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How do we get here?
• Alice and Bob have a partially secret and partially noisy 

channel between them [Wyner 1975]
• Alice and Bob are running quantum key distribution
• Alice and Bob listen to a noisy beacon
• Alice and Bob are two cell phones shaken together
• Alice knows Bob’s iris scan
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privacy amplification
wnot uniform 

Goal: from a nonuniform secret w
agree on a uniform secret r

Eve(e.g.,        knows some E about it)

w
rExtseed

seed
w RExti

w rExtseed

jointly uniform 

minentropy k

seed r

Alice Bob

Solution: use a strong extractor

E



privacy amplification
wnot uniform 

Eve

w RExti
w rExtseed seed r

Alice Bobseed
E

If average min-entropy Hmin(W |E) is sufficiently high,
and Ext is an average-case strong extractor, this works!

Using universal hashing:

If Hmin(W|E) ≥ k, we get (R, Seed, E) ≈𝜀 (Um, Seed, E)
for m = k − 2 log (1/𝜀)



privacy amplification
wnot uniform 

Eve

w RExti
w rExtseed seed r

Alice Bobseed
E

• Early work for specific distributions of w and classes of Eve’s knowledge,
motivated by quantum key agreement

• [Ozarow-Wyner 84]: nonconstructive solution

• [Bennett-Brassard-Robert 85]: universal hashing for any Eve’s knowledge

• Early analysis used Shannon entropy for W as an input assumption
and low mutual information between E and R as an output guarantee.
Problem: Shannon entropy and mutual information are not great for security

• [Maurer 93, Bennett-Brassard-Crépeau-Maurer 95]: modern security notions



note the two views of extractors

Ext
poor quality 
randomness

indistinguishable 
from uniform

Extrandomness
(maybe uniform)

indistinguishable from 
uniform given leakage

Eve

[Santha-Vazirani]:

[Wyner]:

The equivalence of these two views wasn’t obvious at first
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Outline
• Passive adversaries

– Privacy amplification
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Privacy amplification
– Information reconciliation

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation
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basic paradigm: passive adversary

Alice Bob
Conversation about 

their differences
w walso known as 

information reconciliation

Eve

r r

seed to a strong extractor
Goal: minimize amount of information 

leaked about w, 
i.e., maximize Hmin(W|protocol messages)
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information reconciliation

Alice Bob

w w

Eve

Goal: minimize amount of information 
leaked about w, 

i.e., maximize Hmin(W|protocol messages)

focus today: single-message,
starting with Bennett-Brassard-Robert 85 

(interactive protocols more rare
e.g., Brassard-Salvail 93)
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information reconciliation

Alice Bob

w w

Eve

Goal: minimize amount of information 
leaked about w, 

i.e., maximize Hmin(W|protocol messages)

focus today: single-message,
starting with Bennett-Brassard-Robert 85 

(interactive protocols more rare
e.g., Brassard-Salvail 93)

Sketch(w0)



Aside: chain rule for Hmin

Def: Hmax(E)  = log |{e | Pr[E = e]>0} = log |support(E)|
Lemma: Hmin(X | E) ≥ Hmin(X, E) − Hmax(E) 
Proof: Reduction. Suppose Pr(x,e) [A(e) → x] = p.
Let B = pick a uniform g support(E); output (A(g), g)
Pr(x,e)[B → (x,e)]
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≥ Pr(x,e,g)[e=g and A(g) → x]

= Pr(x,e,g)[e=g and A(e) → x]

= p/| support(E)| ⃞

= Pr(x,e,g)[e=g] Pr(x,e,g) [A(e) → x]

Lemma: Hmin(X | E1, E2) ≥ Hmin(X, E2 | E1) − Hmax(E2) 
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definition: secure sketch is a pair (Sketch, Rec)

Alice Bob

c

w0 cSketch
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definition: secure sketch is a pair (Sketch, Rec)

Alice Bob

c

w0 cSketch

c w0Recw1

Def [Dodis-Ostrovsky-R-Smith 04]:
(Sketch, Rec) is a (k, k − l)-secure sketch if 

Hmin(W0 | E) ≥ k implies Hmin(W0 | E, Sketch(W0)) ≥ k − l

same definition 
for every notion of “≈” 

entropy loss l

w1
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information-reconciliation + privacy amplification
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information-reconciliation + privacy amplification

Alice Bob
w0 w1

Eve

w0 rExtseed

cSketch

Recc
w1 w0 rExtseed

Hmin(W0 | E) ≥ k  ⇒ Hmin(W0 | E, Sketch(W0))≥ k − l
(k − l, 𝜀)- Ext ⇒ (R, C, Seed, E) ≈𝜀 (Um, C, Seed, E)
Thus can get m = k − l − 2 log (1/𝜀)

c,seed
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information-reconciliation + privacy amplification

Alice Bob
w0 w1

Eve

c,seedw0 rExtseed

cSketch

Recc
w1 w0 rExtseed

All in one message!
Let’s take another view of what we’ve built…
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information-reconciliation + privacy amplification

Alice Bob
w0 w1

w0 rExtseed

cSketch

Recc
w1 w0 rExtseed

w0
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information-reconciliation + privacy amplification

Alice Bob
w0 w1

w0 rExtseed

cSketch

Recc
w1 w0 rExtseed

Gen

Repw0

Ext

Ext

w1

Sketch Rec
w0

r

p=(c,seed) r

c,seed



information-reconciliation + privacy amplification

Gen

Repw0

w1

r

p r



Fuzzy Extractors

Gen

Repw0

w1

r

p r

Single message information reconciliation + privacy amplification 
= fuzzy extractor [Dodis-Ostrovsky-R-Smith 04]

Functionality requirement: if w0 and w1 are close, then Rep gets r
Security requirement: if Hmin(W0|E) ≥ k then (R,P,E) ≈𝜀 (Um,P,E)

Definition of fuzzy extractors:

includes “meaningful entropy” 
and measurement noise – no 

need to separate them



Fuzzy Extractors

Gen

Repw0

w1

r

p r

Single message information reconciliation + privacy amplification 
= fuzzy extractor [Dodis-Ostrovsky-R-Smith 04]

Can think of other constructions (not sketch+extract, computational)
[Canetti-Fuller-Paneth-R.-Smith Eurocrypt ’15]

Single message p can be sent into the future!

Advantages of this view:



Advantages of single-message protocols

Physically Unclonable Functions (PUFs) Biometric Data

High-entropy sources are often noisy 
– Initial reading w0  ≠ later reading reading w1, but is close

Fuzzy Extractor can derive a stable,
cryptographically strong output

– At initial enrollment of w0, use Gen, store p
– All subsequent readings w1, w2 … map to same output using Rep

Use r for any crypto scheme–e.g.,  a key to encrypt your sensitive data
– E.g., self-enforcing, rather than server-enforced, authorization



Outline
• Passive adversaries

– Privacy amplification
– Fuzzy extractors
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Privacy amplification
– Information reconciliation

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation
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How to build a secure sketch?



w0 ≈ w0
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How to build a secure sketch?

Alice Bob

c

w0 cSketch

c w0Recw1

Want:
Hmin(W0 | E) ≥ k implies Hmin(W0 | E, Sketch(W0)) ≥ k − l

w1

Focus for now: ≈ means Hamming distance 
(w0 and w1 are strings over GF(q) that differ in ≤ t positions)
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background: error-correcting codes
(n, µ, δ)q code GF(q)µ→ GF(q)n

• encodes µ-symbol messages into n-symbol codewords
• any two codewords differ in at least δ locations

– fewer than δ/2 errors ⇒ unique correct decoding

≥ δ



• Ignore the message space
• Think of decoding x as

finding nearest codeword
• Efficiency of decoding

and parameters n, µ, δ
depend on the code
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background: error-correcting codes
(n, µ, δ)q code GF(q)µ→ GF(q)n

• encodes µ-symbol messages into n-symbol codewords
• any two codewords differ in at least δ locations

– fewer than δ/2 errors ⇒ unique correct decoding

≥ δ

x
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building secure sketches
• Idea: what if w0 is a codeword in an ECC?
• Sketch = nothing; Rec = Decoding to find w0 from w1

• If w0 not a codeword, simply shift the ECC

w0
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building secure sketches
• Idea: what if w0 is a codeword in an ECC?
• Sketch = nothing; Rec = Decoding to find w0 from w1

• If w0 not a codeword, simply shift the ECC
• Sketch (w0) is the shift to 

random codeword:
c = w0 – random codeword

• Rec: dec(w1 – c) + c w0

c

–c
+c dec

w1

• Another view: 
w0 is a one-time-pad
for a message that’s been
encoded with the error-correcting code, so w1 can decrypt 



security analysis
(n, µ, δ)q code GF(q)µ→ GF(q)n

c = w0 – random codeword

Hmin(W0 | E, C) ≥ Hmin(W0 , C | E) – Hmax(C) = 

= Hmin(W0 | E) + µ log q – n log q
= Hmin(W0 | E) – (n – µ) log q

= Hmin(W0 , C | E) – n log q

entropy loss l



optimization for linear codes
(n, µ, δ)q code GF(q)µ→ GF(q)n

c = w0 – random codeword
Suppose the codewords form a linear subspace of GF(q)n

Then there is a linear map 
H: GF(q)n → GF(q)n – µ such that codewords = Ker H

c = uniform choice from {w0 – Ker H}
Observe that {w0 – Ker H} ={x: Hx = Hw0}

(l.h.s.⊆ r.h.s. by multiplication by H)
(l.h.s.⊇ r.h.s. because x = w0 – (w0 – x) )

(called “parity check matrix”)



optimization for linear codes
(n, µ, δ)q code GF(q)µ→ GF(q)n

c = w0 – random codeword
Suppose the codewords form a linear subspace of GF(q)n

Then there is a linear map
H: GF(q)n → GF(q)n – µ such that codewords = Ker H

c = uniform choice from {w0 – Ker H}
Observe that {w0 – Ker H} ={x: Hx = Hw0}
Thus, Sketch(w0)can send Hw0

and Rec can sample x by solving linear equations
Hmin(W0 | E, H W0) ≥ Hmin(W0 | E) – Hmax(H W0)

=Hmin(W0 | E) – (n – µ) log q

(called “parity check matrix”)

(called ”syndrome of w0”)
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syndrome or code-offset construction

• If ECC µ symbols → n symbols and has distance δ:
– Correct δ/2 errors; entropy loss l = n – µ symbols
– Higher error-tolerance means higher entropy loss

(trade error-tolerance for security)
– Can be viewed as redundant one-time pad
– Hard to improve without losing generality (e.g., working only 

for some distributions of inputs, for example,
[Yu et al. CHES 2011, Fuller el al. Asiacrypt 2016, Woodage et al. Crypto 2017])

• Construction is old but keeps being rediscovered
– [Bennett-Brassard-Robert 1985] (from systematic codes), 

[Bennet-Brassard-Crépeau-Skubiszewska 1991] (syndrome), 
[Juels-Watenberg 2002] (code-offset)

Sketch(w) = Hw OR Sketch(w) = w – random codeword
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1-message key agreement for passive adversaries

Alice Bob
w0 w1

Eve

w0

Ext

Sketch c
p=(c,seed)

r

ExtRec
w0

r

w1
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1-message key agreement for passive adversaries

Alice Bob
w0 w1

w0 p

r r

w1

RepGen

- Fuzzy extractors exist for other distances besides Hamming,
including set difference, edit distance, point-set distance

- Some make specific assumptions on input distribution, 
some are computational rather than info-theoretic



Outline
• Passive adversaries

– Privacy amplification
– Fuzzy extractors
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Privacy amplification
– Information reconciliation

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation
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WHAT ABOUT ACTIVE ADVERSARIES?

Alice Bob
w0 w1

w0 p

r r

w1

RepGen

Eve p'

Robustness: as long as w0 ≈ w1, if Eve(p) produces p' ≠ p

(with 1 – negligible probability over w0 & coins of Rep, Eve)
w1

⊥Repp'
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Idea 0:
w

rExtseed

MAC

building robust fuzzy extractors

σ
p = (seed, σ)
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Idea 0:
w

rExtseed

MAC

building robust fuzzy extractors

σ
p = (seed, σ)

Key???

r? But if adversary changes seed, then r will change 

Circularity! 
seed extracts from  w
w authenticates seed

w? 



background: XOR-universal functions and MACs

• Define fa (•) with v-bit outputs to be XOR-universal if
(∀i ≠ j, y) Pra [fa(i) ⊕ fa(j) = y] = 1/2v

• Define MAC𝜅 (•) to be a δ-secure one-time message 
authentication code (MAC) if Pr[Eve wins] is at most δ:
– Pick a random 𝜅 ; ask Eve for i and give Eve σi = MAC𝜅(i)
– Eve wins by outputting j ≠ i and σj = MAC𝜅(j)

• Claim: if fa (•) is XOR-universal then
MACa,b(i) = fa(i) ⊕ b is a 1/2v secure MAC

– Proof: guessing σj⇔ guessing fa(i) ⊕ fa(j), but b hides a

• Fact: fa (i) = ai is XOR-universal (b/c linear + uniform)

• Thus MACa,b(i)= ai+b is a 1/2v -secure MAC (|a|=|b|=|i|=v)



background: MACs with imperfect keys

• Pr[Eve wins] = E𝜅 chosen uniformly Pr[Eve wins for key = 𝜅 ] ≤ δ
• What if 𝜅 is not uniform but has min-entropy k?

68

E𝜅 chosen from some entropy-k distribution  f (𝜅 ) = ∑ f (𝜅 ) Pr [𝜅 ]

≤ ∑ f (𝜅 ) 2 –k

= 2 |𝜅|–k E𝜅 chosen uniformly f (𝜅 ) 

= 2 |𝜅|–k∑ f (𝜅 ) 2 –|𝜅|

(because f is nonnegative)

= 2 |𝜅|–k δ
• Security gets reduced by entropy deficiency!
• Thus MACa,b(i) = ai+b is (22v –k /2v = 2v – k )-secure 

whenever Hmin(a,b) = k



Outline
• Passive adversaries

– Privacy amplification
– Fuzzy extractors
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Message authentication codes
– Privacy amplification
– Information reconciliation

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation
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building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

i×

r = [ai]1
m
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building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

× +
σ = bi + c

i×

r = [ai]1
m

𝜀-uniform
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Extract if k > 2n/3
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building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

× +
σ = bi + c

i×

r = [ai]1
m

δ-robust
if n/3 > g + loga1 

δ

𝜀-uniform
if n/3 > m + g + 2loga1𝜀

Extract if k > 2n/3
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building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

× +
σ = bi + c

i×

r = [ai]1
m i,

p

Extract if k > 2n/3



building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

× +
σ = bi + c

i×

r = [ai]1
m

Extract if k > 2n/3

a bw =
n – v v

i

[Dodis-Kanukurthi-
Katz-Reyzin-Smith ’12]

×

r = [ai]v+1
n–v
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building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

× +
σ = bi + c

i×

r = [ai]1
m

Extract if k > 2n/3

a bw =
n – v v

i +
σ = [ai]1 + bv

[Dodis-Kanukurthi-
Katz-Reyzin-Smith ’12]

×

r = [ai]v+1
n–v
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building robust fuzzy extractors
Notation: |w| = n, Hmin(w) = k, “entropy deficiency” n – k = g

[Maurer-Wolf 97] a b cw =
n/3 n/3 n/3

× +
σ = bi + c

i×

r = [ai]1
m

Extract if k > 2n/3

a bw =
n – v v

i +
σ = [ai]1 + bv

[Dodis-Kanukurthi-
Katz-Reyzin-Smith ’12]

jointly 𝜀-uniform
if v > g + 2loga1𝜀

1
δ

δ-secure
if v > g+log 

×

r = [ai]v+1
n–v
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building robust fuzzy extractors

a bw =
n – v v

i +
σ = [ai]1 + bv

jointly 𝜀-uniform
if v > g + 2loga1𝜀

1
δ

δ-secure
if v > g+log 

×

r = [ai]v+1
n–v

79

Analysis:
• Extraction: (R, σ)=ai + b is a universal hash family (few collisions)

(i is the key, w = (a, b) is the input) 
• Robustness: σ = [ai]1 is XOR-universal

(w = (a, b) is the key, i is the input)
v

[ok by leftover hash lemma]

[ok by Maurer-Wolf]



building robust fuzzy extractors

a bw =
n – v v

i +
σ = [ai]1 + bv

×

r = [ai]v+1
n–v

80

Extract k – g

k>n/2 is necessary [Dodis-Wichs09]

?

– 2loga1
𝜀



building robust fuzzy extractors

a bw =
n – v v

i +
σ = [ai]1 + bv

×

r = [ai]v+1
n–v

81

Extract k – g

k>n/2 is necessary [Dodis-Wichs09]

w
rExti

MAC σ p = (i, σ)

key

key

?

– 2loga1
𝜀



Outline
• Passive adversaries

– Privacy amplification
– Fuzzy extractors
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Message authentication codes
– Privacy amplification
– Information reconciliation

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation
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w0 ≈ w0

83

recall: secure sketch
Alice Bob

c

w0 cSketch

c w0Recw1

w1
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building robust fuzzy extractors
w0

p = (i, c, σ)

rExti

MAC σ

key

key
Sketch c

How to MAC long messages? σ = [a2c + ai]1 + b
(recall w = a|b)

v

= MACw0(i, c)
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building robust fuzzy extractors
w0

p = (i, c, σ)

rExti

MAC σ

key

key
Sketch c
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building robust fuzzy extractors
w0

p = (i, c, σ)

rExti

MAC σ

key

key
Sketch c

How to MAC long messages? σ = [a2c + ai]1 + b
(recall w = a|b)

v

= MACw0(i, c)

rExti

Ver(σ) ok/⊥

key
w0

Rec

c

c
w1

^^
^^

^^

^^
^^key

How to Rep

^ ^
oops…
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the MAC problem

σ = MACw(i, c) = [   
(recall w = a|b)

i,
Ver(σ) ok/⊥w0Rec

c
c
w1^^

^^
^^

Authentication:

Verification:

Problem: circularity (MAC key depends on c, which 
is being authenticated by the MAC)

Observe: knowing (w1⊕w0 and c ⊕ c )
gives knowledge of w0⊕w0 = u

Need: ∀u, given MACw(i, c), hard to forge MACw+u (i, c)^^^^

va2c + ai]1 + b

^^
^^
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the MAC problem

σ = MACw(i, c) = [   
(recall w = a|b)

i,
Ver(σ) ok/⊥w0Rec

c
c
w1^^

^^
^^

Authentication:

Verification:

Problem: circularity (MAC key depends on c, which 
is being authenticated by the MAC)

a5+
Hard to forge for 

any fixed u

Observe: knowing (w1⊕w0 and c ⊕ c )
gives knowledge of w0⊕w0 = u

Need: ∀u, given MACw(i, c), hard to forge MACw+u (i, c)^^^^

va2c + ai]1 + b

^^
^^
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the MAC problem

σ = MACw(i, c) =
(recall w = a|b)

i,
Ver(σ) ok/⊥w0Rec

c
c
w1^^

^^
^^ 

Authentication

Verification:

Problem: circularity (MAC key depends on c, which 
is being authenticated by the MAC)

Observe: knowing (w1⊕w0 and c ⊕ c )
gives knowledge of w0⊕w0 = u

Need: ∀u, given MACw(i, c), hard to forge MACw+u (i, c)^^^^

^^
^^

AMD-Code(a, c)+b
Generalization [Padro et al. ‘05] if i is public 

Code that detects 
additive change
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the MAC problem

σ = MACw(i, c) =

i,
Ver(σ) ok/⊥w0Rec

c
c
w1^^

^^
^^

Authentication

Verification:

Problem: circularity (MAC key depends on c, which 
is being authenticated by the MAC)

Observe: knowing (w1⊕w0 and c ⊕ c )
gives knowledge of w0⊕w0 = u

Need: ∀u, given MACw(i, c), hard to forge MACw+u (i, c)^^^^

^^
^^

RandomOracle(w, i, c)
Alternative [Boyenet al. ‘05]

Advantage: works even when Hmin(w) < n/2
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building robust fuzzy extractors
w0

p = (i, c, σ)

rExti

MAC σ

key

key
Sketch c = MACw0(i, c)

Result: extract k – l– g

Problem: c reveals l bits about w⇒
k decreases, g increases ⇒

lose 2l
Can't avoid decreasing k, but can avoid increasing g
c = Sketch(w0) is linear.  Let d = Sketch⊥(w0).  
|d|=|w| – l, but d has entropy k – l. Use d instead of w0.

Recall: without errors, extract k – g – 2loga1
𝜀

– 2loga1
𝜀
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Summary: robust fuzzy extractors

Alice Bob
w0 w1

w0
p

r r

w1

RepGen Eve

p'

Robustness: as long as w0 ≈ w1, if Eve(p

(with 1 – negligible probability over w0 & coins of Rep, Eve)
w1

⊥Repp'
) produces p' ≠ p
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) produces p' ≠ p
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Summary: robust fuzzy extractors

Alice Bob
w0 w1

w0
p

r r

w1

RepGen Eve

p'

Robustness: as long as w0 ≈ w1, if Eve(p

(with 1 – negligible probability over w0 & coins of Rep, Eve)
w1

⊥Repp'

r ⊕“hello”

) produces p' ≠ p,r
Post-Application
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Post-application robustness

Alice Bob
w0 w1

w0
p

r r

w1

RepGen Eve

p'

Robustness:

r ⊕“hello”

Post-Application

[DKKRS12]:  a similar construction extracts about (k–l–g)/2
(half as much as pre-application)



Outline
• Passive adversaries

– Privacy amplification
– Fuzzy extractors
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Message authentication codes
– Privacy amplification only when Hmin(w) > |w|/2
– Information reconciliation
– Two security notions (pre-application vs. post-application)

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation

100
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w w
Alice Bob

Protocol AUTH

seed
r looks uniform 

given seed

w Ext r

Authenticate 
seed 

Authentically 
receive seed 

seed
r looks uniform 

given seed

w Ext r

Entropy Deficiency (”gap”)Entropy Loss

Entropy of r
Goal: Increase length of r 
by minimizing entropy loss

Privacy Amplification

[Renner-Wolf ’03]



[RW03] Auth: Sub-Protocol Liveness Test

Alice Bob
ww

Want: If Alice accepts response, then Bob responded to a challenge
and is, therefore, still “alive” in the protocol

Idea: “Response” should be such that Eve cannot compute it herself

challenge x
response y 
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Alice Bob
ww

Want: If Alice accepts response, then Bob responded to a challenge
and is, therefore, still “alive” in the protocol

Idea: “Response” should be such that Eve cannot compute it herself

challenge x
response y 
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[RW03] Auth: Sub-Protocol Liveness Test

Alice Bob
ww challenge x

response y 
(seed) x

w Ext y= Extx(w) Accept if Extx(w) is correct

w Extx′ y′
x′x

(seed) x
w Ext y y′y

Note: Active attack doesn’t help Eve defeat liveness test
Eve



[RW03] Auth: Sub-protocol ½ bit authentication

Alice Bob
ww

Guarantees: if Bob receives bit b = 1, 
then Alice sent b = 1

Generate random seed x

(1, y) or
(0,⊥) 

y = Extx(w) If b = 1, verify y = Extx(w)

x

bit-auth(b) 

Eve



[RW03] Auth: From ½ bit to string

Alice Bob
ww

Guarantees: if Bob receives bit b = 1, 
then Alice sent b = 1

Generate random seed x

(1, y) or
(0,⊥) 

y = Extx(w) If b = 1, verify y = Extx(w)

x

bit-auth(b) 
• Problem: Eve can’t change 0 to 1, but can change 1 to 0
• Solution: make the string balanced (#0s = #1s)

Eve



Eve

Alice Bob
ww

Bit-auth(b1)

• Problem:

Alice Bob

Bit-auth(b0)

wants to send 01

Eve can delete any bit (and insert a 0 bit)

• Solution: add a liveness test after each bit to check that Bob got it

Bit-auth(0)

Bit-auth(0)

Bit-auth(1)

Eve

but Bob gets 10

[RW03] Auth: From ½ bit to string



Alice BobEve

Liveness Test

Bit-auth(b0)

Liveness Test

Bit-auth(b1)

…
For 2–δ-security, each Ext output needs ≈δ bits. Loss ≈ 1.5 |seed| δ

[RW03] Auth: From ½ bit to string



w w
Alice Bob

Authenticate 
seed 

Authentically 
receive seed 

Privacy Amplification

• Does r look uniform given seed ?
• Need: seed independent of w
• Problem: Active Eve can play with AUTH to learn something 

correlated to seed during AUTH
• Solution: If |r| > 2|Auth|, then r is >half entropic
• Use r as MAC key to authenticate the actual (fresh!) seed’

Eve
(controls Auth)

seed
w Ext r seed

w Ext r



w w
Alice Bob

seed
w Ext r

Authenticate 
seed 

Authentically 
receive seed 

seed
w Ext r

Privacy Amplification

• Total entropy loss (after some improvements from 
[Kanukurthi-Reyzin 2009]): about δ2/2

Eve
(controls Auth)

• Theoretical improvement to O(δ) in 
[Chandran-Kanukurthi-Ostrovsky-Reyzin 2014]
(but for practical values of δ, constants make it worse than δ2/2)



Outline
• Passive adversaries

– Privacy amplification
– Fuzzy extractors
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Message authentication codes
– Privacy amplification only when Hmin(w) > |w|/2
– Information reconciliation
– Two security notions (pre-application vs. post-application)

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation
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w0 w1

Alice Bob

Authenticate 
message

Authentically 
receive messageProtocol AUTH

To verify, Bob needs to recover w0 from w1 
so Alice needs to send c,

c'c recover w0???

Eve

c =Sketch(w0)

Information Reconciliation

so need authentication protocol!



Attempt 1: Error-Tolerant Authentication

w0 w1 ≈ w0
c

w* = Rec(w1, c )

Authenticate c
using w as key

Authentically receive 
c using w* as key

Alice Bob

Protocol AUTH

c =Sketch(w0) ^^ 

• Alice runs Auth using w0 as key and Bob runs Auth using w* key

• Auth Guarantees: For Eve to change even a single bit of the 
message authenticated, she needs to respond to an 
extractor query.  (Either Extx(w) or Extx(w*)).

• If Bob runs protocol Auth on w* (of high entropy, which Rec
provides), Eve cannot change the message authenticated.



w0 w1 ≈ w0
c

w* = Rec(w1, c )

Authenticate c
using w as key

Authentically receive 
c using w* as key

Alice Bob

Protocol AUTH

c =Sketch(w0) ^^ 

Problem: Even if Eve’s errors constitute a small fraction of w, 
Auth will lose more entropy than length of w

Attempt 1: Error-Tolerant Authentication



Solution [Kanukurthi-Reyzin ‘09]: Reduce entropy loss using a MAC

• MAC needs a symmetric key 𝜅

• Where does 𝜅 come from? Generate random 𝜅 and authenticate it

w0 w1 ≈ w0

Alice Bob

Attempt 2: Error-Tolerant Authentication



Solution [Kanukurthi-Reyzin ‘09]: Reduce entropy loss using a MAC

• MAC needs a symmetric key 𝜅

• Where does 𝜅 come from? Generate random 𝜅 and authenticate it

Protocol AUTH(𝜅)

c, MAC𝜅(c)

w0 w1 ≈ w0

Alice Bob

Attempt 2: Error-Tolerant Authentication



Solution [Kanukurthi-Reyzin ‘09]: Reduce entropy loss using a MAC

• MAC needs a symmetric key 𝜅

• Where does 𝜅 come from? Generate random 𝜅 and authenticate it

Protocol AUTH(𝜅)

c, MAC𝜅(c)

Auth reveals 𝜅 !

w0 w1 ≈ w0

Alice Bob

Attempt 2: Error-Tolerant Authentication



Solution [Kanukurthi-Reyzin ‘09]: Reduce entropy loss using a MAC

• MAC needs a symmetric key 𝜅

• Where does 𝜅 come from? Generate random 𝜅 and authenticate it

Protocol AUTH(𝜅)

c, MAC𝜅(c)

Auth reveals 𝜅 !

Liveness Test
w0 w1 ≈ w0

Alice Bob

Attempt 2: Error-Tolerant Authentication



Solution [Kanukurthi-Reyzin ‘09]: Reduce entropy loss using a MAC

• MAC needs a symmetric key 𝜅

• Where does 𝜅 come from? Generate random 𝜅 and authenticate it

Protocol AUTH(𝜅)

c, MAC𝜅(c)

Auth reveals 𝜅 !

By the time Eve learns 𝜅, it is too late for Eve to come up with forgery!

Liveness Test
w0 w1 ≈ w0

Alice Bob

Attempt 2: Error-Tolerant Authentication



Error-Tolerant
Authentication

seed

Use r as a MAC key to send the real extractor seed

w0 Ext r

Authenticate c
w0 = Rec(w1 , c)

seed
w0 Ext r

Protocol AuthSend seed Receive seed 

information-reconciliation + privacy amplification

w0 w1 ≈ w0

Alice Bob

c =Sketch(w0)



Error-Tolerant
Authentication

seed

Use r as a MAC key to send the real extractor seed

w0 Ext r

Authenticate c
w0 = Rec(w1 , c)

seed
w0 Ext r

information-reconciliation + privacy amplification

w0 w1 ≈ w0

Alice Bob

c =Sketch(w0)

and seed



Outline
• Passive adversaries

– Privacy amplification
– Fuzzy extractors
– Information reconciliation

• Active adversaries, w has a lot of entropy
– Message authentication codes
– Privacy amplification only when Hmin(w) > |w|/2
– Information reconciliation
– Two security notions (pre-application vs. post-application)

• Active adversaries, w has little entropy
– Privacy amplification
– Information reconciliation
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