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Abstract
Software-defined vehicle (SDV) systems replace traditional ECU architectures with software tasks

running on centralized multicore processors in automotive-grade PCs. However, PC boot delays
to cold-start an integrated vehicle management system (VMS) are problematic for time-critical
functions, which must process sensor and actuator data within specific time bounds.

To tackle this challenge, we present JuMP2start: a time-aware multicore stop-start approach for
SDVs. JuMP2start leverages PC-class suspend-to-RAM techniques to capture a system snapshot
when the vehicle is stopped. Upon restart, critical services are resumed-from-RAM within order of
milliseconds compared to normal cold-start times. This work showcases how JuMP2start manages
global suspension and resumption mechanisms for a state-of-the-art dual-domain vehicle management
system comprising real-time OS (RTOS) and Linux SMP guests. JuMP2start models automotive
tasks as continuable or restartable to ensure timing- and safety-critical function pipelines are reactively
resumed with low latency, while discarding stale task state. Experiments with the VMS show that
critical CAN traffic processing resumes within 500 milliseconds of waking the RTOS guest, and
reaches steady-state throughput in under 7ms.
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1 Introduction

Automotive systems are undergoing a revolutionary move towards software-defined vehicles
(SDVs). With SDVs, hardware functions are replaced with software tasks that are consolidated
onto a centralized, zonal or domain-based architecture [52]. This approach replaces hundreds
of single-core electronic control units (ECUs) with a smaller set of relatively low-cost,
multicore processors.

For SDVs to be properly realized there needs to be an appropriate vehicle operating system
that supports certifiable functional safety [23], cyber-security [24] and timing predictability.
Such a system must provide temporal and spatial isolation between tasks ranging from
relatively low criticality instrument cluster (IC) and infotainment services (IVI), right up
to highly safety-critical powertrain tasks that control “drive-by-wire” steering, throttle and
braking operations.
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Figure 1 DriveOS™ reference architecture.

One approach proposed by the research community is to adopt isolation via hardware-
assisted virtualization, whereby multiple virtual machines (VMs), or OS domains, coexist
in a symbiotic relationship on top of a powerful PC-class compute platform. Inter-VM
communication is achieved only through explicit and secure shared memory channels. This
architecture allows automotive tasks of mixed-criticalities to be mapped between a lightweight,
more easily verifiable safety-critical real-time operating system (RTOS) and a mission-critical
legacy OS [21,22,63]. The legacy OS provides libraries and services that would take many
person years to develop, while a properly isolated RTOS ensures predictable execution of
timing-critical tasks.

One such vehicle management system (VMS), depicted in Fig. 1 and further described
in Section 2, is designed with this philosophy. A VMS of this complexity requires an
equally sophisticated and powerful multicore hardware platform. However, automotive-
grade multicore ECUs or PCs incur long boot time delays from firmware [48,68], the
bootloader [11,64], OS and device initialization. Optimizations are able to reduce startup
latency [6], but the time to boot a PC-class system is nonetheless problematic for repeated
power-cycles.

To save energy, a vehicle management system such as the one envisioned above must
shut down all but the most basic of services when the vehicle is parked for any length of
time. Keeping a PC-class VMS fully operational when a vehicle is not in use may quickly
drain battery power [6]. This, in turn, requires batteries to be recharged more often than
necessary to ensure a vehicle is able to restart or, in the case of an electric vehicle, have
maximum range. Contrarily, shutting down all non-essential VMS services and subsequently
cold-booting those system services when the vehicle is restarted incurs too high a delay
before vehicle buses (e.g., CAN) are able to distribute control messages, and user interfaces
(e.g., the instrument cluster) become operational.

More critically, time-sensitive automotive functions require timely activation upon startup
to ensure vehicle safety. In particular, control functions have end-to-end delay constraints
to process sensor data needed to make actuation decisions, rendering slow startup times
unacceptable.
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In light of these challenges, this work envisions a low-latency stop-start approach to
suspend the VMS when not in use. A parked vehicle would then only need to consume
enough power to keep peripheral circuits alive, such as for a car theft alarm. We note that in
contrast to the stop-start system of traditional vehicles, which selectively shuts down vehicle
services to save fuel at traffic stops, this work is aimed at addressing system-wide service
shutdown and startup in a centralized SDV.

Earlier research work on Jumpstart [6] shows how suspend-to-RAM (S2R) power man-
agement techniques, enabled by the Advanced Configuration and Power Interface (ACPI)
of modern PCs, can potentially be utilized to mitigate some of the cold boot delays whilst
incurring minimal power cost. The first time a vehicle is started (e.g., after a new system
installation or update) there is an unavoidable slow “cold boot” delay until the system
transitions into a normal working state, S0 [4]. Thereafter, Jumpstart enabled subsequent
restarts of the system to complete with low latency by taking advantage of the low power
ACPI S3 (S2R) state. The novelty with Jumpstart was how to suspend and quickly resume
system-level components comprising a partitioning hypervisor hosting both an RTOS and a
single core legacy guest, as opposed to a bare-metal OS.

This work proposes a system called JuMP2start, which addresses several issues not
resolved by Jumpstart. First, it handles the most critical issue of resuming software functions
for vehicle services that must process timing-sensitive controller area network (CAN) bus-
related data. Second, if a safety-critical bus is actively generating traffic while the vehicle
management system is resuming, it is paramount that valid data is not lost during the system
restart. It is possible to mitigate this problem to some extent by delaying the delivery of bus
traffic to a vehicle management system until it has fully resumed operation. However, there
is still a third problem: upon resumption, the system must be careful of handling sensitive
bus traffic that was buffered at the time of system suspension. The dire consequences of
processing stale data are not hard to imagine. For example, an obsolete powertrain CAN
message to adjust vehicle speed should be discarded on system resumption.

The contributions of this paper are summarized as follows. First, we present JuMP2start,
which addresses the above problems. Second, we introduce the notion of continuable and
restartable tasks, to differentiate between stateful tasks that are able to semantically continue
where they left off at the time of system suspension, versus those that must be restarted rather
than allowed to process potentially sensitive, stale data. Third, we show the mechanisms by
which JuMP2start is able to extend Jumpstart by supporting coordinated suspension and
resumption of software-defined automotive functions for a dual-domain vehicle management
system featuring an RTOS and legacy Linux guest. Each OS domain within the system
manages multiple CPU cores under the symmetric multi-processing (SMP) model. Finally,
we provide an empirical study of JuMP2start, integrated with the VMS of an electric car
built by Drako Motors [19].

Experiments show that our test VMS is able to resume system-critical CAN traffic pro-
cessing on a 3-core RTOS within 500 milliseconds, after invoking firmware power management
services. In parallel, less critical services running on a 3-core Linux OS are able to receive
CAN-related data, to update IVI and IC display readings, in about 2 seconds. Our results
show 52.5% improvement when compared to the typical worstcase restoration time of 4
seconds to the last active application screen for an infotainment ECU as reported in [60].

In the next section, we present the design of JuMP2start in the context of a working
VMS. This is followed by Section 3, which evaluates JuMP2start for realistic CAN traffic
workloads, comprising pipelines of both continuable and restartable tasks. Related work is
described in Section 4, followed by conclusions and future work in Section 5.

ECRTS 2024
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2 JuMP2start: A Power Management Framework

JuMP2start is a system-wide stop-start solution for vehicle operating systems running on
multicore automotive-grade hardware platforms. It provides a collection of power management
(PM) tasks that bind with the vehicle management system, to leverage the underlying
scheduling infrastructure and orchestrate system-wide power state transitions.

Table 1 List of DriveOS™ tasks. Class of tasks specified as (R)estartable and (C)ontinuable.

Quest RTOS Sandbox

Tasks Mode Budget
(µs)

Freq
(Hz)

Util
(%) Description

can-gw:{can2linux, linux2can} R 200 1000 {20,20} Read/Write CAN data in user-space
mhydra {rx,tx} R 200 1000 {20,20} CAN driver scatter/gather

usb xhci bh R 10 1000 1 Interrupt handler
suspend C 200 250 5 JuMP2start main user-space task

app:pm-thread C 200 1000 20 JuMP2start per application task
kernel:pm-thread x3 C 100 500 {5,5,5} JuMP2start per core kernel task

automotive R 500 200 10 fore-gnd task(s)
bookkeeping C 5000 20 10 back-gnd task(s)

Linux GPOS Sandbox
pm-module C - - - JuMP2start kernel module

can-listener C 200 1000 20 Read/Write CAN data
mission apps C sched_other - (ic), (ivi)

To showcase JuMP2start, we rely on a state-of-the-art VMS called DriveOS™ [63].
DriveOS™ is being developed by Drako Motors, as a centralized system that consolidates
automotive functions on a PC-class multicore platform. It currently features a separation-
kernel [61] in a dual-sandbox configuration (Refer to Fig. 1) hosted upon the Quest-V [39,72]
partitioning hypervisor.

Quest-V leverages hardware-virtualization capabilities of the automotive platform to
partition hardware resources, including CPU, memory and I/O devices, between a safety-
critical Quest RTOS [18] and Yocto Linux [74]. Each guest OS is assigned a mutually
exclusive set of cores within the machine. Hardware-managed extended page tables securely
map guest images to separate, non-overlapping regions of host physical memory. Similarly,
each guest OS is given direct access to mutually exclusive subsets of I/O devices. Interrupts
are delivered to the target OS, bypassing the virtual machine monitor (VMM). Both Quest
and Linux manage their partitioned hardware resources without runtime intervention of the
local VMM, except for system power management.

A performance monitoring subsystem employing hardware counters provides DriveOS™

with the ability to predict last-level shared cache occupancy [70,71]. Such estimates are then
used by static page coloring techniques to partition shared caches between sandboxes [40,73].
Consequently, a guest kernel is isolated from any temporal and spatial interference in its
execution by another guest. Additionally, caches are flushed and reloaded at stop-start
transitions of the entire VMS.

DriveOS™ guests work in unison to support mixed-criticality automotive tasks according
to their timing, safety, and mission criticality requirements. Default load-balancing policies
of each OS are used to assign tasks to their respective CPU cores. Table 1 shows a relevant
subset of the tasks and their parameters. JuMP2start tasks are distributed between the two
guests across all cores as depicted in Fig. 2.
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To achieve end-to-end (E2E) drive-by-wire objectives, DriveOS™ features low latency and
high bandwidth shared memory communication channels [50,54,63] that enable data-flow
task pipelines (Fig. 1), comprising the CAN I/O gateway (can-gw task) in Quest and a
CAN listener server (can-listener task) in Linux, to span the two OS domains [26,27]. The
use of more than one OS domain imposes added complexity on the multicore JuMP2start
system, which must coordinate power state transitions of each SMP guest OS in a timely
and integrated manner.

Figure 2 JuMP2start: E2E control flow.

Fig. 2 shows our design of JuMP2start that operates in two orthogonal dimensions of
control for the DriveOS™ VMS system stack: (1) within each individual guest’s vertical
software stack comprising user-space, kernel and monitor abstraction layers, and (2) across
the horizontal boundaries of the containerized guests, which employs a master-slave model
for communicating suspend-resume commands and receiving corresponding acknowledgments
to and from each guest. Further details are presented in the next section.

Additionally, JuMP2start appends the notion of continuable and restartable tasks to the
time- and safety-critical task model(s) natively supported within a guest OS. By default,
temporal reservation based task models within Quest and Linux incorporate task budgets,
periods and deadlines in accordance with a periodic scheduling policy (e.g. VCPU scheduling
in Quest [18]) or class (sched_deadline [44] in Linux). A periodically dispatched job
of a well-behaved task completes its budget execution within the bounds of its period (=
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deadline) before the release of the next job. According to this model, all tasks within a
guest are implicitly defined as continuable across short durations of their respective runtime
preemptions. Tasks therefore maintain their semantic and temporal state across context
switches. With a properly tuned system, end-to-end task pipelines of sensing, processing and
actuation can therefore ensure a continuous unblocked flow of control and data packets with
guaranteed throughput and delay bounds. This model works well if the system maintains
availability 100% of the time. Once bootstrapped after a coldboot, system resources are
therefore guaranteed uptime and accessibility to tasks until shutdown.

Power management events such as ACPI suspend-resume (S2R) are a source of major
disruptions to the steady-state execution of the system. Maintaining real-time guarantees as
well as functional integrity across such system-level events thus becomes critical to ensuring
vehicle safety. Low latency resumption and activation of safety and time critical services
is therefore essential. To mitigate safety hazards due to staleness of data and to avoid last
remnants of old execution states upon system resumption as well as to ensure end-to-end
timing correctness of task pipelines, a flexible task model is required. Such a model would
adapt the real-time task behavior according to the system execution environment.

JuMP2start therefore introduces the restartable task model, which allows a task to be
directly resumed from different checkpoint locations in its execution path. These checkpoints
enable such class of tasks to be semantically and temporally reset upon system resumption.
Resumption points are configurable and strategically inserted at any point in the sequential
execution flow of each task. The restartable model therefore allows programmable control
over the task’s memory resident state during PM events and facilitates in reducing processing
delays of stale data while maximizing data freshness and throughput within the data-flow
pipeline. When handling task states during stop-start PM events, it should be noted that
JuMP2start flushes and reloads hardware caches. This avoids dealing with stale cached data
and eliminates variability in resumption time.

As an example, consider a task that reads steering and yaw angle sensors, as part of a
torque vectoring algorithm. If a car is parked and subsequently restarted with stale steering
and yaw angle data, unequal torque may be applied to the drive wheels when the vehicle
begins moving. This could cause the vehicle to abruptly turn or slide, depending on the road
surface traction, leading to a potentially unsafe situation.

A temporal reset of a task discards the outdated temporal context and replenishes it with
an updated execution budget and period. This allows the resumed job to maintain real-time
schedulability as it completes its execution cycle within the new deadline. As a consequence,
throughput characteristics i.e. number of fresh data packets processed and forwarded through
the pipeline, are also quickly restored to their steady-state values. We evaluate the impact
on CAN I/O throughput for the VMS system in Section 3.1. Under this model, critical
automotive functions can therefore adapt to changes in power state and the system runtime
environment in an efficient and timely manner. Further details of JuMP2start’s task &
execution model are presented in Section 2.2.

2.1 System Design

Suspend-to-RAM (top half of Fig. 2 from step 1 to 16 ) proceeds in a top-down fashion with
the RTOS sandbox acting as a master power manager for a time-sensitive suspend-resume
operation on behalf of all other sandboxes in the system. Since Quest acts as the I/O signal
gateway for the VMS, all stop-start input requests are directly captured by the RTOS. The
embedded controller (EC) [20] device for registering subsequent wake-up or resume events is
also partitioned to Quest by the Quest-V partitioning hypervisor. The master power manager
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therefore incurs minimal temporal cost to trigger system-wide suspension and resumption. In
DriveOS™’s dual-sandbox configuration, Linux guest components of JuMP2start, listen for
and receive the suspend trigger from the Quest master sandbox

(
5

)
. Consequently, Linux

guest suspension is acknowledged back to Quest
(

9
)

before JuMP2start proceeds to save
Linux’s host machine context and halt its CPU cores.

Quest receives the vehicle “stop” request
(

1
)

either via a CAN frame generated on the
hardware bus or as is the case for a repeatable lab-test setup, via an echo message generated
from the bash terminal. The signal is directly captured in user-space by the suspend process(

2
)
, which forwards it to other user-space processes running on each CPU core within

Quest. JuMP2start spawns a pm-thread within each process’s address space that binds with
the underlying real-time VCPU scheduling infrastructure and executes with a distinct budget
and period. The pm-threads are dispatched to poll for the suspend signal on behalf of the
user application and initiate task cleanup upon receipt. For the can-gw example depicted
in Fig. 1, this amounts to flushing all internal buffers within the CAN library and completing
all pending I/O transactions before freeing up the memory to indicate a CAN bus off state.
This freezes any further traffic from being sampled from or sent to the CAN bus.

Once user-space applications are frozen, the suspend task transfers control to the Quest
kernel via the JuMP2start system call

(
3

)
. From then on, suspension proceeds in a largely

synchronized manner as indicated by the sequence of enumerated steps in Fig. 2. The green
shaded regions belong to kernel level functional components while light purple indicate VM
exits to the guest monitor space.

JuMP2start leverages the core PM subsystem [6,12] in each guest to issue native suspend
requests to various kernel subsystems. It further extends the native system to enable
suspension for multiple application processor (AP) cores for both Quest and Linux sandboxes.
Each processing core: X={0,1,...,N}, allocated to Quest, hosts a kernel PM-thread-X, blocked
on a wait-queue. PM-thread-0 on the boot-strap processor (BSP) core is the first to wake-up
and triggered for execution by the JuMP2start system call. Thereafter, this master PM
thread synchronizes fan out of the suspend signal to other guest OSes ( 5 ) as well as to
other PM threads (PM-thread-{1,2,...,N}) on Quest’s own AP cores ( 10 & 11 ). Serialized
control flow managed by the master PM thread enables a graceful shutdown of the Linux
guest and its respective cores. Mission-critical tasks in Linux as well as any active shared
memory communication interfaces between Linux and Quest are therefore shutdown before
the Quest master PM thread initiates its own low-level core suspension sequence. Quest RTOS
features a kernel-wide system lock. JuMP2start leverages this synchronization primitive
to disable interrupts and preserve each core’s scheduling and task context thereby avoiding
corruption of shared kernel state. This also avoids costly overheads of Linux-like kernel
thread migrations to the BSP core thus ensuring JuMP2start’s operational scalability across
AP cores. The simplified design allows each JuMP2start thread to complete its suspension
in a predetermined and well-defined order.

The Quest-V partitioning hypervisor allocates a unique per-core virtual machine control
(VMCS) context for both Quest and Linux guests within their respective monitor space. The
VMCS is a data structure managed by the guest-wide virtual machine monitor or VMM
to save and restore core-local context on VM-entry and exit respectively. As part of the
suspension sequence, all PM threads within Quest eventually transition from the kernel to
the VMM by issuing a JuMP2start hypercall. Upon VM-exit, each thread saves the host
state referenced by the VMCS, before issuing a halt instruction.

Similarly in the Linux guest, JuMP2start registers a kernel level module: pm-module,
that sets up a worker thread on Linux’s BSP core. The module receives the suspend request
from Quest in step 5 via intersandbox shared memory communication. At this point,

ECRTS 2024
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Linux’s native PM-core is signaled to flush all pending transactions to the storage device,
synchronize the filesystem state and freeze all user-space and kernel tasks. The pm-module
then triggers Linux devices to transition into their respective device low-power states. This
is achieved by calling the suspend functions of individual device drivers. The suspension
event is then forwarded to Linux’s AP cores. The native PM-core heavily relies on the
CPU hot-plugging subsystem [41] within the kernel to transition the cores from active to
idle states via a series of sequential intermediate state transitions. We patched the main
hot-plugging thread, hosted on each AP core, to issue a VM exit via JuMP2start’s hypercall
upon reaching the idle state ( 7 & 8 ). This allows JuMP2start to save the host context of
each CPU in Linux in a manner similar to the RTOS guest. The pm-module on Linux’s BSP
core awaits an acknowledgment from each application processor and then informs the Quest
sandbox ( 9 ) before proceeding to save its own host and processor state via a hypercall to
the Linux VMM ( 10 & 11 ).

We note here that Linux’s native PM-core combines multiple ACPI system-sleep states:
standby (S1), suspend-to-RAM (S3) and hibernate-to-disk (S4), in a largely unified and
standardized implementation. As such, power management in Linux incurs high latency due
to needless control flow checks and branch operations that attempt to differentiate different
types of power state transitions. Some noteworthy examples include: (1) preserving ACPI
non-volatile storage (NVS) memory for disk hibernation, and (2) invoking deprecated ACPI
functions such as prepare-to-sleep and wake-up. Additionally Linux includes a generic
set of hardware platform or host drivers for low-level suspend and resume operations. To
improve Linux side suspend-resume latency, we therefore optimized JuMP2start’s kernel
module to bypass any nonessential functionality. JuMP2start primarily focuses on ACPI S3
suspend and resume operations for x86 based platforms, the architecture of choice for the
DriveOS™ VMS. Further implementation details are discussed in Section 3 in the context
of our experimental setup. Notwithstanding, pm-module’s code design empowers system
integrators with the capability to (de-)activate different functional hooks that call down into
the standard Linux PM-core. Thus JuMP2start enables and maintains reconfiguration of
Linux power management for extensions to other ACPI compliant firmwares and platform
specific features.

Overall, JuMP2start operates in a hierarchical manner, whereby the master PM sandbox
sends a fan-out signal to each guest’s respective BSP core, which in-turn handles suspension
on behalf of the entire guest including its allocated AP cores, devices and tasks. This enables
JuMP2start to independently control and configure PM behavior for each guest OS as well
as maintain a tight ordering between the coupled sandboxes.

The master sandbox’s BSP core is the last to suspend. It relies on the platform-specific
ACPI specification [4] to access special I/O ports of the embedded controller device in-order
to switch the machine into a global sleep (S3) state. At this point within the suspension
sequence, the DriveOS™ vehicle management system enters an inactive state to conserve
power. The only peripherals that retain power are the platform’s memory controller, to
maintain the stored system context, and the EC, which continuously monitor’s the wake-up
signal sources for a resume signal.

A subsequent vehicle start event ( 17 ) initiates system resumption. Resumption proceeds
in a bottom-up manner within the system stack from the monitor all the way up to user-space
within each guest OS. These steps are enumerated accordingly from 18 to 26 in Fig. 2.
Upon resuming the machine firmware, control is first handed over to the master sandbox’s
VMM using the warm-boot vector that is pre-registered with the ACPI. This represents
the entry point on the resumption pathway within JuMP2start’s software stack. Host and
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BSP state is restored ( 19 ) before PM-thread-0 sends out initialization signal sequences
(Intel: init-sipi-sipi [30]) to all other machine cores ( 20 ), including the ones belonging to
Linux. Since each guest and its respective subset of CPUs have core-local VMCS context,
resumption at the VMM level proceeds in parallel. Thereafter Quest’s PM-thread-0 and
Linux’s pm-module execute a VM-entry into their respective guest kernels to resume kernel
context including devices, tasks and the scheduling subsystems ( 21 & 22 ). The AP cores
for each guest, after restoring their local contexts also exit the monitor space and enter an
idle loop to await the resumption signal from the BSPs. In Quest, each PM thread acquires
the kernel lock from the master thread and blocks to trigger the VCPU scheduler ( 23 &
24 ). For Linux, further steps are required to prime the AP cores for task execution by a
series of state transitions of the linear hotplug state-space in reverse order to suspension.
pm-module thus calls down into Linux’s PM-core ( 23 ) to trigger a series of startup callback
function calls on each application processor. This also triggers task migration from the BSP
core to corresponding AP cores defined in each task’s cpuset. Upon reaching the active state,
the AP calls the scheduler to begin task execution. pm-module on the BSP cleans up the
worker thread and blocks on a sleep loop to await the next suspend trigger. This marks
the completion of system resumption for the DriveOS™ VMS. The next section details task
suspension and resumption based on the restartable task model.

2.2 Task & Execution Model

JuMP2start presents a comprehensive strategy to achieve low exit and startup latencies
for SDVs by integrating a novel task execution model with time-sensitive multicore power
management. To the best of our knowledge, JuMP2start is the first power management
solution to ensure real-time correctness of timing- and safety-critical functions across an ACPI
suspend-resume system transition in the context of a vehicle OS. To this effect, JuMP2start
introduces a task parameter specifying two different modes of operation: continuable (c) and
restartable (r), to the existing real-time task models.

A real-time task, τi is characterized by a tuple: {Ci, Ti, Di, pi, Mresume
i }, where Ci

represents the task’s runtime or budget for execution within a window of time period Ti. Di

is the corresponding deadline (assumed to be at the end of the period) by which a job or task
instance must complete before the release of the next job. Additionally, a job can be assigned a
static priority pi according to its rate of execution [14] as adopted by Quest’s VCU scheduling
algorithm or a dynamic priority under Linux’s sched_deadline. JuMP2start introduces the
additional parameter: Mresume

i = {Restartable (R), Continuable (C)}, which represents
the behavior and mode of the task upon system resumption. A static mode classification
allows JuMP2start to adapt the semantic and temporal behavior for tasks with different
state characteristics in a time-aware manner across system power transitions (see Table 1 for
such a classification).

According to this model, stateless tasks that rely on the most recent copy of input data
and current execution state for correctness are restarted upon system resumption without
loss of functional integrity. Most sensor data sampling, processing and actuation tasks fall
into this category. This implies that partially executed context of such tasks just prior to
the suspension event stands null and void upon resumption. Outdated execution state would
therefore be discarded. Upon resumption, such tasks would necessitate a replenishment of
their computation budgets and periods to timely begin a fresh execution cycle. Contrarily,
other real-time stateful tasks that require preservation of state for correct operation are
classified as continuable. These tasks must continue on from their last point of preemption

ECRTS 2024
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when the system was suspended to avoid data corruption or partial states. Such tasks
retain their execution time budgets thus preserving their computation bandwidth across a
suspend-resume cycle.

In order to maintain hard real-time schedulability for both classes of tasks after a suspend-
resume cycle, the scheduler’s temporal reference is reset upon resumption to the warm-boot
time of the system. This acts as the new synchronization reference for both restartable and
continuable tasks. Task activation times, deadlines and replenishment periods are therefore
renewed with respect to the updated temporal reference. Consequently, restartable tasks: τr,
replenish their execution budgets to the maximum value (Cmax

r ), and update their periods (Tr).
Continuable tasks: τc, only replenish their periods (Tc) while maintaining their (partially)
used budgets: Cremain

c from before suspension. Since for any task τi, Cremain
i ≤ Cmax

i ,
system utilization upon resumption (Uresume

sys =
∑n

r=1
Cmax

r

Tr
+

∑m
c=1

Cremain
c

Tc
), remains within

the original schedulability bound of maximum utilization (Umax
sys =

∑n
r=1

Cmax
r

Tr
+

∑m
c=1

Cmax
c

Tc
).

Despite the inherent discontinuities in system execution states across a suspend-resume cycle,
JuMP2start’s task model ensures semantic correctness and temporal integrity of individual
tasks in a end-to-end manner for an automotive function pipeline.

In our prototype implementation for the DriveOS™ VMS, we integrate JuMP2start’s
task modes within Quest’s timing and safety critical tasks. For the Linux guest’s mission
critical tasks however, we retain the default continuable behavior scheduled under the
sched_deadline real-time policy. This enables us to draw a sharp contrast between the
two task models across the two guests and showcase benefits of one over the other in the
evaluation of our test setup, presented in Section 3.3. We therefore note that all subsequent
discussion of the restartable model is presented in the context of the VCPU scheduling
subsystem of the Quest sandbox [18,72].

The VCPU abstraction for main periodic real-time tasks in Quest is based on the sporadic
server model by Stanovich et. al. [65,66] and scheduled using a rate-monotonic scheduling
(RMS) [14,36] policy. A hard real-time task is mapped to a VCPU (sporadic server), which
in turn is mapped to a physical CPU (PCPU). Sporadic servers require budget replenishment
lists that track each server’s consumption of CPU time (replenishment budget: repi

b) and
when it is eligible to be re-applied to the corresponding server (replenishment time: repi

t).
Thus each entry in the finite list for task τi forms a tuple: (repi

b, repi
t) thereby allowing

fine-grained adjustments to be made to the budget and time of replenishment upon system
resumption.

Fig. 3 depicts the control-flow graph for a task as well as the changes to its temporal
context under the continuable (blue) and restartable (green) behavior modes. Black arrows
in the figure indicate behavior common to both types of tasks. A task’s semantic context is
generally structured as a sequence of basic blocks in a dual-phase execution. The first stage
begins with task setup and runtime context initialization and then segways into the periodic
loop stage, which incorporates the main execution workload.

JuMP2start appends a mode check after the setup stage to generate a snapshot of the
task’s state within its process address space. This aids functional reset in the event of a
future resumption and is depicted as “Save Context” in the figure for restartable tasks. The
task then proceeds normally with its loop execution until the arrival of the suspend event.

During the suspend sequence (discussed in Section 2.1), JuMP2start’s PM threads in
Quest suspend the per-core VCPU scheduler. This requires the threads to iterate over the
scheduler runqueue to check each task’s mode flag: Mresume

i . For restartable tasks, the
replenishment lists are then purged: (repi

b = 0, repi
t = 0), while for continuable tasks the
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Figure 3 Semantic and temporal aspects of the restartable (green) and continuable (blue) task
model.

lists are frozen in time. Purging the context during suspension saves the costly overhead
of zeroing out memory resident lists upon resumption. This ensures minimal resumption
latencies for time-critical restartable tasks.

Upon system resumption at time tresume
sys , temporal context is renewed for all tasks

within the scheduler runqueue. The purged lists for restartable tasks are rebuilt with
new entries (“Restart Ctx” in Fig. 3). A single replenishment entry is added for each
restartable task that allocates maximum execution budget at the time of system resumption:
(repi

b = Cmax
i , repi

t = tresume
sys ). In effect, the task becomes eligible for a fresh execution

with an updated deadline: Di = Ti + tresume
sys . The task can begin execution based on its

priority order within the runqueue. For continuable tasks, the frozen replenishment lists
are thawed by simply updating (“Update Ctx” in Fig. 3) the stale replenishment times in
already existing entries in the corresponding lists to repi

t = repi
t + tresume

sys . This enables the
temporal context of the task to be fast-forwarded in time with respect to the warm-boot
reference. The task then resumes with a renewed deadline: Di = Ti + repi

t, corresponding
to the updated replenishment time.

Replenishment budgets (repi
b) for continuable tasks are retained across supend-resume

boundaries, thereby enabling continued execution from their respective preempted semantics
when scheduled. In contrast, the functional semantics for restartable tasks are reset to the
initial saved context by swapping out the memory resident state from the time of suspension.
This resumes the task directly at the beginning of a fresh iteration of its execution loop.
Restartable tasks are therefore able to discard old data and timely acquire new inputs for
processing. This in-turn improves the automotive function’s response time to react to a fresh
set of input commands and timely achieve steady-state stable execution after ACPI S2R
transitions.

Time is a first class resource for execution correctness of various JuMP2start components
spanning the entire VMS stack. Discontinuities in system time as a result of suspension
and resumption of hardware clocks and timer peripheral devices can therefore result in
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Figure 4 Time-stamp Counter (TSC) correc-
tion upon ACPI S3 resumption.

Figure 5 Example schedule for continuable
and restarable tasks in the Quest sandbox.

unpredictable delays and mismatched notion of resumption times between CPU cores of
a guest sandbox. In the example of the Quest OS, the warm-boot reference time would
potentially diverge for the per-core VCPU scheduler, negatively impacting task replenishments.
JuMP2start ensures time-sensitive stop-start of the VMS by maintaining temporal consistency
across a suspend-resume cycle with a unified notion of monotonically increasing system
up-time in relation to the wall-clock time (RTC clock).

In the event of an ACPI suspend, timekeeping peripherals of the system are powered
down and lose all device context. Such is the case for per-core time-stamp counters (TSCs)
on x86 based platforms. TSCs are reset and subsequently restarted from zero, effectively
making the system go backwards in time upon resumption. This is shown as the uncorrected
TSC line graph (yellow) in Fig. 4. For comparison, the system execution timeline according
to the uninterrupted wall-clock time (RTC clock) is shown in the top gantt chart of Fig. 4.
JuMP2start corrects the TSC (system) time by stitching together values captured before and
immediately after suspension as shown in the bottom gantt chart and the green line graph.
The correction removes the gaps in time due to system downtime and updates the TSC to
reflect a continuous system uptime. JuMP2start therefore ensures accurate accounting of
time for various task- and system-level abstractions (e.g. sleep/wakeup schedules, interrupt
and signaling subsystem etc.) within the VMS.

An Example Schedule
Fig. 5 depicts the execution timeline of a restartable (τ1) and continuable task (τ2) in Quest.
Both tasks are bound to distinct VCPUs and scheduled using RMS policy on the same core.
The resulting interleaved execution without any system-wide suspend-resume events is shown
in the 1st gantt chart: “Normal Execution”. The 2nd chart: “Wallclock Timeline”, shows
ACPI suspend-resume events according to wallclock or RTC time. The system suspends
for 7 time units shown as a wide gap in the chart. Finally, suspend and wakeup events are
stitched together for corrected TSC values as shown in the 3rd graph: “System (stitched)
Timeline)”. The graph also shows the corresponding updated execution context of each
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task on the corrected system timeline. Dotted vertical lines on each graph represent task
deadlines. The bottom two graphs show runtime execution budget: Ci, and the state of the
budget replenishment list at different times during execution.

Each list entry is shown as a tuple (repi
b, repi

t) and is originally set to full capacity at
t = 0. τ1 being higher priority, begins execution at t = 0 and consumes its entire budget
of 4 time units in one stretch. A single replenishment is then posted for τ1 at t = 8, one
time period after the task started using its budget. τ2 then begins execution only to be
preempted at t = 5 due to arrival of the suspend event. According to the mode of each
task, JuMP2start purges all replenishment entries for τ1 while freezing those of τ2. As τ2
blocks, the single entry from t = 0 is split, according to Quest’s VCPU scheduling policy,
into two entries of unused budget of 2 time units and a used budget of 1 time unit. In a
normal execution with the system being available 100% of the time, the used budget of 1
time unit would have been replenished in the future at t = 0 + T2 = 10. However, due to the
arrival of the suspend event, further execution of τ2 blocks while the system suspends.

Upon resumption, the high priority restartable task, τ1, is immediately eligible for
execution at the maximum renewed budget. τ2, being a continuable task, retains its old
used and unused budgets as before in its replenishment list. However, the replenishment
times are updated for τ2 to reflect the stitched resumption time (t = 5) as the new temporal
reference. The updates are shown in orange boxes for both tasks in Fig. 5. τ2, according
to its priority, resumes execution at t = 9 and uses up its remaining unused budget of 2
time units by t = 11. This marks the completion of τ2’s continued job instance. The split
entries in the list are therefore merged to reflect total used up budget of 3 time units and
a new replenishment time is posted for t = 5 + T2 = 15. This is when τ2’s next job would
be released. Thereafter the schedule continues normally according to the VCPU scheduling
policy until another suspension event arrives.

The example shows that both types of tasks maintain schedulability across a suspend-
resume cycle by completing their resumed instances within the updated deadlines.

3 Evaluation

We evaluate JuMP2start’s performance and its impact on throughput and delay charac-
teristics for the multicore vehicle management system as it undergoes multiple stop-start
cycles. Our testbed setup is shown in Fig. 6. DriveOS™ VMS is hosted on a Cincoze DX1100
industrial embedded PC that features an Intel Core-i7 hexa-core processor operating at
2.4GHz. We built a hardware-in-the-loop labcar setup with the DX workstation running the
latest dual-sandbox configuration. The CPU cores of the DX are equally partitioned to each
guest-OS and the task set in Table 1 is load-balanced across the cores. The Quest sandbox
acts as the real-time I/O interface for the VMS. For our I/O network, we connect a Kvaser
USB-CAN Pro 4xHS transceiver to Quest, exposing two 500kbps CAN channels: chan-1
and chan-2. Additionally, a remote Linux PC replays CAN traffic over the two channels
and receives output from the VMS. The lab setup emulates the behavior of a real-world
automotive system, by simulating CAN frames from various peripheral devices such as sensors
and actuators connected to the DX host via the two CAN channels. The data captured
by the can-gw in Quest is tunneled through shared memory to the Yocto Linux (kernel
v4.19.80) sandbox and displayed on Instrument Cluster (IC) and In-Vehicle Infotainment
(IVI) application screens. For our experiments, JuMP2start leverages ACPI-enabled UEFI
firmware, flashed on the DX host, for platform suspension and firmware resumption.
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3.1 Throughput Performance

Experimental Setup. To measure the impact on I/O throughput across multiple suspend-
resume cycles, we generate a burst of throttle input CAN traffic on the two channels. Data
for each channel is sampled by the can-gw stack in Quest and then transferred via two
shared memory channels to the can-listener threads in Linux for processing and display.
For a complete round-trip, throttle frames are also echoed back on the output data path
from Linux to Quest via a separate set of shared memory channels. Quest then forwards
the output data to hardware CAN buses. A candump shell utility on the remote Linux PC
receives and displays run-time logs of the data on each channel.

The can-gw stack defines two threads: {can2linux, linux2can} per channel for input
and output CAN traffic respectively. These are modeled as restartable tasks to ensure timely
resynchronization with the freshest data on each bus after every suspend-resume cycle. We
map can2linux and linux2can to different cores within Quest to decouple input and output
paths from interleaved executions on the same core. The can-listener tasks in Linux
are scheduled using sched_deadline and rate-matched with the corresponding can-gw
threads thus ensuring synchronous and non-blocking end-to-end (E2E) communication for
the data-flow pipeline.

We set up three observation points within the stack that spans the two guests: (1)
CAN input: can2linux, (2) Processing: can-listener, and (3) CAN output: linux2can.
For each task, we measure and record the throughput as number of CAN frames sampled
every 1ms over four system execution windows, each lasting for one second. The system is
subjected to three ACPI suspend-resume cycles of 5, 10 and 15 second durations. Thus after
cold-booting at t = 0, a suspend signal is triggered at t ={1s, 7s, 18s} with corresponding
resume signals sent at t ={6s, 17s, 33s} respectively. For an accurate comparison, the total
number of CAN frames sampled by DriveOS™ were kept consistent across the two guests for
each execution window. Thus all messages sampled by Quest from a CAN channel before
the arrival of a suspend trigger would be processed to completion in Linux and sent back as
output before the system could be suspended. Any further input data arriving on the bus
after the suspend trigger is marked stale by the restartable can2linux task.

Figure 6 JuMP2start bench-test setup.
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Results. Fig. 7 shows transient and steady-state throughput profiles (blue impulses) for
each system execution window along the input data path: can2linux → can-listener for
chan-1. Temporal isolation between the data-flow pipelines of the two channels ensures
similar results are achieved for chan-2 data. We therefore omit those profile graphs due
to space constraints. Tables 2 and 3 summarize the results for both chan-1 and chan-2
across all four windows. The cumulative total CAN frames sampled by the system before
each suspend trigger is overlaid on the Quest throughput profile (Fig. 7), as a discontinuous
ramp graph in green. We note that reading from left to right of Fig. 7, all CAN frames
sampled in Quest per execution window are transferred to Linux with lossless non-blocking
communication. Results show that both Quest and Linux exhibit throughput variations

Figure 7 chan-1 throughput for 1st observation point: Quest (left) and 2nd observation point:
Linux (right) sandboxes.

Table 2 can2linux task in Quest.

Quest Execution Windows
Steady-State

Throughput (frames/ms) 1st 2nd 3rd 4th

chan-1
Min 0
Avg 2
Max 9 7 11 9

chan-2
Min 0
Avg 2
Max 8 7 10 9

Transient
Duration (ms) 1st 2nd 3rd 4th

chan-1 | chan-2
(Avg: 5.33 ms) - 6 4 6

Table 3 can-listener task in Linux.

Linux Execution Windows
Steady-State

Throughput (frames/ms) 1st 2nd 3rd 4th

chan-1
Min 0
Avg 1 2 1 1
Max 14 11 10 11

chan-2
Min 0
Avg 2 2 1 2
Max 15 13 13 13

Transient
Duration (ms) 1st 2nd 3rd 4th

chan-1 (Avg: 5.33 ms) - 6 7 3
chan-2 (Avg: 4.67 ms) - 4 5 5

between min and max frame rates at millisecond granularity However, Linux exhibits a higher
frequency of such variations than Quest. Therefore a minimum of 0 frame/s throughput is
abound in Linux leading to a sparse impulse profile. This indicates a less predictable frame
sampling rate over time in Linux. As a consequence, the can-listener task experiences
delays in system suspension while it tries to process all the data sent across shared memory
by Quest. This is seen in the Linux graph in Fig. 7 as throughput impulses extending beyond
the points of suspension. The delay in input data processing and consequent overrun in
execution of the can-listener task is due to the non-real time nature of the Linux kernel
and associated overheads of unbounded system-level interference from device interrupts.
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Table 4 Round-trip throughput and duration of transient phase for the two CAN channels
measured in linux2can task in Quest.

Quest Execution Windows
Steady-State Throughput (frames/ms) 1st 2nd 3rd 4th

chan-1
Min 0
Avg 3
Max 35 35 38 30

chan-2
Min 0
Avg 3
Max 66 35 24 48

Transient Duration (ms) 1st 2nd 3rd 4th

chan-1 (Avg: 28.33 ms) - 27 32 26
chan-2 (Avg: 23.00 ms) - 17 24 28

Each graph also shows a magnified view of the worst-case transient phase within an
execution window just after system resumption. Before the CAN throughput reaches steady-
state, a transient throughput spike is observed. This is because the host controller device
and CAN device driver in the Quest kernel resumes before the can-gw user-space task. To
avoid valid data being lost, the actively generated traffic is buffered as fresh data while the
VMS resumes. Upon restart of the can2linux thread, stale data from before suspension is
discarded and the newly cached data is processed in bursts yielding throughput spikes.

Due to the synchronous nature of the data pipeline between the two guests, Linux also
shows a similar spike upon resumption (green box in Fig. 7). However, due to the lightweight
nature of Quest, the can-gw resumes before can-listener in Linux. Refer to Section 3.2 for
a detailed latency analysis. This mismatch in resumption latencies causes additional backlog
of freshly sampled messages sent to the inter-sandbox shared memory upon resumption.
Compounded with added processing delays, Linux thus exhibits higher throughput spikes that
sometimes exceed Quest’s maximum frame rate. In this case, the can-listener task tries
to catch up to Quest to process all the backlogged frames in the inter-guest shared-memory.

Overshoots in the CAN throughput die down quickly however with transient durations
recorded for each execution window in Tables 2 and 3 for Quest and Linux respectively.
Worst-case settling time for both guests is also highlighted. Timely transition to steady-state
CAN throughput is essential for system safety. JuMP2start’s time-sensitive resumption
ensures that steady-state CAN throughput is achieved in under 7ms for the input pipeline.
In particular, the restartable task mode enables can2linux task to discard any stale data
upon resumption thereby preventing needless processing of such frames along the input path.

Table 4 shows the throughput summary for the complete round-trip data path: can2linux
→ can-listener → linux2can recorded at the 3rd observation point. linux2can acts
as a data concentrator for both the echoed back throttle traffic from Linux as well as
the newly generated output traffic from the infotainment applications. Longer transient
durations and higher maximum throughput values compared to the input path are observed
in steady-state across all execution windows. These can be attributed to the bursty nature
of traffic generation by Linux’s application tasks and variability in task dispatch between
different scheduling classes. This inturn impacts availability of output data in shared memory
to Quest. Furthermore the default continuable nature of the can-listener task results
in Linux retaining some stale data in its buffers if generated by Linux applications during
suspension. Upon resumption, Linux sends the data to shared memory as valid output CAN
frames. Consequently linux2can task in Quest processes the forwarded stale data, which
contributes towards longer lasting transient durations before reaching steady-state output
frame rates. This further motivates the potential benefits of JuMP2start’s restartable task
model over the continuable mode of execution.
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Figure 8 E2E latencies for JuMP2start.

3.2 JuMP2start: End-to-End Delay Performance
Experimental Setup. We measured overheads of suspension and resumption as JuMP2start
transitions the DriveOS™ VMS between the two ACPI power states: S0 (System Working) ↔
S3 (Suspend-to-RAM). To ensure that timestamp counters (TSCs) remain consistent across
all CPU cores of the DX platform, we disabled dynamic performance scaling for each guest
sandbox and fixed the operating frequency per core to 2.4GHz. For our experiments, the
dual-sandbox system is allowed to run in normal execution mode (ACPI S0) for 10 seconds
before a suspend signal triggers the system to transition to ACPI S3 state.

The resumption signal is delivered 25s later by the platform’s real-time clock (RTC),
which is programmed to be a wake-up source. Once the UEFI firmware resumes, control is
handed over to the Quest master sandbox, which begins to transition the system back to
S0 state. Resumption is marked complete when user-space applications in both sandboxes
are operational and CAN packet communication in the data-flow pipeline: can-gw↔can-
listener, is restored.

Latency data is collected for the end-to-end system, individual guests, and various
JuMP2start components (enumerated in Fig. 2) over several consecutive system suspend-
resume cycles. We note that our results, presented in the next section, not only complement
the original Jumpstart results for native Quest and Linux BSPs but extend them by providing
additional insights into the worst-case overhead cost associated with suspending and resuming
the AP cores in addition to BSPs for each guest within our VMS.

Results. Fig. 8 shows the end-to-end delays incurred by JuMP2start threads in each
sandbox as well as collectively for the entire DriveOS™ system. The bars correspond to
the critical path that incurs the longest delay in each case. A detailed breakdown across
the different abstraction layers of each guest’s PM software stack is presented in Table 5
and Table 6.

For Linux guest suspension, we present the cumulative delay for the full vertical guest
stack since user-space applications are frozen along with the kernel-level threads within
JuMP2start’s kernel module. We observe that the delay far exceeds that of Quest’s guest local
delays and therefore contributes a major percentage (94.7% in the worst-case) to the total
E2E suspension latency of DriveOS™. The difference arises because the RTOS kernel hosts a
minimal number of optimised services to support timing- and safety-critical tasks compared
to Linux that hosts complex mission-critical and user-interactive graphical applications. We
also note that for our DX platform, the default UEFI firmware only reports performance
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Table 5 Suspend delays for JuMP2start in DriveOS™ (milliseconds).

Stage/Duration (ms) Minimum Average Maximum
E2E DriveOS™ Suspend 454.306 544.983 640.963
E2E Quest Suspend 22.198 36.216 74.864
Quest Userspace Suspend 6.483 20.306 58.48
Quest Kernel + Hypervisor Suspend 14.999 15.909 16.677
E2E Linux Suspend (Full Guest Stack) 411.573 497.032 607.585

Table 6 Resume delays for JuMP2start in DriveOS™ (milliseconds).

Stage/Duration (ms) Minimum Average Maximum
E2E JuMP2start Resume (System Critical Path) 2,578.83 2,622.00 2,677.14

Common to Both Sandboxes
Firmware 536.47 540.74 546.33

Quest Guest: Parallel to Linux
Monitor 53.23 53.44 53.52
Kernel 104.29 104.32 104.33
Userspace application: can-gw 158.58 236.56 297.98
E2E Quest Guest Resume (Warmboot→can-gw) 328.32 406.11 467.67

Linux Guest: Parallel to Quest
Monitor 20.99 21.08 21.11
Kernel + Userspace 1,954.02 1,997.65 2,050.25

Core Kernel 23.18 23.27 23.31
Devices 1,926.32 1,965.98 2,018.23
Userspace application: can-listener 0.67 6.35 44.67

E2E Linux Guest Resume (Warmboot→can-listener) 1,975.10 2,018.72 2,071.33

data for ACPI S3 resume. We therefore record the latency of firmware resumption common
to both guest VMs in Table 6. For the rest of system resumption, we distinguish between
each system management layer within Quest and Linux.

The pipeline comprising the can-gw and can-listener tasks is the last to resume.
The critical path in each guest therefore accounts for the delay measured from the point
of warmboot (WB)/wake-up of the local guest monitor to the time the first input CAN
message is successfully sampled in Quest and Linux respectively. This is represented as
Warmboot→{can-gw, can-listener} in Table 6.

Quest’s entire stack undergoes suspension and resumption in well under 550ms in the
worst-case. Linux on the other hand takes 2.7s to complete the full cycle. Due to the
lightweight nature of the RTOS, Quest handles a suspend-resume cycle more efficiently while
Linux incurs a larger latency. For Linux, JuMP2start reuses builtin functionality of the
native PM-core subsystem, whose kernel-level routines are by default scheduled under non
real-time scheduling classes.

Although we simplify JuMP2start’s design by leveraging predefined power-management
methods within Linux, it comes at the cost of added delay. The native PM subsystem utilizes
Linux’s hotplugging infrastructure for suspending and resuming its application processor
cores. As a consequence, threads running on those cores are first migrated to and from
Linux’s BSP core before being frozen or thawed respectively in their execution. This incurs
thread migration delays. Additionally, multi-state transitions of hotplug states on each AP
core, filesystem synchronization and power management of devices comprising a complex
hierarchy of buses and device classes, lead to further delays.

In our design, we discovered that these latencies are unavoidable in Linux due to a tight
interdependence between various kernel subsystems that require a deterministic order of
power-management events. However, as stated in Section 2.1, JuMP2start’s design optimizes
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Figure 9 JuMP2start critical path for suspension (left) and Resumption (right) with functional
component latencies.

out needless saving and restoring of ACPI non-volatile memory regions, which are otherwise
auto preserved by the platform’s firmware. We also avoid forced invocations of various
deprecated methods that are retained by Linux for backward compatibility. Nevertheless,
compared to Quest, Linux retains a larger and more complex code base to host multiple kernel
level services, which necessitate synchronization before and after every power transition. The
RTOS guest on the other hand only supports a single VCPU scheduling class and a smaller
subset of I/O devices. Quest also operates under a kernel-wide locking mechanism, which
makes thread migration completely unnecessary.

The critical path for the E2E DriveOS™ system comprising both guests differs between
suspension and resumption. Fig. 9 marks the path in red arrows for each case with the worst-
case delays annotated on respective functional components of JuMP2start (Refer to Fig. 2).
Since suspension is serially orchestrated by the master power manager, DriveOS™’s suspension
latency therefore includes the time between the arrival of a system-wide suspend event and
when the master Quest sandbox issues ACPI suspend-to-RAM method for the final transition
to S3 state.

Upon receiving the wake-up event, the embedded controller hardware resumes the ACPI
firmware and then begins the warmboot procedure for Quest’s BSP. Once startup inter-
processor interrupt sequences are sent to all AP cores, resumption for each guest proceeds in
parallel. Since Linux takes longer to resume, the majority of the resumption critical path
latency is contributed by the Linux guest. The E2E suspend-resume path then becomes a
simple sum of all critical latencies as summarized in Fig. 8. Compared to cold-boot latencies
of 16.7s (Quest) and 24.52s (Linux) for the single core version of DriveOS™ [6], JuMP2start
massively cuts down on the startup delays for a multicore VMS to just under 2.7s.

Furthermore, in a series of preliminary experiments, not shown for brevity, we observed
a minimal delta increase of 6µs to save an AP core’s state when scaling up from a single
BSP core to 3-cores in Quest. The majority of the Quest AP suspension overhead results
from the kernel-wide locking mechanism, a necessary built-in feature of the Quest kernel.
JuMP2start leverages this synchronization primitive to maintain execution correctness during
suspension. For the Linux guest however, increasing CPU count from 1 to 3 incurs a much
higher overhead. This is measured in the PM module on the Linux BSP to be 17.387ms for
a single core and 26.172ms for 3 cores. A linear projection would indicate an ≈ 9ms increase
in cost per AP core added thereafter. This delay originates within the native Linux PM-core
as each AP traverses the state-space of the hotplugging subsystem.
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3.3 JuMP2start: Restartable v/s Continuable Task Performance

Figure 10 can2linux modeled as a restartable and continuable task.

Experimental Setup. To showcase the benefits of JuMP2start’s task model, we compared
worst-case response time performance of restartable tasks against their continuable behavior
across multiple suspend-resume cycles. For our setup, we toggled the task mode (Mresume

i =
{r, c}) for the can2linux thread in Quest’s can-gw task. Fig. 10 shows the thread’s control
flow graph under the two task modes. can2linux periodically acquires and pre-processes
raw CAN data from the hardware bus and communicates it to Linux’s can-listener task
across shared memory for further processing.

During a suspend-resume cycle, the task would freeze within its main loop and resume from
this last point of preemption. For the continuable case, it would then continue processing the
old CAN data until it commits to shared memory at the end of the loop. For the restartable
case, checkpoints after each basic block of straight-line code allow the task to discard any
stale data within the sampling pipeline that was acquired before suspension.

To highlight the differences between the two models, we vary the pre-processing duration
within the body of the main loop in the range T = 1 : 1000 ms. These values signify data
processing delays corresponding to safety-critical automotive control functions within the
real vehicle. We measured the timestamps (tx) at each functional stage to determine the
worst-case duration for processing stale data and the corresponding response time of the task
to reset its execution upon resumption. The experiment was repeated over 50 suspend-resume
cycles and the results are presented in Fig. 11.

We also determined the number of stale messages processed by the continuable can-
listener task in Linux. For these measurements, can2linux was fixed to restartable task
semantics to ensure that Quest does not forward any stale data to Linux after resumption.
This allowed us to isolate any unprocessed data committed to Linux during suspension. The
experiment aims to highlight the differences between the two models across suspend-resume
boundaries. To track data flow from Quest to Linux, we tagged each CAN frame with a
unique sample-id and counted the number of messages committed to shared memory during
suspension. Fig. 12 shows the results averaged over consecutive ACPI state transitions.
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Figure 11 Stale message processing in Quest
across system suspend-resume.

Figure 12 Number of stale messages in Linux
across system suspend-resume.

Results. The line graphs in Fig. 11 represent the average worst-case stale data processing
delay incurred by the can2linux task. An increase in pre-processing delays results in the
two graphs diverging. Even with the course-grained user-space implementation of resumption
checks, the restartable mode performs 50% better on average (40% in the worst-case) than
the continuable case. We note that stale message processing delays can be made negligible
by implementing the checkpoints within the kernel, allowing the task to resume directly
at the beginning of the loop. However for proof-of-concept and ease of measurement, only
user-space checkpoints are used.

The inset bar chart shows the negligible branching overhead to start the next iteration of
the main loop indicating little to no additional overhead for a semantic reset of restartable
tasks upon resumption. The restartable mode thus avoids propagating stale data within the
system and timely samples fresh input data.

In Fig. 12 the number of stale messages committed to shared memory while each guest
suspends, show a decreasing trend with increasing Quest pre-processing delay. At the zero
point, the shared memory buffer fills to capacity (41 messages) almost immediately. However,
for delays beyond 10 ms, the number drops to 2 stale messages processed in the worst-case.
For mission-critical tasks in Linux, this means the IC display would show outdated instrument
data from before suspension. To ensure end-to-end data consistency and synchronicity as
well as safety and timing correctness across vehicle stop-start cycles, our results motivate the
shift from continuable to a restartable task model for Linux’s time-sensitive tasks.

4 Related Work

JuMP2start is motivated by prior work on fast, critical service resumption [6] for partition-
ing hypervisors [38,39,47,56]. Leveraging previously proposed techniques for ACPI power
management [4], JuMP2start is applied to an SDV system [7,25,55] comprising an RTOS
and a legacy OS. Our approach differs from that in Jumpstart [6] by extending all its guests
to support multicore suspension and resumption. The use of multiple cores across all guests
is important for consolidating many vehicle functions as software tasks on the same platform.

System-level restarts and cold-boot optimisations have been extensively explored in
the context of fault-tolerance for simplex-based controller architectures in real-time safety-
critical systems [1,2,8,9]. Fast recovery times are ensured by either reactively [3,32] or
proactively [15,17] reinitializing system states. However, such approaches often modify the
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firmware and bootloaders to reduce restart time for the RTOS and applications running on
single-core processors or microcontroller platforms [3,29]. Although JuMP2start’s suspend-
to-RAM approach does not preclude firmware optimisations [6], this work primarily focuses
on a multicore stop-start technique that spans the hypervisor and virtualized OS domains of a
complex software-defined VMS. Additionally, JuMP2start differentiates between continuable
and restartable tasks, performing appropriate time management and selective reinitialization
to avoid processing stale data on system resumption. This contrasts with the cold restart
approach, which always loads a fresh image of the software stack from an initial clean state.

Unlike runtime rejuvenation strategies that periodically rollback software components to
protect against faults [58,59], JuMP2start asynchronously suspends and resumes an entire
VMS whilst ensuring state coherency, functional safety and real-time schedulability of stateful
and stateless tasks. Notwithstanding, the JuMP2start model offers an opportunity to protect
safety- and timing-critical automotive systems against faults with fast service deactivation
and recovery. We leave further exploration of this feature for our future work.

Rush from General Motors Corp. [60] explores Linux’s suspend-to-RAM mechanism
for meeting startup performance requirements of an Infortainment ECU. According to the
author, rising software complexity leads to long cold startup times between 10-45 seconds
thereby exhibiting sluggish performance. This significantly degrades end-user experience
and dampens expectations. With the availability of suspend-capable automotive-grade
microprocessors, high robustness and quality can be achieved by initializing operating
systems from low-power states as quickly as 4 seconds in the worst case. Unlike JuMP2start,
the work focuses on improving reactivation latency through ACPI supend-resume for less
critical automotive functions that have no timing or safety requirements. The proposed
PM model is also restricted to a standalone ECU managed entirely by Linux, as opposed
to a centralized multicore hardware platform under the control of a multi-domain vehicle
OS. In contrast, JuMP2start coordinates power-management across multiple guest OSes. It
builds on techniques for Quest and Linux power management [12,42,43,45,49,51] to reduce
the latency of multi-OS suspension and resumption.

Virtualized power management [16,31,33] reduces the overheads of launching and migrating
serverless workloads in the cloud [5,34] and data-centers [10,46]. However, this is restricted
to virtual machines or guest user-space applications and has no effect on real power states of
the host system. In contrast, JuMP2start supports physical machine power management [67]
through full-stack suspension of each guest OS and its locally replicated VMM.

Other research efforts have investigated multicore power management techniques that
range from dynamic voltage and frequency scaling [28,37,57] to energy-aware schedul-
ing [62,75], and device power management [35,69] in the general computing domains. The
increasing complexity of SDVs [13,52,53] requires more careful consideration of how to
minimize power usage during the operation of a vehicle management system.

5 Conclusion & Future Work

JuMP2start is a time-aware stop-start solution that leverages ACPI power state transitions
to reduce the startup latency of mixed-criticality automotive functions for SDV systems.
This work describes JuMP2start’s implementation in the context of the DriveOS™ VMS,
which combines an RTOS with a legacy OS. DriveOS™ replaces separate ECUs with software
functions supported on a multicore industrial PC. JuMP2start mitigates cold-boot delays of
PC-based systems by transitioning the VMS into and out of suspend-to-RAM sleep states
when a vehicle is stopped and restarted.
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JuMP2start introduces a novel restartable task model to ensure semantic and temporal
correctness for the VMS tasks across suspend-resume transitions. Restartable tasks avoid
stale data processing on resumption, and are correctly re-initialized with appropriate time
budgets. Continuable tasks, in contrast, are able to resume execution from where they are
suspended without re-initializing their budgets. JuMP2start is shown to resume critical CAN
traffic within 500ms after invoking firmware power management services, while low-criticality
IC readings are updated within a further 2s.

The resumption times of JuMP2start are far closer to traditional ECU startup delays,
compared to PC-class cold boot latencies. JuMP2start is operational in a road-legal electric
vehicle, which has been configured to activate CAN buses only after the VMS has fully
resumed critical services. Delaying the activation of CAN traffic until approximately 500ms
after invoking firmware power management services, ensures that no stray messages are on
any vehicle buses while the system is still resuming operation.

Future work will investigate dynamic power management in multi-domain vehicle man-
agement systems. The aim is to minimize total machine power while ensuring task pipelines
spanning multiple guests achieve their timing and functional objectives.
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