
Scalable Overlay Multicast Tree Construction for QoS-Constrained Media
Streaming

Gabriel Parmer, Richard West, Gerald Fry
Computer Science Department

Boston University
Boston, MA 02215

{gabep1,richwest,gfry}@cs.bu.edu

Abstract

Overlay networks have become popular in recent times
for content distribution and end-system multicasting of me-
dia streams. In the latter case, the motivation is based on
the lack of widespread deployment of IP multicast and the
ability to perform end-host processing. However, construct-
ing routes between various end-hosts, so that data can be
streamed from content publishers to many thousands of sub-
scribers, each having their own QoS constraints, is still a
challenging problem. First, any routes between end-hosts
using trees built on top of overlay networks can increase
stress on the underlying physical network, due to multiple
instances of the same data traversing a given physical link.
Second, because overlay routes between end-hosts may tra-
verse physical network links more than once, they increase
the end-to-end latency compared to IP-level routing. Third,
algorithms for constructing efficient, large-scale trees that
reduce link stress and latency are typically more complex.

This paper therefore compares various methods to con-
struct multicast trees between end-systems, that vary in
terms of implementation costs and their ability to support
per-subscriber QoS constraints. We describe several algo-
rithms that make trade-offs between algorithmic complexity,
physical link stress and latency. While no algorithm is best
in all three cases we show how it is possible to efficiently
build trees for several thousand subscribers with latencies
within a factor of two of the optimal, and link stresses com-
parable to, or better than, existing technologies.

1 Introduction

This work addresses the problem of delivering real-time
media streams on an Internet-scale, from one or more pub-
lishers to potentially many thousands of subscribers, each
having their own service constraints. Such constraints may

be in terms of latency bounds on the transfer of data from
publishers to subscribers, but may also encompass jitter,
loss and bandwidth requirements. Target applications for
this work include multimedia streaming of live video broad-
casts (e.g., Internet television), interactive distance learning
and the exchange of time-critical data sets in large-scale sci-
entific applications [20].

In recent years, there have been a number of research
efforts focused on content distribution using end-system,
or application-level, multicast techniques [6, 25, 7, 2, 29,
13, 14]. Such work is partly motivated by the lack of
widespread deployment of IP multicast (at the network-
level) and the inability of routers to employ application-
specific stream processing services. In most cases, meshes
or overlays form a logical interconnect between end-hosts,
providing the basis for multicast trees or routes to deliver
data in a scalable manner [12, 10, 21, 3, 5]. However, the
problem with building routes between end-hosts using log-
ical overlays is that data may be duplicated at the phys-
ical network level, increasing physical link stress. Simi-
larly, the end-to-end delay of data transported along a log-
ical overlay path between a pair of hosts might be signifi-
cantly larger than an equivalent unicast path at the physical
network level, thereby yielding a corresponding relative de-
lay penalty 1 greater than 1.0.

Many approaches attempt to carefully match the overlay
topology to the underlying physical network, to decrease the
relative delay penalty and link stress [26]. Similarly, a num-
ber of end-system multicast techniques attempt to reduce
physical link stress while maximizing bandwidth, but few
have actually focused on the construction of communication
paths between hosts that provide quality-of-service (QoS)
guarantees, even in terms of latency (or delay) bounds. Of
the few approaches that do consider QoS (e.g., RITA [25],

1Some researchers refer to a similar term called stretch that is the ratio
of the cost of routing over an overlay tree, to the cost of routing over a
shortest path tree at the network-level, e.g. using IP multicast.
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OMNI [3], and ZIGZAG [23]), our work differs by focusing
on a study of several approaches to build trees that vary in
terms of their complexity, and ability to limit both link stress
and relative delay penalties. Unlike the work on RITA, we
also consider degree constraints of multicast tree nodes as
dictated by the overlay topology that logically connects end-
systems. Such degree constraints limit the fanout of tree
nodes, thereby making tree depths potentially larger, espe-
cially for large-scale trees.

Given that we envision a distributed system of end-hosts
built on the scale of the Internet, some method is required
to maintain routing state and connectivity between hosts.
Peer-to-peer (P2P) systems [22, 15, 19, 30, 4] tackle this
problem by constructing distributed hash tables to lookup
and retrieve content in O(lg(M)) hops, where routing state
at each peer is also O(lg(M)) in size with respect to the
number of peers, M . Implicitly, these P2P systems form
logical interconnection networks, or overlay topologies,
that include hypercubes [22], more generalized toroidal
structures [15, 1] and k-ary n-cubes [19]. With this in mind,
our approach for constructing scalable end-system multicast
trees assumes a distributed system of hosts that are con-
nected via a regular overlay topology. Specifically, no sin-
gle host has a global snapshot of the entire system of M

hosts, but may find a path between itself and another host
within O(lg(M)) hops.

In prior work we have studied the use of k-ary n-cubes
and de Bruijn graphs for routing multimedia streams [8, 9,
24]. In this paper, we simply assume such overlay topolo-
gies exist for the basis of multicast tree construction, such
that no tree can have a fanout greater than the degree of the
corresponding overlay.

The problem addressed by this paper, then, is how to
construct communication paths between end-systems in an
efficient manner while: (1) minimizing both relative delay
penalty and physical link stress, and (2) achieving the ser-
vice requirements of most (if not all) subscribers of a given
published media stream. We compare various methods to
construct multicast trees between end-systems, that vary in
terms of implementation costs and their ability to support
per-subscriber QoS constraints. We describe several algo-
rithms that make trade-offs between algorithmic complex-
ity, physical link stress and latency. While no algorithm is
best in all cases we show how it is possible to efficiently
build trees for several thousand subscribers with latencies
within a factor of two of the optimal, and link stresses com-
parable to, or better than, existing technologies.

The rest of the paper is organized as follows. In Sec-
tion 2, various methods for multicast tree construction are
discussed. Simulation results and analyses of each tree con-
struction method are described in Section 3. This is fol-
lowed by a brief overview of related work in Section 4. Fi-
nally, conclusions are drawn, and future work is outlined in

Section 5.

2 Multicast Tree Construction

Our approach for constructing scalable end-system mul-
ticast trees assumes a distributed system of hosts that are
connected via a regular overlay topology. We make this
assumption because of the decentralized manner in which
hosts need only maintain partial state about the entire sys-
tem. In practice, we intend to use a regular overlay topology
for publishers to announce the availability of streams, or
media channels, using distributed hash tables (DHTs), and
for various end-systems to discover which channels are ac-
tive so they may selectively subscribe to them. With this in
mind, we now describe a number of algorithms for building
(or effectively embedding) multicast trees in overlays, that
vary in terms of running times, link stress and relative delay
penalties. For the purposes of this paper, the only impor-
tance of the overlay is that it corresponds to a regular struc-
ture whose node degree, or fanout, is limited to O(lg(M))
for a system of M end-hosts.

2.1 Methods for Establishing Locality

Each multicast tree is constructed such that the link stress
and relative delay penalties are minimized, with the intent
of using end-systems to produce a routing structure that
closely approximates that of IP multicast. Various metrics
can be used to achieve this goal [18], although in this work
we focus on the following two:

1. Latency, L, which is measured by using ICMP to send
“ping” messages between two hosts to calculate an ap-
proximation of distance. This metric has the advantage
of being simple and having a low overhead, both on the
hosts and on the underlying network. Latency is a re-
lation between two hosts, L(H1, H2) and specifies the
time it takes to traverse the shortest path between them.

2. Traceroute, T , which is measured by sending ICMP
packets towards the destination with time to live (TTL)
increasing from 0 to the hop distance to the destina-
tion. In this way, we can determine a list of physical
routers through which a communication path between
two hosts will traverse. Note that all modified ICMP
messages can be sent out in parallel, enabling a tracer-
oute measurement to be conducted in the same amount
of time it takes to carry out a normal ping. Taking
the measurements in parallel will not give us informa-
tion about the order of routers traversed along a path.
The traceroute metric, T (H1, H2), returns the set of
all routers traversed along the shortest path between
the hosts.
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2.2 Channel Subscription Algorithms

When a new host joins the system and wishes to sub-
scribe to a multicast channel, a specific algorithm dictates
the methodology for where this host is placed in the tree,
and how it gets there. We term these policies subscription

algorithms. The subscription algorithms determine not
only the amount of time between each subscription re-
quest and when a stream is received, but also the ability
of a tree to meet the QoS requirements of each subscriber.
Subscription algorithms must make a difficult compro-
mise: a very complex subscription algorithm which at-
tempts to place a newly subscribing host at the optimal lo-
cation in the tree may take an unacceptably large amount of
time to place that host and might impose significant over-
head in terms of cost measurements, whereas an extremely
naive subscription algorithm which randomly assigns new
hosts to positions in the tree could very quickly place nodes,
but the resulting tree would be quite inefficient.

The first consideration, the subscription delay, is impor-
tant because the system must scale not only in terms of the
amount of hosts currently constituting a multicast tree, but
also in terms of arrival (and departure 2) rates of hosts [16].
The second consideration, the quality of the resulting multi-
cast tree, is important to be able to scale in terms of amount
of hosts supported, and to allow some form of guarantees
to be made regarding bandwidth usage, and latency of de-
livery of content. A successful subscription algorithm will
strike some balance between subscription complexity and
resulting tree quality.

We present different policies, each of which has dif-
ferent goals and makes different trade-offs. Each of the
subscription algorithms is separated into two parts. First,
the subscription policy which determines, generally, where
in the tree a new host begins searching for it’s place-
ment, and where it looks subsequently using a level-by-level
traversal of the tree. Second, at each level of the tree that is
examined, the children are evaluated and compared with the
new subscriber, and conclusions are drawn regarding which
subtree should be evaluated next. The policies which eval-
uate the children of a certain host are defined by two func-
tions, best and worst. These functions identify, respec-
tively, the best and worst child (as defined by the specific
policy), and this information can be used by the subscrip-
tion policy to make decisions regarding where to attempt to
attach the next new subscriber.

In what follows, we describe the different policies we
2Here, we don’t consider hosts leaving the system, as the focus is on ef-

ficient tree construction for a set of subscribers. However, in practice, tree
membership will change dynamically as end-systems join and leave. We
envision streams lasting up to several hours in our system, during which
membership changes are assumed infrequent after the initial set of sub-
scriptions. Previously published methods addressing host departure can be
used [29] in our scheme.

have investigated. Section 2.3 describes the subscription
policies and Section 2.4 covers the different methods for
choosing the best and worst children of a host. Figure 1
illustrates a simple example of how tree nodes are la-
beled, and this notation will be used throughout the rest
of the text. The figure depicts a multicast tree consisting
of the parent, P , the set of all of P ’s children denoted by
CP = {CP1, CP2, CP3}, and a new subscriber, S. In gen-
eral, we use CPi to represent the ith child of P , where
i≤MAXFANOUTP for the maximum fanout of P . Re-
cursively, we then use CPij to denote the jth child of CPi.

C

C
S

P

C

P1

P2

P3

Figure 1. The relationship between hosts in
the multicast tree, and their labels. S is a new
subscriber, attempting to join the tree.

2.3 Subscription Policies

As stated in Section 2.2, the subscription policies gov-
ern where a host which wishes to join a multicast tree will
start looking, and where it will look from there as it pro-
gressively converges on its eventual location. The first sub-
scription policy is “bubble out” and can be seen in Figure 2.
The “bubble out” policy always begins at the publisher of
the data-stream and, as dictated by the best and worst func-
tions, decides which child to recursively consider next. In
this manner, a new node will cause a “bubble out” type sub-
scription, whereby at each level in the tree a child is chosen
and the algorithm is run recursively until a leaf is reached,
where the unsubscribed host is added. More specifically,
a new subscriber, S, attempts to join the multicast tree by
contacting the publisher, P . The first iteration of the “bub-
ble out” subscription policy will reflect this. The best and
worst children of P are chosen via the best and worst
functions, respectively. These functions consider the exist-
ing set of P ’s children, CP , as well as S.

If it is possible to add S to the set of children of P with-
out exceeding the fanout limit of the tree, then the worst
function returns nil. If the worst is S itself, then it has been
decided that S is not better than any of the current children.
In this case, S is added to the best child’s (i.e., B’s) subtree
by recursively calling the “bubble out” subscription policy
with arguments S and B. However, if it is decided that
the worst host, W , is one of P ’s current children (such that
W 6=S), the implication is that S would improve the tree
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if it replaced W as one of P ’s children. Thus, the logical
positions of W and S are swapped, and the worst child is
recursively bubbled out into the best node’s subtree.

bubble out subscribe(S, P )
B = best(P, S)
W = worst(P, S)

if (W = nil)
add S to P ’s children

else if (W 6= S)
swap(S, W )
bubble out subscribe(W, B)

else

bubble out subscribe(S, B)

Figure 2. The “bubble out” subscription pol-
icy.

It should be observed that using this subscription pol-
icy, the publisher of the data-stream is always contacted and
measurements are always made starting from P . The cost
measurements described in Section 2.1 are not particularly
heavy weight, but we do not wish to put any restrictions on
what can constitute a cost method. Thus we must assume
that in certain circumstances we might want to mitigate the
large amount of cost measurements made near the root of
the tree. This is the motivation for the next subscription
policy, “bubble in”, described in Figure 2.3.

“Bubble in” is based on the assumption that there is some
distributed hash table (in our case, based on a k-ary, n-cube)
using which we can traverse a logical path towards P . A
new subscriber, S, will follow a reverse path towards P un-
til an existing subscriber, S′ to P is found. At this point,
the algorithm runs the normal “bubble out” method, treat-
ing S′ as the publisher. This will add S to S ′s subtree. S

will then attempt to move in towards P , using the function
swap towards pub.

The function swap towards pub compares the la-
tency, L, between S and its grandparent, parentparentS

,
with the latency between the parent of S and its grandpar-
ent. If the tree latency can be reduced, S is swapped with
its parent, causing a “bubble in” effect towards P . Cost
measurements are much more distributed when using this
method as opposed to the “bubble out” policy, since the ref-
erence point in the tree where measurements are initially
made is decided by the reverse path traversal over the peer-
to-peer overlay. Results show that after 5000 hosts have
subscribed to a tree, an order of magnitude less cost mea-
surements to P are possible with the “bubble in” method.

bubble in subscribe(S, P )
reverse path along P2P network from S, towards
P until an existing subscriber, S′, to P is found

if (S′ is a leaf)
bubble out subscribe(S, parentS′ )

else

bubble out subscribe(S, S′)
swap towards pub(S, P )

swap towards pub(S, P )
if (parentS 6= P and

L(S, parentparentS
) <

L(parentS , parentparentS
)

swap(S, parentS )
swap towards pub(parentS , P )

Figure 3. The “bubble in” subscription policy.

2.4 Best and Worst Functions

The best and worst functions define if swaps will be
made, and which host will be selected to (recursively) sub-
scribe to a specific subtree, during the execution of the sub-
scription algorithm. Each of the methods for finding the
best and worst hosts abide by a specific goal, and make
trade-offs to achieve that goal. We discuss these goals and
trade-offs for each of the following policies considered in
this paper:

Latency Onehop is based on the idea that hosts which
are closest physically to a publisher (or any subsequent sub-
tree roots), should be logically closest as well. The formal
definition for this method is described in Figure 4. The one-
hop latency (henceforth called onehop) policy will choose
as worst, either S or one of the hosts in CP prior to S’s ar-
rival, whichever has the largest latency to P . A specific goal
of this policy is to minimize the maximum latency provided
to all hosts in the system, and therefore provide predictable
delay bounds to subscribing hosts. Each host, h, in the mul-
ticast tree maintains it’s subtree cost, which is the minimum
latency between h and any host whose fanout is less than
the maximum fanout in the tree rooted at h. The formal
definition is shown in Figure 4. Using this subtree cost, the
onehop policy decides the best child amongst a given set.
The child with the lowest subtree cost, thus the lowest tree
overhead for any host inserted into that subtree, is the child
that is returned by the onehop best method.

The onehop method has several advantages. Latencies
between the tree root and its children are minimized, which
in turn has the potential to minimize latencies between the
root and hosts further down the tree. Moreover, the onehop
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best(P, S) = CPi | subtreeCost(P, CPi) = min
∀j

(subtreeCost(P, CPj))

subtreeCost(P, CPi) =



0 if | CP |< MAXFANOUTP

L(CPi, P ) + min∀j(subtreeCost(CPi, CPij)) otherwise

worst(P, S) =



nil if | CP |< MAXFANOUTP

CPi | L(CPi, P ) = max∀j(L(CPj , P )) otherwise

Figure 4. Methods for finding the best and worst children using the latency onehop policy.

method is relatively simple, requiring only one round-trip
time measurement to find the latency between the root of
the current subtree and the new subscriber for each level in
the tree. The amount of time it takes for a new subscriber to
actually be added to the tree is relatively small. However,
the onehop method does not take link stress into account at
all, and the amount of physical links that are concurrently
used between multiple different subtrees will contribute to
link stress. Further, it is possible that when we swap a cur-
rent child with a new subscriber, latencies through the cor-
responding subtree may be increased. For example, if CPi

is very close to all of it’s children, and it is found that CPi

is the worst of P ’s children, S will take CPi’s place; how-
ever, it is possible that even though S could be close to P ,
it might be very far from all of its children which it recently
inherited.

Latency Twohop attempts to avoid the deficiency of
onehop on the resultant tree. Figure 5 contains the for-
mal definition of this policy. The twohop policy not only
measures if S is closer to P than any hosts in CP , but also
measures how much the subtree rooted at each child, CPi,
would be affected if S were swapped in to CPi’s position.
If the overall latency to children of CPi is decreased after
swapping CPi with S, then CPi is considered as a candi-
date for the worst child. The child with the largest decrease
in latency to its subtree is returned as the worst child. If S

does not improve any subtrees, then it is the worst. The best
child is found in the same way as in onehop. It should be no-
ticed that while onehop takes measurements between hosts
that are one hop away from P , twohop takes measurements
which consider hosts that are up to two hops away from
P . The main deficiency of this policy is that it must make
an extremely large amount of cost measurements. Whereas
onehop has to make one cost measurement per level in the
tree, twohop must make one to P , and one to all of the
grandchildren of P , or O(fanout2) per level in the tree.

Closest Latency takes an opposite approach to building
multicast trees. Instead of attempting to put physically close
hosts logically close to the roots of the subtrees, closest la-
tency attempts to place a new host, S, logically close to chil-
dren that are physically close to S. Therefore, the worst is
always S, and the best is that child, CPi, which is physically
closest to S. In this way, S will be recursively subscribed to
CPi’s subtree, and physically close hosts will become log-

ically close. This policy of multicast tree construction is
similar to the method in Host Multicast [29].

This policy has the benefit that it attempts to minimize
the link stress implicitly by making a correspondence be-
tween children’s logical and physical locations in relation
to each other. Unfortunately, closest latency does require
more cost measurements and more time per-level than one-
hop. Not only will S have to communicate with P to get a
list of children, it will also need to make cost measurements
to each of those children. The number of cost measure-
ments per level in the tree is O(fanout). The amount of
time taken for measurements at a given level consists of a
round trip time to contact the root of the subtree, in addition
to time to take cost measurements to all of that host’s chil-
dren. Because onehop requires only a cost measurement to
the subtree’s root, the amount of time taken at each level is
less.

Closest Latency Swap attempts to combine onehop and
closest latency and can be seen in Figure 7. The closest
child, CPi, to the subscriber, S, is found in the same way
as in the closest latency policy. If S is closer in terms
of latency to P than CPi, then the two hosts are logically
swapped, with the swapped out host then subscribed to the
swapped in host’s subtree. In all other cases, the normal
closest latency policy is utilized. This method has little
more overhead than closest latency, and produces a better
tree.

Closest Traceroute has the same goals as closest la-
tency, but goes about finding the closest child to S in a dif-
ferent manner. Figure 8 illustrates this method. Instead of
making a latency measurement to each of P ’s children, a
single traceroute measurement is made to P . The tracer-
oute measurement, T (P, S) yields the set of physical (or
IP-level) routing hops between hosts P and S. In this case,
the child CPi whose traceroute path has the largest intersec-
tion with T (P, S) is deemed the closest to S and returned
as best. Other than this it is identical to closest latency. Be-
cause only one cost measurement is made and it is to the
parent, the amount of time spent at each level in the tree
is significantly less than that in closest latency. However,
results show that the traceroute method of approximating
which child is closest to S only finds the same child as the
closest latency method 43% of the time in a tree of 200
hosts, so there is a price to be paid by the approximation.
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best(P, S) = same as in F igure 4.

onehopFurther(P, CPi, H) = L(P, H) + Σ∀j(L(H, CPij) + L(P, H))

worst(P, S) =

8

>

>

>

<

>

>

>

:

nil if | CP |< MAXFANOUTP

CPi | onehopFurther(P, CPi, CPi)−
onehopFurther(P, CPi, S) =

max∀j(onehopFurther(P, CPj , CPj)−
onehopFurther(P, CPj , S)) otherwise

Figure 5. Methods for finding the best and worst children using the latency twohop policy.

best(P, S) = CPi | L(CPi, S) = min
∀j

(L(CPj , S))

worst(P, S) =



nil if | CP |< MAXFANOUTP

S otherwise

Figure 6. Methods for finding the best and worst children using the latency closest policy.

best(P, S) =



CPi ifL(P, S) ≥ L(P, CPi) | L(CPi, S) = min∀j(L(CPj , S))
S otherwise

worst(P, S) =

8

<

:

nil if | CP |< MAXFANOUTP

S ifL(P, S) ≥ L(P, CPi) | L(CPi, S) = min∀j(L(CPj , S))
CPi otherwise

Figure 7. Methods for finding the best and worst children using the latency closest swap policy. Notice
that best and worst are opposites, with the addition of the nil case for worst.

Closest Traceroute Swap is illustrated in Figure 9, and
makes the same modifications to the closest traceroute al-
gorithm that the closest latency swap algorithm makes to
closest latency.

3 Results and Analysis

In this section, we compare the different subscription al-
gorithms, using simulations involving the GT-ITM software
for generating transit-stub physical topologies [28]. Unless
otherwise specified, each physical network is created with
5050 routers, 10 transit domains, 10 transit nodes per tran-
sit domain, 5 stub domains attached to each transit node,
and 10 nodes in each stub domain. All hosts in the system
are assigned to a random router, with the possibility that
multiple hosts are assigned to the same router. One of the
hosts is chosen to be the publisher. A set of subscribing
hosts run the chosen subscription algorithm in a random or-
der, which is indicative of a real application scenario where
hosts may subscribe to published streams at arbitrary times.
The properties of the resulting tree are measured and re-
ported. Though the tree fanout (or maximum number of
children) can be configured on a per-host basis, we choose
a value of 12 for all hosts unless otherwise specified. All
results are averaged over experiments run on three transit-
stub graphs, with each graph being used twice for randomly
chosen publishers and subscribers.

3.1 Comparison of Different Subscription Algo-
rithms

One of the most important metrics, to compare the per-
formance of different subscription algorithms, is the relative
delay penalty for each subscriber in the resultant multicast
tree. The relative delay penalty (or, simply, delay penalty)
for each subscriber host, S, is the ratio of the latency of
the tree path between the publisher, P , and S to the latency
of the shortest unicast path between P and S (using, e.g.,
IP unicast). A delay penalty of 1.0 would imply the tree
latency between P and S is the same as the latency of uni-
cast routing. Although this would be ideal, it is unrealistic
in practice, due to trees being constructed at the end-host
level rather than physical network level. Figure 10(a) shows
the cumulative distribution function of the delay penalty for
each of the subscription algorithms for a population of 5000
hosts. The values on the y-axis represent the percentage of
subscribers with a delay penalty of no more than the corre-
sponding value on the x-axis.

Efficient use of network bandwidth is also an important
metric for end-system multicast, particularly for the pur-
poses of multimedia streaming to potentially many thou-
sands of subscribers. We measure the impact of a multicast
tree on link bandwidth by computing its link stress. The
link stress is a measure of the average number of times a
physical network link is traversed when delivering content
along the tree paths from a publisher to each and every sub-
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best(P, S) = CPi | | T (P, Ci) ∩ T (P, S) |= max
∀j

(| T (P, Cj) ∩ T (P, S) |)

worst(P, S) =



nil if | CP |< MAXFANOUTP

S otherwise

Figure 8. Methods for finding the best and worst children using the traceroute closest policy.

best(P, S) =



CPi ifL(P, S) ≥ L(P, CPi) | | T (P, Ci) ∩ T (P, S) |= max∀j(| T (P, Cj) ∩ T (P, S) |)
S otherwise

worst(P, S) =

8

<

:

nil if | CP |< MAXFANOUTP

S ifL(P, S) ≥ L(P, CPi) | | T (P, Ci) ∩ T (P, S) |= max∀j(| T (P, Cj) ∩ T (P, S) |)
CPi otherwise

Figure 9. Methods for finding the best and worst children using the traceroute closest swap policy.

scriber. A link stress of 1.0 is perfect and means that each
network link is used only once in the dissemination of the
data-stream. As with the relative delay penalty, an efficient
end-system multicast tree should attempt to minimize the
link stress. Figure 10(b) shows the cumulative distribution
function of the link stress for each subscription algorithm.

In addition to link stress and relative delay penalty, it
is also important to consider the number of cost measure-
ments needed to construct a scalable end-system multicast
tree. This is particularly important when a tree needs to be
built or modified quickly in the presence of flash crowds (or
bursts of subscriptions). The number of cost measurements
taken per host in the system, after all 5000 hosts have sub-
scribed, is represented as a cumulative distribution function
in Figure 10(c).

Discussion: We see that the twohop method, which takes
a large amount of cost measurements does not achieve sig-
nificantly better delay penalties than onehop, which takes
very few cost measurements. It appears that the complexity
added to make twohop does not translate into better perfor-
mance. This confirms that the rough heuristic which is the
basis for onehop – that swapping in hosts that are closer
to the publisher – is valid. Also, it is apparent that both
the closer latency and closer traceroute policies benefit by
swapping nodes that are closer to the subtree root with the
closest child. With this optimization, both closer latency
swap and closer traceroute swap are able to not only put
physically close children near each other in the resultant
tree, but are also able to make a physical correspondence
between the subtree roots and their children.

The “bubble in” onehop method demonstrates a lower
maximum and average number of cost measurements than
the other methods, but does not perform notably well in ei-
ther delay penalty or link stress. The policies which require
O(fanout) cost measurements per level (such as closer la-
tency) in the tree demonstrate a significant increase in the
number of cost measurements over methods such as one-
hop. Recall that this will affect not only the stress on
the system induced by cost measurements, but also on the

amount of time it takes for a new host to complete its sub-
scription request. These methods, however, do incur sig-
nificantly less link stress on the system than onehop. The
closest traceroute method, though it makes few cost mea-
surements, does not approximate locality in terms of latency
between children well enough. However, closest traceroute
swap seems to make the approximation much more reason-
able and achieves a respectable delay penalty while provid-
ing a low link stress.

3.2 Scalability

To understand the scalability of each of the subscription
algorithms, simulations are run on population sizes ranging
from 1000 to 10000. It is important that each of the policies
scale in terms of latency of delivery to each host and also
in terms of the bandwidth consumed. The delay penalty
results for the different populations sizes are shown in Fig-
ure 11(a). With the exception of closest traceroute, all of the
policies seem to increase slowly enough to imply scalabil-
ity in terms of population size. Some of the delay penalties
seem to decrease as the host size grows past 6000. It appears
that as the amount of subscribed hosts exceeds the amount
of routers in a system, the quality of the tree improves for
some policies. This has implications for deployment in cor-
porate environments where the number of employees might
overshadow the number of routers. The onehop and clos-
est latency swap policies demonstrate an extremely low de-
lay penalty which is consistent across population sizes. All
conclusions drawn in Section 3.1 are reinforced, and we can
see that the delay penalty of many of the policies appears to
scale well in terms of population size.

Figure 11(b) illustrates the link stress. All the meth-
ods which attempt to map physically close children to log-
ically close positions (i.e., within a few logical hops) in
the tree, demonstrate extremely low link stress. However,
onehop (using “bubble out”) and onehop bubbleIn, which
only attempt to make a correlation between subtree roots
and their children have significant link stresses. This is due
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Figure 10. Subscription algorithm comparison.
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Figure 11. Scalability of the different subscription algorithms.

to the “cross-talk” between different subtrees. That is, dif-
ferent subtrees might utilize common physical links. This
“cross-talk” is limited in the policies which cluster children
together because each subtree will ideally represent non-
overlapping subsections of the entire network.

3.3 Variation of Fanout

As mentioned before, the fanout of the tree is, for sim-
plicity, set to 12 in all of the preceding experiments. It is im-
portant, however, to understand the effect of fanout on the
efficiency of the multicast tree. Figure 12 demonstrates this
effect. Multicast trees are constructed using both a fanout of
6 and a fanout of 12, and the cumulative distribution func-
tions for both delay penalty (Figure 12(a)) and link stress
(Figure 12(b)) are measured. In these graphs, only a subset
of the original subscription policies are tested, which are
deemed most interesting.

The delay penalty plots indicate that a larger fanout is
more beneficial to the construction of trees with better la-
tency characteristics. This is due to two reasons: (1) as the

fanout increases, the best and worst functions can see
more children and can therefore make more informed de-
cisions regarding which child is the best and which is the
worst, and (2) because the depth of the tree is less (log12N

instead of log6N for a population size, N ). The change
in fanout does not seem to significantly impact the link
stress. This is perhaps non-intuitive because as the fanout
increases, it would seem that the link stress around that root
would also increase. However, both of the methods that at-
tempt to attach the subscriber, S, to a close child will simply
have more information about which child to connect to S.
In the case of onehop, the same “cross-talk” between sub-
trees will exist regardless of how many children each node
has, and this is the primary contributor to its link stress.

3.4 Soft Real-Time Constraints

Given that overlay multicast techniques route between
end-systems to deliver content from publishers to sub-
scribers, they lack control at the network level to make hard
real-time service guarantees. However, it is possible to use
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Figure 12. Comparison of the effect of different fanout values.

overlay multicasting to provide soft real-time guarantees to
subscribers (e.g., to guarantee a significant percentage of
deadlines are met on the delivery of a media stream). With
this in mind, we study the ability of each tree construc-
tion policy to meet subscriber-specified delay bounds (or
latency constraints). For each subscriber, S, latency con-
straints are generated uniform and randomly in the range
[llower, lupper], where llower is the unicast latency between
publisher, P , and S, and lupper is five times the average
unicast latency between all subscribers and P . The factor
of five was chosen because it is the upper bound on the av-
erage depth of the multicast trees constructed using each
of the subscription algorithms. The delivery latency over
the multicast tree is computed and compared to it’s latency
constraint. A success is recorded if the achieved cost does
not surpass the constraint. The total number of successes

is divided by the population size to obtain a success ra-
tio. Figure 13(a) shows the success ratios of the various tree
construction methods.

For each host, S, with a corresponding latency con-
straint, c, and delivery latency over the multicast tree, DS ,
a normalized lateness value, L(S, c) is calculated using the
following formula:

L(S, c) =

{

0 ifDS ≤ c
DS−c

c
ifDS > c

The lateness values are normalized in order to eliminate
bias towards subscribers with large latency constraints, rela-
tive to the other hosts, and all hosts with satisfied constraints
are assigned a normalized lateness of zero. Figure 13(b)
shows the normalized lateness values for each subscription
algorithm.

As expected, those policies which demonstrate low de-
lay penalties meet the most constraints and have the low-

est lateness averages. It should be noted that even those
hosts which cannot make their constraints, miss them by
relatively small amounts. This improves on previous re-
sults [8] which use “greedy-based routing” (rather than ex-
plicit multicast trees), to deliver data over a peer-to-peer
network based on a k-ary n-cube topology. That said, our
earlier greedy-based routing approach was extremely quick
at finding paths between a publisher and each subscriber,
which may be beneficial for initial setup of paths for media
streaming when there are flash crowds.

3.5 Variation of Physical Topology

So as to ensure that results obtained here are not depen-
dent on the size or shape of the physical topology used,
we re-run the experiments from Section 3.2 on a different
graph with 10100 routers. The graph consists of 25 transit
domains, five transit nodes per transit domain, four stub do-
mains attached to each transit node, and 20 nodes in each
stub domain. Further, we wish to compare our results with
the RITA [25] tree generation method which approaches the
problem in a completely different manner. RITA uses land-
marking information and a peer-to-peer network to place
nodes into the multicast tree. The evaluation of RITA uti-
lizes a physical graph with the same properties and the tests
are run for smaller numbers of hosts, with a maximum pop-
ulation size of 2000. It is important to note that RITA mea-
sures the stretch in latency of the end-system multicast tree
compared to the latency of an equivalent shortest path tree
at the network-level. This is a slightly different metric than
our notion of relative delay penalty. We compare against
unicast latency so that we will be measured against the best
possible delivery latency for each subscriber.

Figure 14(a) shows the delay penalty from a population
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Figure 13. Amount of deadlines made and the average normalized lateness of delivery.
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Figure 14. Multicast tree construction for smaller population sizes and a larger physical topology.

size of 100 to 2000. Though the delay penalties cannot be
compared directly, the values for closest latency swap and
onehop seem to compare favorably to those reported in the
work on RITA [25]. Figure 14(b) illustrates the link stress.
The onehop method seems to achieve a comparable link
stress to RITA at 2000 nodes. However, both other poli-
cies demonstrate a significantly better average link stress
of approximately two. Results show that in terms of delay
penalty and link stress, closest latency swap achieves aver-
age delay penalties comparable to RITA, and link stresses
which are better. closest traceroute swap seems superior in
terms of link stress, but not necessarily in terms of delay
penalty. onehop is competitive in terms of delay penalty,
and link stress (though the authors believe that after 2000
hosts, onehops link stress will be larger than that demon-
strated by RITA.)

4 Related Work

There have been several recent methods for building end-
system multicast trees and graphs [6, 25, 7, 2, 29, 13, 14, 27,
17] that account for heterogeneous QoS constraints and/or
attempt to reduce delay penalties and link stress. Some sys-
tems, such as Pastry/Scribe[19, 4] implicitly form distribu-
tion trees using logical links that comprise a structured over-
lay. The advantage of this approach is that it is scalable in
the sense that individual participating hosts must only store
routing state that is logarithmic in the number of hosts in
the system. In addition, many such regular overlay struc-
tures can route a message between any pair of hosts in an
asymptotically logarithmic number of hops with respect to
the number of participants, thus ensuring reasonable routing
latencies.
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In contrast, we propose algorithms for building dense
multicast trees directly, in the context of a limited fanout
at each level. Such distribution trees outperform those im-
plicitly built using the union of routes in an overlay such
as CHORD [22], CAN [15], and Tapestry [30], but in our
scheme a structured overlay is still helpful for routing con-
trol messages and may be useful for finding routes around
failed nodes. Note that the tree construction algorithms pre-
sented in this work produce multicast trees that can be em-
bedded onto a regular overlay graph (e.g., a k-ary n-cube),
in which the subscribing hosts are swapped into logical po-
sitions in correspondence with the tree structure.

NARADA [6] also focuses on tree formation across a
logical mesh, that is dynamically constructed by consid-
ering all point-to-point connections between end-systems.
Logical links are added to, and deleted from, the mesh de-
pending on their benefits (or lack, thereof) to the delivery
of content between hosts. However, this method does not
achieve the scalability of approaches involving more regu-
larly structured overlays, partly due to the significant num-
ber of probe messages involved in constructing the mesh.
Our methods do not limit possible connections between
hosts in the multicast tree to the particular links available
in a pre-constructed overlay network except in the require-
ment that maximum fanout is held constant. Thus, distribu-
tion trees built using the algorithms discussed in our work
are not as dependent upon the quality of the initial overlay
structure.

Other related work, such as RITA [25], HMTP [29],
Yoid [7], and Bullet [11], present approaches that attempt
to form multicast trees, without being strictly limited to a
fixed logical topology. In these systems a number of meth-
ods are proposed for inserting newly subscribing hosts into
the tree at positions that fulfill specified QoS constraints
and/or result in low-cost data distribution. Some systems,
such as OMNI [3], use a set of pre-selected service nodes
to form a low-cost distribution tree that connects subscriber
hosts. Our approach differs from OMNI in that all hosts
are peers, rather than being arranged in a two-tier hierar-
chy, which allows for greater flexibility in the placement of
hosts in a tree structure. While focusing on tree construction
algorithms to help meet (statistically, at least) the QoS con-
straints of subscribers, we explicitly consider the impacts
of tree fanout, which has not been addressed by similar
work such as RITA. Of all the bodies of work mentioned
above, none have provided a comparative study of different
tree construction algorithms that emphasize the trade-offs
in cost, link stress, delay penalty and ability to meet per-
subscriber QoS constraints.

5 Conclusions and Future Work

This paper describes several end-system multicast tree
construction algorithms, that vary in terms of cost, relative
delay penalty and link stress. We show how it is possi-
ble to efficiently build trees that support many thousands
of subscribers each with their own QoS constraints. While
no algorithm is best in all cases we show how it is possible
to efficiently build large-scale trees with latencies within a
factor of two of the optimal, and link stresses comparable
to, or better than, existing technologies such as RITA and
HMTP. Several of our approaches support the swapping of
hosts into different tree positions, to adaptively improve the
overall tree quality without incurring significant overhead.
While no one algorithm is best in all cases for link stress,
latency and cost, our closest latency swap policy is shown
to do reasonably well in all cases. For the policies consid-
ered in this paper, experimental results suggest that increas-
ing tree fanout improves the overall latency characteristics
without significantly impacting the link stress.

Future work will investigate the costs of constructing ef-
ficient tress that minimize link stress, while meeting per-
subscriber QoS constraints in the presence of burst joins and
departures. Dealing with departures is particularly problem-
atic, as the tree can become partitioned, such that a media
stream may not be able to reach its destination. The cost
of some of the tree construction algorithms discussed in
this paper will also be affected by additional measurements
that are needed to repair a tree after one or more hosts de-
parts. During the process of repairing a tree, we will study
the ability to continue routing a media stream over alterna-
tive links selected from an overlay topology between hosts.
Such an approach will alleviate the need to restart the trans-
mission of a stream to one or more subscribers affected by
changes to the tree.
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