuzzy extractors

Recall: without errors, extract $k-g-2 \log \frac{1}{\varepsilon}$
Problem: c reveals l bits about $w \Rightarrow$
k decreases, g increases \Rightarrow
lose $2 l$
Can't avoid decreasing k, but can avoid increasing g
$c=$ Sketch $\left(w_{0}\right)$ is linear. Let $d=$ Sketch $^{\perp}\left(w_{0}\right)$.
$|d|=|w|-l$, but d has entropy $k-l$. Use d instead of w_{0}.
Result: extract $k-l-g-2 \log \frac{1}{\varepsilon}$

Summary: robust fuzzy extractors

Robustness: as long as $w_{0} \approx w_{1}$, if $\operatorname{Eve}(p)$ produces $p^{\prime} \neq p$

(with 1 - negligible probability over w_{0} \& coins of Rep, Eve)

Summary: robust fuzzy extractors

Robustness: as long as $w_{0} \approx w_{1}$, if $\operatorname{Eve}(p)$ produces $p^{\prime} \neq p$

(with 1 - negligible probability over $w_{0} \&$ coins of Rep, Eve)

Summary: robust fuzzy extractors

Post-Application

Robustness: as long as $w_{0} \approx w_{1}$, if $\operatorname{Eve}(p, r)$ produces $p^{\prime} \neq p$

(with 1 - negligible probability over w_{0} \& coins of Rep, Eve)

Post-application robustness

Post-Application
Robustness:
[DKKRS12]: a similar construction extracts about $(k-l-g) / 2$ (half as much as pre-application)

Outline

- Passive adversaries
- Privacy amplification
- Fuzzy extractors
- Information reconciliation
- Active adversaries, w has a lot of entropy
- Message authentication codes
- Privacy amplification only when $H_{\text {min }}(w)>|w| / 2$
- Information reconciliation
- Two security notions (pre-application vs. post-application)
- Active adversaries, w has little entropy
- Privacy amplification
- Information reconciliation

Privacy Amplification

Privacy Amplification

Alice	
w	

Authenticate
seed

Authentically receive seed

Privacy Amplification

Authenticate seed

Authentically receive seed

Privacy Amplification

Authenticate seed

Authentically
receive seed

seed $\longrightarrow \mathrm{Ext} \longrightarrow r$
r looks uniform
given seed

Privacy Amplification

[RW03] Auth: Sub-Protocol Liveness Test

Alice

w

w
response y

Want: If Alice accepts response, then Bob responded to a challenge and is, therefore, still "alive" in the protocol

Idea: "Response" should be such that Eve cannot compute it herself

[RW03] Auth: Sub-Protocol Liveness Test

Alice

\mathcal{W}

\mathcal{W}
challenge x

Want: If Alice accepts response, then Bob responded to a challenge and is, therefore, still "alive" in the protocol

Idea: "Response" should be such that Eve cannot compute it herself

[RW03] Auth: Sub-Protocol Liveness Test

Note: Active attack doesn't help Eve defeat liveness test

[RW03] Auth: Sub-protocol ½ bit authentication

Guarantees: if Bob receives bit $b=1$, then Alice sent $b=1$

[RW03] Auth: From ½ bit to string

Guarantees: if Bob receives bit $b=1$, then Alice sent $b=1$

- Problem: Eve can't change 0 to 1 , but can change 1 to 0
- Solution: make the string balanced (\#Os = \#1s)

[RW03] Auth: From ½ bit to string

\mathcal{W}

Eve

Bit-auth $\left(b_{0}\right)$
Bit-auth $\left(b_{1}\right)$

Bob

w

- Problem: Eve can delete any bit (and insert a 0 bit)

- Solution: add a liveness test after each bit to check that Bob got it

[RW03] Auth: From ½ bit to string

Bob

Liveness Test

For $2^{-\delta}$-security, each Ext output needs $\approx \delta$ bits. Loss $\approx 1.5 \mid$ seed $\mid \delta$

Privacy Amplification

Authenticate seed

Authentically receive seed

- Does r look uniform given seed?
- Need: seed independent of w
- Problem: Active Eve can play with AUTH to learn something correlated to seed during AUTH
- Solution: If $|r|>2 \mid$ Auth \mid, then r is >half entropic
- Use r as MAC key to authenticate the actual (fresh!) seed'

Privacy Amplification

Authenticate seed

Authentically receive seed

- Total entropy loss (after some improvements from [Kanukurthi-Reyzin 2009]): about $\delta^{2} / 2$
- Theoretical improvement to $\mathrm{O}(\delta)$ in [Chandran-Kanukurthi-Ostrovsky-Reyzin 2014] (but for practical values of δ, constants make it worse than $\delta^{2} / 2$)

Outline

- Passive adversaries
- Privacy amplification
- Fuzzy extractors
- Information reconciliation
- Active adversaries, w has a lot of entropy
- Message authentication codes
- Privacy amplification only when $H_{\text {min }}(w)>|w| / 2$
- Information reconciliation
- Two security notions (pre-application vs. post-application)
- Active adversaries, w has little entropy
- Privacy amplification
- Information reconciliation

Information Reconciliation

Information Reconciliation

To verify, Bob needs to recover w_{0} from w_{1} so Alice needs to send c,

Information Reconciliation

To verify, Bob needs to recover w_{0} from w_{1} so Alice needs to send c,

Information Reconciliation

Attempt 1: Error-Tolerant Authentication

> Authenticate $c \Xi$ Protocol AUTH Ξ Authentically receive c using w^{*} as key

- Alice runs Auth using w_{0} as key and Bob runs Auth using w^{*} key
- Auth Guarantees: For Eve to change even a single bit of the message authenticated, she needs to respond to an extractor query. (Either $\operatorname{Ext}_{x}(w)$ or $\left.\operatorname{Ext}_{x}\left(w^{*}\right)\right)$.
- If Bob runs protocol Auth on w^{*} (of high entropy, which Rec provides), Eve cannot change the message authenticated.

Attempt 1: Error-Tolerant Authentication

Authenticate $c \rightleftharpoons$ Protocol AUTH \rightleftarrows Authentically receive using w as key

Attempt 2: Error-Tolerant Authentication

Solution [Kanukurthi-Reyzin ‘09]: Reduce entropy loss using a MAC

- MAC needs a symmetric key κ
-Where does κ come from? Generate random κ and authenticate it

Attempt 2: Error-Tolerant Authentication

Protocol AUTH (κ)

$$
c, \mathrm{MAC}_{k}(c)
$$

Solution [Kanukurthi-Reyzin ‘09]: Reduce entropy loss using a MAC

- MAC needs a symmetric key κ
- Where does κ come from? Generate random κ and authenticate it

Attempt 2: Error-Tolerant Authentication

Protocol AUTH (κ)

Auth reveals κ !
$\xrightarrow{c, \operatorname{MAC}_{k}(c)}$

Solution [Kanukurthi-Reyzin ‘09]: Reduce entropy loss using a MAC

- MAC needs a symmetric key κ
-Where does κ come from? Generate random κ and authenticate it

Attempt 2: Error-Tolerant Authentication

Protocol AUTH (κ)

Bob
$w_{1} \approx w_{0}$

Auth reveals κ !

Solution [Kanukurthi-Reyzin '09]: Reduce entropy loss using a MAC

- MAC needs a symmetric key κ
-Where does κ come from? Generate random κ and authenticate it

Attempt 2: Error-Tolerant Authentication

$$
c, \operatorname{MAC}_{k}(c)
$$

Liveness Test

Protocol AUTH (κ)

Bob
$w_{1} \approx w_{0}$

Auth reveals κ !

By the time Eve learns κ, it is too late for Eve to come up with forgery!

Solution [Kanukurthi-Reyzin ‘09]: Reduce entropy loss using a MAC

- MAC needs a symmetric key κ
-Where does κ come from? Generate random κ and authenticate it

information-reconciliation + privacy amplification

Alice
w_{0}

$c=$ Sketch $\left(w_{0}\right)$
Authenticate c

Send seed

Use r as a MAC key to send the real extractor seed

information-reconciliation + privacy amplification

Alice
w_{0}

Bob
$w_{1} \approx w_{0}$

$c=\operatorname{Sketch}\left(w_{0}\right)$
Authenticate c
and seed

Use r as a MAC key to send the real extractor seed

Outline

- Passive adversaries
- Privacy amplification
- Fuzzy extractors
- Information reconciliation
- Active adversaries, w has a lot of entropy
- Message authentication codes
- Privacy amplification only when $H_{\text {min }}(w)>|w| / 2$
- Information reconciliation
- Two security notions (pre-application vs. post-application)
- Active adversaries, w has little entropy
- Privacy amplification
- Information reconciliation

