
Comparison of k-ary n-cube and de Bruijn Overlays in QoS-constrained
Multicast Applications

Richard West, Gerald Fry and Gary Wong

Computer Science Department
Boston University
Boston, MA 02215

{richwest,gfry,gtw}@cs.bu.edu

Abstract

Research on the construction of logical overlay networks
has gained significance in recent times. This is partly
due to work on peer-to-peer (P2P) systems for locating
and retrieving distributed data objects, and also scalable
content distribution using end-system multicast techniques.
However, there are emerging applications that require the
real-time transport of data from various sources to poten-
tially many thousands of subscribers, each having their own
quality-of-service (QoS) constraints. This paper primarily
focuses on the properties of two popular topologies found
in interconnection networks, namely k-ary n-cubes and de
Bruijn graphs. The regular structure of these graph topolo-
gies makes them easier to analyze and determine possible
routes for real-time data than complete or irregular graphs.
We show how these overlay topologies compare in their
ability to deliver data according to the QoS constraints of
many subscribers, each receiving data from specific pub-
lishing hosts. Comparisons are drawn on the ability of each
topology to route data in the presence of dynamic system ef-
fects, due to end-hosts joining and departing the system. Fi-
nally, experimental results show the service guarantees and
physical link stress resulting from efficient multicast trees
constructed over both kinds of overlay networks.

1 Introduction

This work addresses the problem of delivering real-time
data streams on an Internet-scale, from one or more pub-
lishers to potentially many thousands of subscribers, each
having their own service constraints. Target applications
for this work include multimedia streaming of live video
broadcasts, interactive distance learning and the exchange

of time-critical data sets in large-scale scientific applica-
tions [22].

Many researchers are currently investigating end-system
or application-level multicast techniques [11, 2] to dis-
tribute content in a scalable manner. This work is partly
motivated by the lack of widespread deployment of IP mul-
ticast at the network-level and the inability of routers to em-
ploy application-specific stream processing services. Re-
cent research on end-system multicast [8, 16, 4] has fo-
cused on the construction of logical meshes (or overlays)
over which multicast trees or routes may be constructed, for
the scalable delivery of data. Primary to these systems is
the need to minimize physical link stress, or the duplica-
tion of data routed across a logical overlay network, while
maximizing bandwidth. Our work is centered around the
study of scalable overlay topologies [19, 14, 23, 3, 5] con-
structed over physical networks for content distribution of
real-time streams to subscribers with their own quality-of-
service (QoS) constraints. Depending on the application,
these constraints may be in terms of throughput, delay, jit-
ter or loss probability.

NARADA is one of the first end-system multicast ap-
proaches to construct a logical mesh for routing data. Phys-
ical hosts map to nodes in this logical mesh, or graph,
depending on whether or not they aid in the construction
of suitable paths between end-systems. Unfortunately, ap-
proaches such as NARADA suffer from scalability prob-
lems due to the overheads of adapting the mesh topol-
ogy and considering all possible communication paths be-
tween end-hosts. This has motivated us to consider more
regular topologies for logical interconnection networks be-
tween end-hosts, over which real-time data may be multi-
cast. Specifically, parallel computer architectures such as
the SGI Origin 2/3000 use k-ary n-cube topologies to con-
nect processing elements, thereby yielding a trade-off in

the connectivity versus hop count between processing el-
ements [10, 6, 7, 15]. Similarly, peer-to-peer (P2P) systems
construct logical overlay topologies as a result of various
distributed hashing techniques that include hypercubes [24],
more generalized toroidal structures [20, 1] and k-ary n-
cubes [21].

While many P2P systems make use of overlay networks
to locate and retrieve distributed objects using O(log M)
message exchanges (given a system of M hosts), there
are no guarantees on the timely delivery of data. In con-
trast, there is a growing interest in applications that require
the real-time transport of data streams to potentially many
thousands of end-users, each with their own service con-
straints. It seems reasonable, therefore, to consider over-
lay topologies for routing real-time data streams in a man-
ner that achieves low end-to-end delay. A carefully cho-
sen overlay structure is important to: (1) minimize the hop
distance over which data must travel, (2) allow for flexibil-
ity in the choice of paths available for multicast commu-
nication, without making routing choices excessively com-
plex, and (3) avoid undue stress on the underlying physi-
cal network. Also, using end-hosts for real-time transport
of data allows application-specific stream processing to be
performed, which would otherwise be difficult in existing
routers. For example, various packets of a given stream
could be discarded at an intermediate host to reduce the
bandwidth demand along subsequent network links to the
destination.

In prior work, we investigate k-ary n-cube graphs as
structures for overlay networks over which arbitrary mes-
sages are routed between hosts [12]. Part of this work
studies the costs of adapting an overlay topology in a dy-
namic setting, as end-hosts join and depart the system over
time [13]. In comparison, recent work by others ana-
lyzes various graph properties that are associated with delay
and fault tolerant metrics from logical networks of various
types, including those modeled after de Bruijn graphs [18].

Although de Bruijn graphs achieve a diameter closer to
the Moore bound (mentioned in [18]), the k-ary n-cube
structure is more flexible for routing QoS-constrained data
streams in the sense that more shortest-path routes are avail-
able between a given pair of nodes. Thus, with k-ary n-
cube networks, there is a larger range of physical end-to-
end costs and a greater chance of finding routes that more
closely fit the service constraints for each subscriber. Fur-
thermore, it is unclear how an arbitrary message can be
routed over a de Bruijn topology if there is a node fail-
ure on the path of the message while it is en route to its
destination, whereas k-ary n-cube networks do not require
a routing path to be determined completely at the time of
transmission from the source.
Contributions: This paper provides a comparative analy-

sis of k-ary n-cube and de Bruijn overlay networks, par-
ticularly considering properties of the logical topologies
relevant for applications that involve real-time multicast
communications and self-organization of a high volume of
peers. Formulae are presented for the average and worst-
case number of shortest paths between pairs of nodes in k-
ary n-cube and de Bruijn graphs, in order to evaluate the
topologies with respect to QoS route availability. We in-
vestigate the efficiency of each overlay structure for multi-
cast communications and propose a method for dynamically
handling host joins and departures in k-ary n-cube systems,
similar to that used by systems such as Chord [24]

The rest of the paper is organized as follows. In Sec-
tion 2, various properties of k-ary n-cube and de Bruijn
graphs relating to route availability and fault resilience
are introduced. Particular attention is paid to topological
characteristics important for the delivery of real-time data
streams. Section 3 includes a series of simulations that com-
pare the performance (in terms of service guarantees and
physical link stress) of various multicast routing approaches
across overlay networks. Dynamic characteristics of over-
lay topologies are investigated in Section 4, detailing how to
manage physical host to logical node mappings, and related
state information, in the presence of system joins and de-
partures. This is followed by a description of related work
in Section 5. Finally, conclusions and future work are de-
scribed in Section 6.

2 Overlay Routing

We prefer topologies that support routing policies yield-
ing a large number of routes between any source and des-
tination pair for two reasons. Firstly, the characteristics of
physical links corresponding to logical edges in the overlay
change dynamically, and our hypothesis is that a large num-
ber of routes to choose from allows for a selection of paths
that fulfill as many QoS requirements as possible. Secondly,
redundant routes increase the probability that a destination
remains reachable, even if some intermediate nodes become
unavailable either due to host failure or changes in system
membership.

While there are many factors that influence acceptable
routing efficiency or fault tolerance, it is important to char-
acterize the numbers of routes between pairs of nodes us-
ing different overlay topologies. Specifically, we compare
the availability of routes across k-ary n-cube and de Bruijn
graphs, which are popular topologies for interconnection
networks in various parallel computing architectures. For
k-ary n-cubes and de Bruijn graphs with M = kn nodes,
each node is represented by a logical identifier consisting of
n base-k digits. Two nodes are connected in a k-ary n-cube
iff their identifiers have n−1 identical digits, except for the

ith digit in both identifiers, which differ by exactly 1 mod-
ulo k. In contrast, in a de Bruijn there is a directed edge
from node A to B iff the last n − 1 digits of A match the
first n − 1 digits of B. Figures 1 and 2 show an example of
each topology, where k = 2 and n = 3. Observe that these
figures show examples of failed nodes. In our application
domain, we envision a distributed system with dynamically-
changing end-host membership. This factor contributes sig-
nificantly to the importance of alternative routes between
end-hosts, as will be seen below.

2.1 Route Availability

k-ary n-cubes: Since we want to enforce the property that
forwarding proceeds only along those edges which reduce
the hop count to the destination, we consider only those
routes that reach the destination with the minimal length,
which we know is no more than h =

⌊

k
2

⌋

n.
In the usual case, the number of routes between maxi-

mally distant nodes, R, is given by the following:

R =

(⌊

k
2

⌋

n
)

!
(⌊

k
2

⌋

!
)n (1)

If k > 2 and even, we have:

R =
2n

(⌊

k
2

⌋

n
)

!
(⌊

k
2

⌋

!
)n (2)

Intuitively, Equation 1 is derived by first considering
there are at most h hops between a pair of nodes, and there
are h! permutations of these hops that could make up pos-
sible paths. However, not all such permutations are valid.
Specifically, of the

⌊

k
2

⌋

hops traversed in a given dimension
only one path is valid, so the denominator of Equation 1
eliminates all but one of the (

⌊

k
2

⌋

)! permutations in each of
the n dimensions. From Equation 1, when k = 3 (which
is optimal for minimizing h [12]), R reduces to n! routes
between maximally distant nodes. For the case when k > 2
and even, Equation 2 factors 2n into the numerator of R to
account for the doubling in possible paths in each of the n

dimensions.
The local route redundancy (that is, the number of avail-

able neighbors which reduce the distance to the destination)
is simply the number of dimensions in which the current
node’s address differs from the destination. Since there are
n dimensions, the best case local redundancy is n, and the
worst case is 1 (when the destination is an immediate neigh-

bor). The average case is n(k−1)
2k

.
de Bruijn graphs: In a de Bruijn graph of degree k and
diameter n = logk M , if the number of hops remaining to
some destination is less than n, then only one of the k neigh-
bors leads to a lower hop count to the same destination, so

in this sense there is no route redundancy in either the local
or the global case. However, if we relax the restriction that
messages are forwarded only along routes that reduce the
distance to the destination for the first (source) node, then
we can find (in general) k − 1 non-overlapping routes each
of hop-count distance n + 1 [18].
c-redundant de Bruijn graphs: In a standard de Bruijn
graph, once a destination is specified, each node has ex-
actly one neighbor whose hop count to the destination is
one smaller, therefore there is no redundancy nor flexibility
in routing at intermediate nodes. However, if we are willing
to increase the degree of the graph from k to ck for some
constant 1 ≤ c ≤ k, and allow node x to forward to the set
of neighbors (ikn−1+kx+j) mod kn for all 0 ≤ i < c and
0 ≤ j < k, we achieve a topology that we designate as a
c-redundant de Bruijn graph. In such a structure, each node
(other than the k nodes neighboring the destination) has ex-
actly c neighbors to choose from, each of which reduces the
distance to the destination. This increases the upper bound
on the number of routes through the graph to cn−1.

Properties of some of the above types of graphs with var-
ious parameters are shown in Table 1.

2.2 Fault resilience

We now consider the case where a node along a short-
est path from source to destination fails, and the destination
must be reached via an alternative route. Since we do not
expect any node to have global knowledge about the state of
the network, we assume that the current forwarding node is
H 1 hops away from the ultimate destination, and the rout-
ing agent at this host has detected that the preferred neigh-
bor H − 1 hops from the sink is unavailable. We presume
that H > 1, ruling out the case in which the destination
itself fails.
k-ary n-cubes: We are now left with (H − 1)(H − 1)!
shortest paths. There are only H − 1 instead of the usual
H neighbors available at the current hop. However, there
remain the usual (H − 1)! paths from the next hop onward.

Various routing policies involving k-ary n-cube topolo-
gies can be employed to route around a failed node along
the path from source to destination by eliminating the failed
node from the set of next-hop alternatives. For example,
given the resulting set of available neighbors of the for-
warding host, a routing decision is made based on physi-
cal proximity metric optimization, or by left-/right-shifting
successive digits in the logical identifier until the ID of an
active neighbor is found. These routing approaches will be
considered further in Section 3.
de Bruijn graphs: In this case, the shortest path is unique,
so there is no backup path as short as the original.

1Where H is the Hamming distance between source and destination
node IDs.

Hop count Local routes Global routes
Nodes Degree Med Max Min Med Max Med Max

k n k-ary n-cubes
2 20 1M 20 10 20 2 5 20 3.6M 2 × 1018

3 13 1.6M 26 9 13 2 5 13 363K 6.2G
k de Bruijn graphs
2 1M 2 19 20 1 1 (2) 1 (2)
3 1.6M 3 13 13 1 1 (3) 1 (3)
4 1M 4 10 10 1 1 (4) 1 (4)
5 2M 5 9 9 1 1 (5) 1 (5)

20 3.2M 20 5 5 1 1 (20) 1 (20)
26 12M 26 5 5 1 1 (26) 1 (26)

k c c-redundant de Bruijn graphs
2 2 1M 4 19 20 2 2 2 256K 512K
3 3 1.6M 9 13 13 3 3 3 531K 531K
4 2 1M 8 10 10 2 2 2 512 512
4 4 1M 16 10 10 4 4 4 256K 256K
5 4 2M 20 9 9 4 4 4 64K 64K
5 5 2M 25 9 9 5 5 5 390K 390K

10 2 1M 20 6 6 2 2 2 32 32
13 2 5M 26 6 6 2 2 2 32 32

Table 1. A comparison of k-ary n-cubes versus de Bruijn graphs

c-redundant de Bruijn graphs: In this topology there will
be (c − 1)cH−1 minimal length routes, because we have
c−1 instead of the usual c neighbors at the current hop, and
the expected cH−1 paths from the subsequent node to the
destination.

If so many failures have occurred that no path of ideal
length still exists, the question still arises whether it is pos-
sible to find other backup routes which are longer but still
reach the destination. We now consider this issue for each
topology as follows:

100000

010

101

111011

001

110

Figure 1. A k-ary n-cube containing failed
nodes

k-ary n-cubes: If each node maintains only local knowl-
edge about the graph in a k-ary n-cube, then the failure
of just two intermediate nodes can make a destination un-
reachable within h =

⌊

k
2

⌋

n hops. For instance, in Figure 1,
nodes 001 and 010 have failed, leaving nodes 000 and 011
unable to reach each other in h = 3 hops or less. This prob-
lem occurs in a k-ary n-cube graph when a pair of nodes
separated by a Hamming distance of 2 fail simultaneously.

At least two nodes must fail before all paths of preferred
length become unavailable, but once this happens, our stan-
dard routing policy fails (as described in Section 3). In the-
ory there may exist a path to the destination by routing in
the “wrong” direction along some dimension, which would

increase the hop count by at least 2 if k = 2 and at least 1 if
k = 3, but a sophisticated routing policy is needed to guar-
antee convergence, because normally we rely on decreasing
the hop count at each node to avoid cycles.

000

001

010

100

101

011

111

110

Figure 2. A de Bruijn graph containing a failed
node

de Bruijn graphs: At each node there are k − 1 backup
(non-overlapping) paths with worst case hop count n to any
destination, so if the source is aware of a failure along the
primary path (which has maximum hop count n− 1), it can
choose one such backup path, increasing the hop count from
n − 1 to n in the worst-case.

In a standard de Bruijn graph, a single failed node along
the primary path between any pair of nodes increases the
path length. Consider the path from node 001 to 101 in
Figure 2. If all nodes are operating, then the route 001 →
010 → 101 is optimal. However, if node 010 fails, then the
best available path is 001 → 011 → 110 → 101.

If each node maintains only local knowledge of the net-
work, then it is the responsibility of intermediate nodes to
detect the failures, and the worst case hop count increases
from n−1 to x+n, where x is the number of hops between
the source and the first node that is capable of detecting the
failure of the path with optimal hop count.
c-redundant de Bruijn graphs: This topology is resilient
enough that at least c nodes must fail before the length of
the preferred route increases. In this scenario, the result is

similar to the standard de Bruijn case, except we now have
ck−1 backup paths (though some will overlap). Again, the
worst case hop count increases from n − 1 to x + n.

3 Multicast Tree Construction

The efficiency with which data can be multicast to a sub-
set of hosts is dependent upon the overlay topology, since
the placement of logical edges between nodes determines
the paths that are used in the underlying physical network.
Furthermore, the availability of multiple distinct routes be-
tween nodes and the ability to redirect via alternate nodes
en-route to a destination provide the mechanisms for con-
structing multicast trees in a decentralized fashion. We eval-
uate methods for building efficient multicast trees using the
following metrics:
• Relative delay penalty: This is calculated by dividing

the total cost to route a message over a given set of
edges in the overlay, by the cost of routing between
the same end-points using unicast routing across the
physical network.

• Average link stress: Communication between hosts is
restricted to the set of edges supported by a logical
topology that independently maps each logical link to a
path in the underlying physical network. Since we are
interested in constructing multicast trees using such
virtual topologies, it is possible for distinct edges in-
volved in transmission of multicast data to overlap in
the physical links that they represent. Therefore, in
multicasting a single message from a publisher to a set
of subscribers, there are a number of message dupli-
cations that travel along a single link in the physical
network. Average link stress is defined as the num-
ber of message transmissions over all physical links
divided by the number of physical links involved in
multicasting a single message to each destination host.
In building efficient multicast trees using overlay net-
works, we prefer regular topologies which minimize
average link stress, thus placing less strain on physical
communication resources.

• Average normalized lateness: We assume that each
subscriber host specifies a real-time service constraint
on the data it receives in the form of a maximum end-
to-end cost metric, such as a latency deadline. For
a given subscriber host, s ∈ S, and its correspond-
ing latency constraint, c, a normalized lateness value,
L(s, c), is calculated using the following formula:

L(s, c) =

{

0 if s.cost(p) ≤ c
s.cost(p)−c

c
if s.cost(p) > c

,

where s.cost(p) denotes the total cost of routing a mes-
sage along the logical network from publisher host p

to subscriber s. The lateness values are normalized in
order to eliminate bias towards subscribers with large
latency constraints, relative to other subscriber hosts in
the group, and all subscriber hosts with satisfied con-
straints are assigned a normalized lateness of zero. The
average normalized lateness is defined as the mean of
normalized lateness values over all hosts in S.

• Success ratio: For a group of subscribers, S, the suc-
cess ratio is the fraction of all members in S that re-
ceive data streams in accordance with their service re-
quirements.

Other metrics for evaluating the efficiency of multicast
trees include multicast tree weight. Given a weighted graph,
G = (V,E,w), a publisher node, p ∈ V , and a set of sub-
scriber nodes S ⊂ V , the multicast tree, T = (V ′, E′, w),
spanning all nodes in S∪{p} and rooted at node p, is associ-
ated with a weight, δ(T) =

∑

e∈E′ w(e). Note that T may
contain nodes in V −S that correspond to intermediate hosts
responsible for forwarding messages towards subscribers. It
makes sense to minimize the value of δ(T) while keeping
the complexity of tree construction algorithms manageable
for highly dynamic systems on an Internet scale. The op-
timal solution is a Steiner tree over points S, though the
problem of finding such a tree given an arbitrary graph is
known to be NP-hard [17]. Considering this paper focuses
on QoS-constrained routing via multicast trees built using
overlays, we do not consider the multicast tree weight met-
ric any further. Instead, we compare the multicast trees gen-
erated from de Bruijn graphs with trees formed using poli-
cies for routing in k-ary n-cube overlay networks using the
other metrics described above.
Experimental Results: A series of experiments were con-
ducted to quantitatively characterize the support for multi-
cast communications inherent in k-ary n-cube and de Bruijn
overlay networks. In each experiment, multicast trees are
constructed in the k-ary n-cube according to three poli-
cies:

• Combined ODR paths: A tree is constructed as a com-
bination of paths computed using the ordered dimen-
sion routing (ODR) scheme described in [12]. Sim-
ply, at each hop along a path to a specific destination, a
message is forwarded in a fixed ordering of dimensions
that reduces the remaining hop distance.

• Combined Greedy paths: Local physical proximity in-
formation is used to construct paths as described in
[12]. In this scheme, a greedy approach is taken in
the sense that the lowest cost neighbor of a forward-
ing node is chosen as the next hop in the logical path
towards a subscriber.

• Combined Random paths: A message is forwarded to
a random neighbor of a given hop along a path to the
destination, as long as it reduces the remaining hop
distance. Further details can be found in our previous

work [12].
In directed de Bruijn graphs, paths between destina-

tion nodes and the publisher are computed according to
the de Bruijn routing scheme mentioned in the work on
ODRI [18], and these routes are combined to form a mul-
ticast tree. Specifically, each hop along a given path has
a n-digit base-k identifier and the next hop is selected by
left-shifting this value by one digit. For example, in a de
Bruijn graph with k = 2 and n = 3, the path between nodes
000 and 111 would be 000→001→011→111. While this
does not consider physical proximity information as in the
case of greedy routing over k-ary n-cubes, future work will
involve a similar proximity-based routing scheme over de
Bruijn graphs. As will be seen in our experiments on QoS
service guarantees, we consider an undirected de Bruijn
graph and choose a next hop based on whichever neighbor
has the lower link cost, while also reducing the hop count to
the destination. In any case, the union of the paths between
a given publisher and all corresponding subscribers is the
basis for a de Bruijn multicast tree.

Each of the multicast tree construction policies men-
tioned above specifies the method of selecting paths from
which to build a tree in the logical network that spans the
set of subscriber vertices. Given the subscriber set, S, a
publisher node, p, and a graph, G, a tree, T , that minimizes
the logical hop-count between p and each member of S is
built according to the following algorithm:

(1) Add node p to T

(2) For each node s ∈ S, use combined ODR paths, com-
bined random paths, combined greedy paths, or com-
bined de Bruijn paths to route from vertex s towards p

in G, adding each node and edge traversed to T , until
a node is reached that already exists in T .

A transit-stub graph consisting of 5050 nodes was gen-
erated using GT-ITM and the Stanford GraphBase graph li-
brary [25] to simulate a physical router infrastructure. On
average, each transit node is connected to 10 stub domains,
and a pure random model is used to generate edges within
each of the top level, transit, and stub graphs. The transit-
stub network consists of 10 transit domains, which are con-
nected with random graph parameters α = 0.5, β = 1.0.
There are an average of 5 nodes per transit domain and 10
nodes per stub domain. Random graph parameters within
transit domains are α = 0.6, β = 1.0, and stub graphs are
given parameters α = 0.42, β = 1.0. In the top level graph
and each transit domain, edges are generated along dimen-
sions scaled to a length of 20, whereas in the stub graphs
the scaling parameter is 10. Finally, each host is associated
with a randomly chosen physical router.
Relative delay penalty: For the first experiment, relative
delay penalties of multicast tree routes over de Bruijn and
k-ary n-cube topologies are compared for parameters k = 2
and n = 16. In addition to the routing schemes mentioned

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64 128 256

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 S

ub
sc

rib
er

s

Delay Penalty (relative to unicast)

ODR
Greedy

de Bruijn
SPT (de Bruijn)

SPT (k-ary n-cube)

Figure 3. Cumulative distribution of delay
penalties (relative to unicast) in k-ary n-cube
and de Bruijn topologies (k = 2, n = 16).

above, shortest path trees (with respect to physical costs)
are generated by applying Dijkstra’s algorithm to each of
the weighted graphs used to model the two overlay struc-
tures. For each subscriber host, the experiment records the
total end-to-end physical cost, ci, of routing a message be-
tween the publisher node, p, and the subscriber, si. Fig-
ure 3 presents the cumulative distribution of delay penalties
with respect to unicast routing for the ODR, de Bruijn, and
greedy routing schemes.

As in the work on NARADA, the relative delay penal-
ties in all cases suggest that overlay routing is a plausible
alternative to using IP multicast. In our case, regular over-
lay topologies provide a scalable solution to end-system
multicasting of QoS-sensitive streams. Moreover, a simple
greedy routing scheme proves nearly as good as Dijkstra’s
shortest path scheme, with the advantage that it is fully de-
centralized and is largely unaffected by dynamic changes to
the underlying distributed system. Even if Bellman-Ford
routing were used, it would require potentially multiple
message exchanges between neighboring hosts to converge
to shortest routes relative to a given host. Such convergence
may not be possible when hosts frequently join and depart.
Average link stress: Under the simulation scenario involv-
ing the transit-stub physical model described above, val-
ues for average link stress are computed for group sizes of
3i | i ∈ [5· · ·12], using both a 3-ary 13-cube and a de Bruijn
graph with a radix of 10 and a dimension of 6. Observe that
a 3-ary 13-cube has 313 nodes while the de Bruijn topology
supports one million nodes. Likewise, the diameter of the
de Bruijn graph is 6 compared to 13 in the case of the 3-ary
13-cube. These two configurations where chosen because:
(a) k = 3 minimizes the diameter and average hop distance
in a k-ary n-cube (as shown in our earlier work [12]) and,
(b) the total nodes in each graph is on the scale of the sort of
distributed systems we envision being built on the Internet.

1

3

9

27

81

243

729

243 729 2187 6561 19683 59049 177147 531441

Group Size

De Bruijn (undirected)

Greedy

ODR

Random

A
ve

ra
g

e
L

in
k

S
tr

es
s

Figure 4. Physical link stress versus group
size for each routing algorithm’s resultant
multicast tree

Figure 4 shows the average link stresses for the afore-
mentioned routing schemes over the two overlay topologies.
As can be seen, the link stress increases as a function of
the group size for overlay multicast trees. This increase is
due to the sharing of physical links among multiple logi-
cal edges of each overlay. Interestingly, the average link
stress using greedy routing over k-ary n-cubes is higher
than in all other cases for small group sizes. However, as
the group size grows, the link stress with greedy routing is
lower. Specifically, the rate of increase in link stress with
greedy routing is less than in all other cases, as the group
size increases.

Observe that the multicast tree formed from the union of
greedy routes is more likely to have common edges in the
logical overlay when the number of subscribers increases.
This factor contributes to the lower physical link stress for
larger group sizes. We envision that greedy routing will
do even better if we employ an adaptive node reassignment
scheme as in our previous work [12], to ensure publishing
hosts and corresponding subscribers are clustered within
short hop distances over a given overlay. Given that in our
current approach hosts are randomly assigned to logical po-
sitions in an overlay topology, it makes sense to reassign
node IDs to physical hosts when publishers and correspond-
ing subscribers are known. For this reason, we are currently
investigating an adaptive node reassignment scheme as in
Figure 5, where i.cost(P) denotes the total end-to-end cost
of routing a message between hosts P and i along a given
path in the overlay. Experimental results using this adap-
tive scheme are outside the scope of this paper but such ap-
proaches have been shown to be beneficial in our earlier
work [12].

Subscribe(Subscriber S, Publisher P, Depth d) {

// recursively apply algorithm up to D hops from P
if (d = D) return;

Find a neighbor i of P such that
i.cost(P) is maximal for all neighbors;
Find a neighbor j of P such that
j.cost(P) is minimal for all neighbors;

if (S.cost(P) < i.cost(P)) {
swap logical positions of i and S;
Subscribe (i, S, d+1);

}
else Subscribe(S, j, d+1)

}

Figure 5. Adaptive node re-assignment algo-
rithm

QoS guarantees: The next experiment considers the likeli-
hood of satisfying subscriber-specific real-time service con-
straints in de Bruijn and k-ary n-cube overlay topologies.
For simplicity, we assume each subscriber is associated
with a service constraint representing the maximum latency
that can be tolerated in receiving the multicast message (al-
though the results can be generalized to any additive or lin-
ear cost metric). Such deadlines are generated according to
a uniform random distribution, ranging from the minimum
latency on a physical link to the maximum latency along a
physical link multiplied by the worst-case hop count in the
3-ary 13-cube graph representing an overlay topology.

We simulate greedy routing over a 3-ary 13-cube from
the source node with logical ID 0 to each subscriber host
present in randomly selected groups of various sizes, and
a normalized lateness value is calculated for each receiver
in each group. For the undirected de Bruijn topology, there
exist two possible routes over which a message can be for-
warded for each destination host. For this experiment, we
consider paths resulting from right shifting or left shifting
the logical identifier of the forwarding node to move one
hop closer to the destination. In actuality, reverse routes
from each subscriber to the publisher node are computed
(this can be done since we assume physical link costs are
symmetric), and the shifting direction is based on the la-
tency corresponding to the logical link adjacent to the pub-
lishing host. If right shifting yields a lower first-hop link
cost, then this method is used to construct the routing path,
otherwise, left shifting is performed. This method of routing
provides a policy analogous to greedy routing in the k-ary
n-cube network, except the decision can be made only once
for each path in the de Bruijn case.

Normalized Lateness values are calculated for subscriber
hosts in the de Bruijn overlay as in the simulated k-ary n-
cube network. For each group and each topology, the mean
of the normalized lateness measurements is computed, and
the average normalized lateness values are charted in Fig-

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

243 729 2187 6561 19683 59049 177147 531441

k-ary�n-cube�(Greedy)

De�Bruijn�(undirected)

Group�Size

A
ve

ra
g

e�
N

o
rm

al
iz

ed
�L

at
en

es
s

Figure 6. Average normalized lateness versus
group size in k-ary n-cube and de Bruijn over-
lays

ure 6. The results show that the k-ary n-cube topology pro-
vides routes found by the greedy routing policy that reduce
average normalized lateness in comparison with the simu-
lated de Bruijn overlay, for each group considered, except
for the subscriber set containing 243 hosts.

In addition to the data recorded for average normalized
lateness over the multicast simulations described above, we
compute the success ratios for multicast groups containing
35, 36, 37, 38, 39, and 310 subscriber hosts. The success
ratio corresponding to a particular group is calculated by
counting the number of hosts for which service deadlines
are not exceeded and dividing by the number of subscribers
in the corresponding group. The resulting data is shown
in Figure 7, and it is apparent from the graph that greedy
routing in the k-ary n-cube overlay performs slightly better
than the de Bruijn structure (except in the group containing
243 hosts), even though the worst-case logical hop count
between nodes in the k-ary n-cube is significantly greater
than in the de Bruijn case.

The values presented in Figures 6 and 7 are intended to
provide a measure of the performance of de Bruijn rout-
ing relative to greedy routing over a k-ary n-cube topology.
The average normalized lateness and success ratio for each
group size in the simulations are dependent upon the param-
eters used in generating subscriber constraints and physical
link costs, and are not intended to represent the absolute
behavior in an actual system. However, the experiments
demonstrate the likelihood of satisfying subscriber-specific
QoS constraints in k-ary n-cube overlays when compared
with de Bruijn topologies.
Summary: The results from the experiments described in
this section provide insights into the characteristics of over-
lay topologies for multicast data distribution. Regardless of
the overlay topology, it appears that regular graph structures
are potentially suitable for the large-scale delivery of QoS-
sensitive streams between publishers and many thousands
of subscribers. Applications such as Internet TV, support-

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

243 729 2187 6561 19683 59049

k-ary�n-cube�(Greedy)

De�Bruijn�(undirected)

Group�Size

S
u

cc
es

s�
R

at
io

Figure 7. Success ratio versus group size in
k-ary n-cube and de Bruijn overlays

ing the delivery of live video and audio broadcasts could
benefit from routing over regular overlays.

More sophisticated routing algorithms than the ones
investigated above may consider multiple kinds of ser-
vice constraints (e.g., jitter, bandwidth, or window-
constraints [26]) and/or base forwarding decisions on more
information about the underlying physical network. How-
ever, we believe that it is necessary for such policies to ex-
hibit low complexity, so that physical measurements remain
accurate in a rapidly changing network environment.

4 Dynamic Characteristics

A major advantage of the simple greedy routing algo-
rithm is that it requires only local knowledge of a given
graph, which means that nodes may join and leave a group
without broadcasting group management information to all
existing members. In effect, the group membership infor-
mation is itself distributed throughout all hosts in the sys-
tem. This property is essential to allow groups to scale to
very large sizes, for which managing O(M) state at each
node becomes prohibitive.

To apply the overlay topology onto the multicast group,
we are considering a scheme which is essentially the same
as ODRI [18], and heavily influenced by Chord [24].

In a k-ary n-cube, the neighbors of node x are the set:

x − ki
(⌊ x

ki

⌋

mod k
)

+ ki
(⌊ x

ki
± 1

⌋

mod k
)

for all 0 ≤ i < n, and are connected with undirected edges.
In a standard de Bruijn graph of degree k and diameter n,

the neighbors to which node x may forward are those nodes
numbered (kx + i) mod kn for all 0 ≤ i < k.

Instead of assigning each physical host a single identi-
fier x as above, we allow hosts to maintain groups of iden-
tifiers, which simplifies the handling of node joins and de-
partures. In this approach, we keep the logical ID space

100000

010

101

111011

001

110

010−011110−111

100−101

000−001

010−011110−111

000−001

100

101

Figure 8. (a) An example k-ary n-cube graph, and (b) a corresponding overlay network with 4 physical
hosts, followed by (c) the same network after a 5th host joins

000

001

010

100

101

011

111

110

010−011110−111

100−101

000−001

010−011110−111

000−001

100

101

Figure 9. (a) An example de Bruijn graph, and (b) a corresponding overlay network with 4 physical
hosts, followed by (c) the same network after a 5th host joins

constant regardless of the current number of physical hosts
in the system. Specifically, for both k-ary n-cubes and
de Bruin graphs we limit the maximum number of hosts
in a group to kn, by choosing a suitable value for n. We
then assign each physical host a contiguous subset of the
ID space [x1, x2], x2 ≥ x1, such that each identifier be-
longs to exactly one host. It is vital that this property holds
over the lifetime of the group. Therefore, a new host joins
the group by taking over one or more contiguous identifiers
from a randomly chosen existing node. Likewise, when a
host leaves the system (or fails), its identifiers must be reas-
signed to one of the two physical hosts adjacent to it in log-
ical ID space. The neighborhood rules given above are then
generalized to the rule that there is an edge between host x

(with ID range [x1, x2]) and host y (with ID range [y1, y2])
if and only if there exists some logical edge (u, v) such that
x1 ≤ u ≤ x2, y1 ≤ v ≤ y2. Most of the properties of
k-ary n-cube and de Bruijn graphs still apply (or apply in
the average case) under this scheme for dynamic overlay
management [18]. Examples of this procedure are shown
in Figures 8 and 9, for k-ary n-cube and de Bruijn over-
lays, respectively. Note that the arcs connecting the nodes
in a circle are not part of the interconnection graphs but are
merely there to represent the ring of logical IDs.

Observe that when a host departs a distributed system us-
ing the above scheme, it is possible to find a route between
two end-points because routing state information is redis-

tributed to remaining hosts. This means there is always a
route through the nodes of a logical overlay but the actual
end hosts involved in that route may change over time. One
may therefore ask why it is important to have as many alter-
native routes through an overlay, as discussed in Section 2.
The reason is that there is a delay due to the redistribution
of routing state information amongst remaining hosts, to up-
date mappings of physical hosts to logical node IDs. Given
that we envision a system whereby real-time streams may
have partially traversed a logical path through an overlay,
it is important for a given host to be able to find reach-
able next-hops towards the destination before its neighbor
(routing) tables have been updated as a result of dynamic
changes to the system. This is certainly an area of fur-
ther investigation, and we plan to study the lag effects of
exchanging state information in the presence of host joins
and departures while streams are being propagated to sub-
scribers.

5 Related Work

Much of the recent work in P2P systems focuses on the
construction of virtual network topologies that allow hosts
to communicate assuming some existing underlying unicast
routing service. Such overlay networks allow data to be dis-
tributed and processed without compromising the flexibility
required for application-specific stream processing at inter-

mediate nodes along routing paths. The predominant lit-
erature in the area of overlay topology construction can be
divided into overlays modeled around regular graph struc-
tures and logical networks in which links are formed based
on random message exchanges.

Systems such as Pastry, Chord, CAN, and those based
on de Bruijn graphs fall into the category of regular overlay
networks, whereas NARADA attempts to randomly restrict
logical connections based on metrics that affect QoS con-
straints [21, 24, 20, 8]. It has been shown that regular over-
lay topologies are more scalable than the latter approach,
but the restriction to a fixed set of logical links introduces
the risk of neglecting links with low enough cost to satisfy
service constraints for real-time applications. However, in
systems involving millions of hosts and rapidly changing
network characteristics, the lower complexity of policies
employed to service host joins, departures, and routing of
multicast messages over regular topologies results in easier
implementation and an increase in predictability.

Overlays based on k-ary n-cube graphs exploit the above
mentioned advantages of a regular structure while provid-
ing low-complexity routing policies in which decisions can
be made on a hop-by-hop basis. Such policies may take ad-
vantage of proximity metrics along physical paths that map
to logical edges while a message is en route from source to
destination. Furthermore, k-ary n-cube overlays are densely
connected compared to other topologies in the sense that the
number of available routes with optimal hop count is O(n!),
where n = logk M represents the number of dimensions in
a system supporting M hosts.

Support for multicast at the application level has been
shown to be advantageous for applications involving many
receivers with QoS constraints. The NARADA proto-
col, for example, shows how data can be streamed over a
randomly constructed overlay mesh [2]. Other protocols
for application-layer multicast include M-RTP, which con-
structs trees consisting of multiple unicast paths [9].

An additional body of work is centered around the op-
timization of costs based on nonlinear metrics (e.g., band-
width) involved in multicast applications. SplitStream bal-
ances the responsibility of message forwarding among peers
involved in a forest of multicast trees by splitting stream
data into multiple stripes, and Bullet is concerned with
maximizing the achievable bandwidth at which data can
be transmitted to subscribers over pre-computed multicast
trees [4, 16]. Each of these systems assume the existence of
an underlying network structure responsible for maintain-
ing connections and routing state at a lower level of host
communication, such as a physical infrastructure or a vir-
tual topology. For example, SplitStream leverages the Pas-
try/Scribe routing services for computing individual multi-
cast trees. Thus, the contributions in overlay construction
and analysis can be considered complementary to the de-

sign of systems involving multiple channels of streaming
data.

Since it is desirable for multicast trees to exhibit a low
sum of weights on edges, some work proposes approximat-
ing Steiner trees for data distribution. Algorithms exist for
approximating solutions to the Steiner tree problem, such
as Kou’s algorithm [17]. Other work seeks to adjust the
tradeoff between multicast trees with shortest paths and low
weight. For our purposes, multicast routing policies must
be of low complexity in order to maintain a high degree
of scalability and fault tolerance. Hence, we focus on al-
gorithms that do not assume that each node has complete
information concerning the structure of the interconnection
topology.

6 Conclusions and Future Work

This paper compares several well-known graph topolo-
gies for scalable QoS-constrained overlay routing. The rel-
ative delay penalties of logical overlay routing, with respect
to unicast routing over a physical network, suggest that reg-
ular graph topologies may be suitable for the delivery of soft
real-time streams on the scale of the Internet. We observed
that a simple greedy routing scheme, that does not require
global state information at each node, performs almost as
well as an optimal shortest path routing scheme. In the lat-
ter case, a distributed form of Dijkstra’s algorithm, using a
Bellman-Ford technique would be required in practice, but
this is not particularly desirable in a setting where hosts can
dynamically join and depart a large-scale distributed sys-
tem. Given that Bellman-Ford routing requires each host
to potentially exchange multiple messages with its neigh-
bors, a shortest path route may not be determined before
the membership of the system changes. For this reason,
simple decentralized routing strategies over regular over-
lay topologies are desired. Our results suggest the costs of
such approaches are potentially acceptable for many real-
time and multimedia streaming applications, such as live
video broadcasting.

Of the topologies we have considered, if the degree of
nodes is fixed, then k-ary n-cubes yield the greatest route
redundancy, but standard de Bruijn graphs minimize the dis-
tances between pairs of nodes. It appears that de Bruijn
graphs are the most efficient structure in terms of end-to-
end hop count, but that k-ary n-cubes might be preferred in
practice when fault tolerant routing and QoS requirements
are considered. By fault tolerant, we mean that if a real-time
stream has already traversed part of a path, it is still capable
of reaching the destination given a host along the remainder
of the path either fails or departs the system.

We argue that with k-ary n-cubes, a path bypassing
a failed node is more likely to meet end-to-end QoS re-
quirements, because (a) there are more alternative paths to

choose, and (b) the hop distance is less likely to increase
compared to the original path. However, c-redundant de
Bruijn graphs warrant further investigation, since for suffi-
cient values of c, they can approach the average case route
redundancy (and exceed the worst case) of k-ary n-cubes
with equivalent node degree, while potentially reducing the
distance to the destination.

As part of our future and ongoing research, our vision is
to build an Internet-wide distributed system for processing
and delivery of real-time data streams to many thousands of
subscribers, each having their own QoS constraints. This
work not only encompasses the design and analysis of logi-
cal overlay networks to interconnect end-hosts for purposes
of data transport, but also the design of efficient end-host
architectures that may safely be extended with application-
specific stream processing agents.

References

[1] D. Banerjee, B. Mukherjee, and R. Suryanarayan. The mul-
tidimensional torus: Analysis of average hop distance and
application as multihop lightwave network. Proc. ICC ’94,
Vol. 3, pages 1675–1680, May 1994.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-
able application layer multicast. In Proceedings of ACM
SIGCOMM, August 2002.

[3] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and
S. Khuller. Construction of an efficient overlay multicast in-
frastructure for real-time applications. In IEEE INFOCOM,
San Francisco, CA, April 2003.

[4] M. Castro, P. Druschel, K. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh. SplitStream: high-bandwidth multicast
in cooperative environments. In Proceedings of the nine-
teenth ACM symposium on Operating systems principles,
volume 37, 5 of Operating Systems Review, pages 298–313,
New York, Oct. 19–22 2003. ACM Press.

[5] Y. Chawathe. Scattercast: An Architecture for Internet
Broadcast Distribution as an Infrastructure Service. PhD
thesis, University of California, Berkeley, December 2000.

[6] A. A. Chien. A cost and speed model for k-ary n-cube worm-
hole routers. IEEE Transactions on Parallel and Distributed
Systems, 9(2):150–162, 1998.

[7] A. A. Chien and J. H. Kim. Planar-adaptive routing: Low-
Cost adaptive networks for multiprocessors. Journal of the
ACM, 42(1):91–123, 1995.

[8] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In ACM SIGMETRICS 2000, pages 1–12, June
2000.

[9] R. Cohen and C. Kaempfer. A unicast-based approach for
streaming multicast. In IEEE Infocom, pages 440–448,
2001.

[10] W. J. Dally. Performance analysis of k-ary n-cube inter-
connection networks. IEEE Transactions on Computers,
39(6):775–785, 1990.

[11] P. Francis. Yoid: Extending the multicast Internet architec-
ture, 1999. On-line documentation:
http://www.aciri.org/yoid/.

[12] G. Fry and R. West. Adaptive routing of QoS-constrained
media streams over scalable overlay topologies. In Proceed-
ings of the 10th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), May 2004.

[13] G. Fry and R. West. Dynamic characteristics of k-ary n-
cube networks for real-time communication. In Proceedings
of the 5th International Conference on Communications in
Computing, June 2004.

[14] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and
J. O’Toole. Overcast: Reliable multicasting with an overlay
network. In Proceedings of the 4th Symposium on Operating
Systems Design and Implementation, October 2000.

[15] M. Kang, C. Yu, H. Y. Youn, B. Lee, and M. Kim. Iso-
morphic strategy for processor allocation in k-ary n-cube
systems. IEEE Transactions on Computers, Vol. 52, No. 5,
pages 645–657, May 2003.

[16] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
high bandwidth data dissemination using an overlay mesh.
In Proceedings of the nineteenth ACM symposium on Oper-
ating systems principles, volume 37, 5 of Operating Systems
Review, pages 282–297, New York, Oct. 19–22 2003. ACM
Press.

[17] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for
Steiner trees. Acta Informatica, 15:141–145, 1981.

[18] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-
theoretic analysis of structured peer-to-peer systems: Rout-
ing distances and fault resilience. In Proceedings of the ACM
SIGCOMM ’03 Conference, Karlsruhe, Germany, August
2003.

[19] N.J.A.Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wol-
man. Skipnet: A scalable overlay network with practical
locality properties. In Proceedings of the 4th USENIX Sym-
posium on Internet Technologies and Systems, March 2003.

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Computer Communication Review, volume 31, pages 161–
172. Dept. of Elec. Eng. and Comp. Sci., University of Cal-
ifornia, Berkeley, 2001.

[21] A. Rowstron and P. Druschel. Pastry: scalable, decentral-
ized object location and routing for large-scale peer-to-peer
systems. In Proceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware),
Nov. 2001.

[22] SETI@home: http://setiathome.ssl.berkeley.edu/.
[23] S. Shi and J. Turner. Routing in overlay multicast networks.

In IEEE INFOCOM, June 2002.
[24] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.

Kaashoek, D. Dabek, and H. Balakrishnan. Chord: a scal-
able peer-to-peer lookup protocol for Internet applications.
IEEE/ACM Transactions on Networking, 11(1):17–32, Feb.
2003.

[25] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How
to model an internetwork. In IEEE INFOCOM, volume 2,
pages 594–602, San Francisco, CA, March 1996.

[26] Y. Zhang, R. West, and X. Qi. A virtual deadline scheduler
for window-constrained service guarantees. In Proceedings
of the 25th IEEE Real-Time Systems Symposium (RTSS), De-
cember 2004.

