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Abstract—Modern processors are increasingly featuring
multiple cores, as well as support for hardware virtual-
ization. While these processors are common in desktop
and server-class computing, they are less prevalent in
embedded and real-time systems. However, smartphones
and tablet PCs are starting to feature multicore processors
with hardware virtualization. If the trend continues, it is
possible that future real-time systems will feature more
sophisticated processor architectures. Future automotive
or avionics systems, for example, could replace complex
networks of uniprocessors with consolidated services on a
smaller number of multicore processors. Likewise, virtual-
ization could be used to isolate services and increase the
availability of a system even when failures occur.

This paper investigates whether advances in modern
processor technologies offer new opportunities to rethink
the design of real-time operating systems. We describe some
of the design principles behind Quest-V, which is being
used as an exploratory vehicle for real-time system design
on multicore processors with hardware virtualization ca-
pabilities. While not all embedded systems should assume
such features, a case can be made that more robust, safety-
critical systems can be built to use hardware virtualization
without incurring significant overheads.

I. INTRODUCTION

Multicore processors are becoming ubiquitous in all

classes of computing, from desktops to servers, and even

embedded systems. Many of these processors also sup-

port hardware virtualization capabilities. For example,

Intel VT-x, AMD-V, and more recently, ARM Cortex

A15 processors all have native machine virtualization

support. While many such processors have been used in

virtual datacenters, there is an opportunity to consider

multicore virtualized systems in new areas of embedded

computing. The ARM Cortex A15, for example, is being

targeted at tablet devices and smartphones, with the abil-

ity to support multiple guest environments that separate

personal and work-related information and services.

This paper investigates whether advances in modern

processor technologies offer new opportunities to rethink

the design of safety-critical real-time operating systems

(RTOSes). We present a new system design that uses

both virtualization capabilities and the redundancy of-

fered by multiple processing cores, to develop a real-time

system that is resilient to software faults. Our system,

called Quest-V [1], is designed as a multikernel [2], or

distributed system on a chip. It encapsulates different

kernel instances, and their applications, in separate vir-

tual machines (VMs). Faults in one VM are isolated from

other VMs, similar to how processes are isolated from

one another in a traditional operating system. However,

each VM has greater capabilities than a traditional pro-

cess running on top of a more privileged OS kernel. With

Quest-V, each kernel instance in its own VM runs on top

of a privileged monitor. While a monitor is required to

be trusted, it can be kept to a minimal size and removed

from the normal execution path of each kernel in the

system.

Quest-V is not intended to replace RTOSes found in

relatively simplistic closed embedded systems, with fixed

tasksets and highly deterministic behavior. Instead, it is

targeted at open real-time systems with dynamic tasksets

and potentially unpredictable operating environments.

Such systems often feature a mix of real-time and best-

effort tasks, and data inputs generated by potentially

untrusted external sources. Safety and security become

significant, particularly in application domains such as

health-care, factory automation, avionics and automotive

systems. As an example, a future automotive system

may not only involve internal tasks communicating over

a controller area network, but may include dynamic

tasks and data from interaction with other vehicles

or the surroundings. External factors have significant

consequences on the safe and timely operation of the

vehicle [3].

While Linux supports hardware virtualization through

its KVM interface, and hypervisors such as Xen [4] exist,

neither approach has focused on providing real-time

guarantees to tasks with safety and security constraints.

Quest-V is an investigation into whether a single system

can be built from a collection of separate kernel images

operating together, to satisfy both temporal and spatial

isolation requirements. Temporally, one task should not

interfere with another in its timing requirements, while

spatially, the misuse of resources such as memory by

one task should not affect others.

We show how Quest-V does not incur significant
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operational overheads compared to a non-virtualized

version of our system, simply called Quest, designed for

SMP platforms. We describe how to enforce real-time

guarantees on communication, interrupt handling, thread

scheduling, and cross-core task migration. Similarly, we

show how to leverage virtualization to prevent software

component failures (either through error or malicious

attacks) from compromising an entire system.

In the following section we describe the rationale for

the design of Quest-V. This is followed by a descrip-

tion of the architecture in Section III. An experimental

evaluation of the system is provided in Section IV.

Here, we show the overheads of online fault recovery,

along with the costs of using hardware virtualization

to isolate kernels and system components. Section V

describes related work, while conclusions are discussed

in Section VI.

II. DESIGN RATIONALE

Quest-V is centered around three main goals: safety,

predictability and efficiency. The system is focused

on safety-critical application domains, requiring high

confidence in their operation [5] to prevent potential

loss of lives or equipment. With recent advances in

fields such as cyber-physical systems, more sophisticated

OSes beyond those traditionally found in real-time and

embedded computing are now required. Consider, for

example, a collection of automotive sub-systems for

engine, body, chassis, transmission, safety and info-

tainment services. These could be consolidated on the

same multicore platform, with space-time partitioning to

ensure malfunctions do not propagate across services.

Moreover, if future automotive systems interact with

their environments as part of vehicle-to-vehicle (V2V)

or vehicle-to-infrastructure (V2I) communication, they

are open to potential safety and security breaches from

external sources.

While safety is a key goal, hardware virtualization

provides a method to encapsulate, or sandbox, system

resources from access by unauthorized sources. Virtual-

ization provides an opportunity to enforce both system-

wide safety and security beyond that achievable with

non-virtualized hardware solutions such as paging and

segmentation [6], [7]. Quest-V relies on Extended Page

Tables (EPTs) 1 to separate system software components

operating as a collection of services in a distributed sys-

tem on a chip. The rationale for a virtualized multikernel

is as follows:

(1) Efficiency and Improved Predictability – a mul-

tikernel adheres to the share-nothing principle, first

1Intel uses the term “EPT”, while AMD refers to them as Nested
Page Tables (NPTs). We use the term EPT for consistency.

discussed in the work on Barrelfish [2]. This leads to

reduced resource contention and improved system effi-

ciency on platforms with multiple cores, even accounting

for explicit inter-kernel communication costs. As system

resources are effectively distributed across cores, and

each core is managed separately, there is no need to

have shared structures such as a global scheduler queue.

This, in turn, can improve predictability by eliminating

undue blocking delays due to synchronization.

(2) Fault Resilience – replication of kernel function-

ality or, at least, separation of services in different

protection domains increases fault resilience. This, in

turn, increases system availability when there are partial

system failures.

(3) Highest Safe Privilege – Rather than adopting a

principle of least privilege for software services, as is

done in micro-kernels, a virtualized system can support

the highest safe privilege levels for different services.

Virtualization provides an extra logical ”ring of pro-

tection” that allows guests to think they are working

directly on the hardware. Thus, virtualized services can

be written with traditional kernel privileges, yet still be

isolated from other equally privileged services in other

guest domains. This avoids the costs typically associated

with micro-kernels, which require added communication

overheads to request services in different protection

domains.

(4) Minimal Trusted Code Base – A micro-kernel

attempts to provide a minimal trusted code base for the

services it supports. However, it must still be accessed

as part of inter-process communication, and basic op-

erations such as coarse-grained memory management.

Monitors form a trusted code base in the Quest-V virtual-

ized multikernel. Access to these can be avoided almost

entirely, except to bootstrap (guest) sandbox kernels,

handle faults and manage EPTs. This enables sandboxes

to operate, for the most part, independently of any other

code base that requires trust. In turn, the trusted code

base (i.e., monitors) can be limited to a small memory

footprint.

While Quest-V uses hardware virtualization to iso-

late sandbox kernels, this is not a requirement of our

multikernel approach. Many platforms, especially those

in embedded systems, still lack hardware virtualization

features. In such cases, it is possible to use alternative

memory protection schemes based on segmentation or

paging, for example. In this work, we seek to investigate

the costs, and feasibility, of using hardware virtualization

as a first-class feature of a chip-level distributed system.

This contrasts with past work on virtual machines that

treat guests as mostly separate and unrelated entities.
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III. QUEST-V ARCHITECTURE

A high-level overview of the Quest-V architecture is

shown in Figure 1. Each sandbox encapsulates a subset

of machine physical resources (i.e., memory, one or more

CPU cores and I/O devices), along with a kernel instance

and its applications. A single hypervisor is replaced by a

separate trusted monitor for each sandbox. This prevents

a monitor from having to switch EPT mappings on

return from handling VM-Exits 2, since the same guest,

or sandbox kernel, will always resume. Additionally,

separate monitors can be implemented differently, to

prevent vulnerabilities to the same security threat.

Each monitor occupies less than a 4KB memory page.

Apart from establishing EPT memory mappings 3 for

sandboxes and communication channels, and assisting

in fault recovery and migration, the monitors are not

needed. Each sandbox kernel performs its own local

scheduling and I/O handling without the cost of VM-

Exits into a monitor. This is a significant departure from

traditional virtual machine (VM) systems, which require

the hypervisor to schedule guest VMs and manage I/O.

Fig. 1. Quest-V Architecture Overview

The extent to which functionality is separated across

kernels is somewhat configurable in the Quest-V design.

In our initial implementation, each sandbox kernel repli-

cates most functionality, offering a private version of the

corresponding services to its local application threads. It

is, however, possible to have some kernels run Quest

real-time services, while others run alternative kernels

based on Linux or Autosar, for example.

Quest-V allows any sandbox to be configured for

corresponding device interrupts, rather than having a

dedicated sandbox for all communication with that de-

vice. This greatly reduces the communication and control

paths necessary for I/O requests from applications in

2E.g., due to an EPT violation caused by a fault.
3The page tables for EPTs take additional space but a 12KB mapping

is enough for a 1GB sandbox.

Quest-V. It also differs from the split-driver approach

in systems such as Xen, which require all device inter-

rupts to be channeled through a special driver domain.

Sandboxes can be isolated from unnecessary drivers and

services. Likewise, a sandbox can be provided with its

own private set of devices and drivers, so if a software

failure occurs in one driver, it will not affect all other

sandboxes.

Quest-V allows each sandbox kernel to be configured

to operate on a chosen subset of CPUs, or cores. This

is similar to how Corey partitions resources amongst

applications [8]. In our current approach, we assume

each sandbox kernel is associated with one physical

core since that simplifies local (sandbox) scheduling and

allows for relatively easy enforcement of service guar-

antees using a variant of rate-monotonic scheduling [9].

Notwithstanding, application threads can be migrated

between sandboxes as part of a load balancing strategy.

Similarly, multi-threaded applications can be distributed

across sandboxes to allow parallel thread execution.

Application and system services in distinct sandbox

kernels can communicate via shared memory channels.

Channels are established by EPT mappings setup by

the corresponding monitors. Messages are passed across

these channels similar to the approach in Barrelfish [2].

While a shared communication channel can be corrupted

by a sandbox failure, EPTs prevent corruption of private

memory regions in a remote sandbox. All other remote

sandboxes with separate communication channels can

continue to operate without compromise.

Main and I/O virtual CPUs (VCPUs) are used for real-

time management of CPU cycles, to enforce temporal

isolation. Application and system threads are bound to

VCPUs, which in turn are assigned to underlying phys-

ical CPUs. We will discuss this further in the following

section.

A. System Implementation

Quest-V has been implemented from scratch as a 32-

bit x86 system. Plans are underway to port the system to

ARM Cortex A15 processors that also support hardware

virtualization. The kernel code is approximately 10,000

lines of C and assembly, discounting drivers and network

stack [10]. Using EPTs, each sandbox virtual address

space is mapped to its own host memory region. By

default, only the BIOS is shared across sandboxes,

while all other functionality is privately mapped. EPT

mappings can be established for shared communication

channels between pairwise groups of sandboxes. Access

from one sandbox into another sandbox’s memory space

is still, however, restricted to the pages of memory
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within this shared channel. Once bootstrapped, a Quest-

V sandbox kernel can operate as a bootloader for a

third-party system (e.g., a Linux or Autosar guest). This

allows inter-operation between different sub-systems co-

existing on the same hardware.

Hardware-Assisted Memory Isolation. Figure 2

shows how address translation works for Quest-V guests

(i.e., sandboxes) using Intel’s extended page tables. Each

sandbox kernel uses its own internal paging structures

to translate guest virtual addresses to guest physical

addresses (GPAs). EPT structures are then walked by

the hardware to complete the translation to host physical

addresses (HPAs). Modern processors with hardware

support (e.g., Intel VT-x processors) avoid the need for

software managed shadow page tables, and they also

support TLBs to cache various intermediate translation

stages. This greatly reduces the cost of address transla-

tion, as will be seen in Section IV-A.

Fig. 2. Extended Page Table Mapping

On VT-x processors, address mappings can be ma-

nipulated at 4KB page granularity. For each 4KB page

we have the ability to set read, write and even execute

permissions. Consequently, attempts by one sandbox to

access illegitimate memory regions of another will incur

an EPT violation, causing a trap to the local monitor.

The EPT data structures are, themselves, restricted to

access by the monitors, thereby preventing tampering by

sandbox kernels.

EPT support alone is actually insufficient to prevent

faulty device drivers from corrupting the system. It is still

possible for a malicious driver or a faulty device to DMA

into arbitrary physical memory. This can be prevented

with technologies such as Intel’s VT-d, which restrict

the regions into which DMAs can occur using IOM-

MUs. However, this is still insufficient to address other

more insidious security vulnerabilities such as “white

rabbit” attacks [11]. For example, a PCIe device can

be configured to generate a Message Signaled Interrupt

(MSI) with arbitrary vector and delivery mode by writing

to Local APIC memory. Such malicious attacks can be

addressed using hardware techniques such as Interrupt

Remapping (IR), which restrict both the source and

destination of interrupts.

Real-Time VCPU Scheduling. For use in real-time

systems, the system must perform certain tasks by their

deadlines. Quest-V does not require tasks to specify

deadlines but instead ensures that the execution of one

task does not interfere with the timely execution of oth-

ers. For example, Quest-V is capable of scheduling inter-

rupt handlers as threads, so they do not unduly interfere

with the execution of higher-priority tasks. While Quest-

V’s scheduling framework is described elsewhere [12],

we briefly explain how it provides temporal isolation

between tasks and system events.

In Quest-V, VCPUs form the fundamental abstraction

for scheduling and temporal isolation of the system. The

concept of a VCPU is similar to that in virtual ma-

chines [13], [4], where a hypervisor provides the illusion

of multiple physical CPUs (PCPUs) 4 represented as

VCPUs to each of the guest virtual machines. VCPUs

exist as kernel (as opposed to monitor) abstractions,

to simplify the management of resource budgets for

potentially many software threads. We use a hierarchical

approach in which VCPUs are scheduled on PCPUs and

threads are scheduled on VCPUs.

A VCPU acts as a resource container [14] for schedul-

ing and accounting decisions on behalf of software

threads. It serves no other purpose to virtualize the

underlying physical CPUs, since our sandbox kernels

and their applications execute directly on the hardware.

In particular, a VCPU does not need to act as a container

for cached instruction blocks that have been generated

to emulate the effects of guest code, as in some trap-

and-emulate virtualized systems.

In common with bandwidth preserving servers [15],

[16], [17], each VCPU, V , has a maximum compute

time budget, CV , available in a time period, TV . V is

constrained to use no more than the fraction UV = CV

TV

of

a physical processor (PCPU) in any window of real-time,

TV , while running at its normal (foreground) priority. To

avoid situations where PCPUs are idle when there are

threads awaiting service, a VCPU that has expired its

budget may operate at a lower (background) priority. All

background priorities are set below those of foreground

priorities to ensure VCPUs with expired budgets do not

adversely affect those with available budgets.

4We define a PCPU to be either a conventional CPU, a processing
core, or a hardware thread.
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Fig. 3. VCPU Scheduling Hierarchy

Quest-V defines two classes of VCPUs as shown in

Figure 3: (1) Main VCPUs are used to schedule and track

the PCPU usage of conventional software threads, while

(2) I/O VCPUs are used to account for, and schedule

the execution of, interrupt handlers for I/O devices. This

distinction allows for interrupts from I/O devices to be

scheduled as threads, which may be deferred execution

when threads associated with higher priority VCPUs

having available budgets are runnable. The flexibility of

Quest-V allows I/O VCPUs to be specified for certain de-

vices, or for certain tasks that issue I/O requests, thereby

allowing interrupts to be handled at different priorities

and with different CPU shares than conventional tasks

associated with Main VCPUs.

By default, each Main VCPU acts like a Sporadic

Server [18], [19], while each I/O VCPU acts as a band-

width preserving server with a dynamically-calculated

period, TIO, and budget, CIO [12]. Each I/O VCPU is

specified a certain utilization factor, UIO, to limit its

bandwidth. When a device interrupt requires handling

by an I/O VCPU, the system determines the thread τ

associated with a corresponding I/O request 5. In Quest-

V, all events including those related to I/O processing are

associated with threads running on Main VCPUs. CIO

is calculated as TV ·UIO, while TIO is set to TV for a

Main VCPU, V , associated with τ .

Figure 4 shows an example schedule for two Main

VCPUs and one I/O VCPU, with a utilization factor of

4%, for a certain device such as a gigabit Ethernet card.

Replenishment lists are shown for VCPU1. Since the I/O

VCPU handles I/O requests on behalf of a thread running

on VCPU1, it inherits a budget, CIO = 50 ∗ 0.04, and

period, TIO = 50.

The invariant is that the sum of replenishment amounts

for all list items must not exceed the budget capacity of

the corresponding VCPU (here, 20, for VCPU1). Also,

no future replenishment, R, for a VCPU, V , executing

from t to t+R can occur before t+ TV [19].

5E.g., τ may have issued a prior read() request that caused it
to block on its Main VCPU, but which ultimately led to a device
performing an I/O operation.

Temporal Isolation. In Quest-V, VCPUs are mapped
to a separate scheduling queue for each PCPU. Under
this arrangement, our default policies for Main and I/O
VCPU scheduling allow us to guarantee temporal isola-
tion if the Liu-Layland utilization bound is satisfied [9].
For a single PCPU with n Main VCPUs and m I/O
VCPUs we have the following:

n−1
∑

i=0

Ci

Ti

+

m−1
∑

j=0

(2− Uj)·Uj ≤ n

(

n
√
2− 1

)

(1)

Here, Ci and Ti are the budget capacity and period

of Main VCPU Vi, and Uj is the utilization factor of

I/O VCPU Vj . Further details are available outside this

paper [12]. This bound can be improved with dynamic

priority scheduling of VCPUs (e.g., using earliest dead-

line first scheduling) but this adds more overhead to the

scheduler. This is because: (1) dynamic priorities require

more complex queue management, and (2) Quest-V uses

Local APIC timers, programmed for one-shot operation,

to trigger an interrupt in time for the next event to be

processed; more frequent reprogramming of timers may

be necessary if priorities change.

Quest-V admission control uses Equation 1 to decide

whether to allow the creation of a new VCPU. In

overload conditions, static priority scheduling has the

advantage that the highest priority subset of VCPUs

capable of meeting their timing requirements will not

be affected by lower priority VCPUs. This is not the

case with dynamic priority scheduling, where overload

can cause all VCPUs to fail to maintain their correct

PCPU shares. Similarly, hypervisor scheduling using

policies such as Borrowed Virtual Time (BVT) [20]

cannot guarantee temporal isolation between VCPUs

over specific real-time windows.

Real-Time Communication. Inter-sandbox commu-

nication in Quest-V relies on message passing primi-

tives built on shared memory, and asynchronous event

notification mechanisms using Inter-processor Interrupts

(IPIs). IPIs are currently used to communicate with

remote sandboxes to assist in fault recovery, and can

also be used to notify the arrival of messages exchanged

via shared memory channels. Monitors update extended

page table mappings as necessary to establish message

passing channels between specific sandboxes. Only those

sandboxes with mapped shared pages are able to com-

municate with one another.

A mailbox data structure is set up within shared mem-

ory by each end of a communication channel. By default,

Quest-V currently supports asynchronous communica-

tion by polling a status bit in each relevant mailbox to

determine message arrival. Message passing threads are
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Fig. 4. Example VCPU Schedule

bound to VCPUs with specific parameters to control the

rate of exchange of information. Likewise, sending and

receiving threads are assigned to higher priority VCPUs

to reduce the latency of transfer of information across

a communication channel. This way, shared memory

channels can be prioritized and granted higher or lower

throughput as needed, while ensuring information is

communicated in a predictable manner. Thus, Quest-

V supports real-time communication between sandboxes

without compromising the CPU shares allocated to non-

communicating tasks.

Predictable Migration. Quest-V restricts migratable

address spaces to those associated with VCPUs that

either: (1) have currently expired budgets, or (2) are

waiting in a sleep queue. In the former case, the VCPU

is not runnable at its foreground priority until its next

budget replenishment. In the latter case, a VCPU is

blocked until a wakeup event occurs (e.g., due to an I/O

request completion or a resource becoming available).

Together, these two cases prevent migrating a VCPU

when it is runnable, as the migration delay could impact

the VCPU’s utilization.

For VCPU, Vs, associated with a migrating address

space, we define Es to be the relative time 6 of the next

event, which is either a replenishment or wakeup. For

the utilization of Vs to be unaffected by migration, the

following must hold:

Es ≥ ⌊
∆s

Cm

⌋ · Tm +∆s mod Cm, (2)

where Cm and Tm are the budget and period of

the migrating thread’s VCPU, and ∆s is the migration

cost of copying an address space and its quest tss

data structures to the destination. At boot time, Quest-V

establishes base costs for copying memory pages without

caches enabled 7. These costs are used to determine

∆s for a given address space size. Quest-V makes sure

that the migrating thread will not be woken up by

6i.e., Relative to current time.
7We do not consider memory bus contention issues, which could

make worst-case estimations even larger.

asynchronous events until the migration is finished. The

system imposes the restriction that threads waiting on

I/O events cannot be migrated.

A schedulability test is performed before migration, to

ensure a VCPU can be added to the destination sandbox

without affecting total utilization. If the test fails, the

migration request will be rejected immediately by an IPI.

A VCPU can be migrated immediately for any successful

test, if it does not require its utilization to be guaranteed

while migration is in progress.

In order to simplify the migration criteria, our current

implementation restricts concurrent migration requests to

different destination sandboxes. This is not problematic

as migrations are expected to be infrequent.

Clock Synchronization. One extra challenge to be

considered during migration is clock synchronization

between different sandboxes. Quest-V schedulers use

Local APIC Timers and Time Stamp Counters (TSCs)

in each core as the source for all time-related activities

in the system, and these are not guaranteed to be syn-

chronized by hardware. Consequently, Quest-V adjusts

time for each migrating address space to compensate

for clock skew. This is necessary when updating budget

replenishment and wakeup time events for a migrating

VCPU that is sleeping on an I/O request, or which is not

yet runnable.

The source sandbox places its current TSC value

in shared memory immediately before sending an IPI

migration request. This value is compared with the desti-

nation TSC when the IPI is received. A time-adjustment,

δADJ , for the migrating VCPU is calculated as follows:

δADJ = TSCd−TSCs−2∗RDTSCcost−IPIcost (3)

TSCd and TSCs are the destination and source TSCs,

while RDTSCcost and IPIcost are the average costs of

reading a TSC and sending an IPI, respectively. δADJ

is then added to all future budget replenishment and

wakeup time events for the migrating VCPU in the

destination sandbox.

Interrupt Distribution and I/O Management. By

default, Quest-V allows interrupts to be delivered di-

6



rectly to sandbox kernels. Hardware interrupts are de-

livered to all sandbox kernels with access to the cor-

responding device. This avoids the need for interrupt

handling to be performed in the context of a monitor

as is typically done with conventional virtual machine

approaches. Experiments show that virtualization does

not add significant overheads for handling interrupts or

I/O requests. See Section VII-C in the Appendix for

further details.

IV. EXPERIMENTAL EVALUATION

We conducted a series of experiments to investigate

the performance, predictability and fault isolation of

Quest-V. For network experiments, we ran Quest-V

on a mini-ITX machine with a Core i5-2500K 4-core

processor, featuring 8GB RAM and a Realtek 8111e

NIC. In all other cases we used a Dell PowerEdge T410

server with an Intel Xeon E5506 2.13GHz 4-core pro-

cessor, featuring 4GB RAM. Unless otherwise stated, all

software threads were bound to Main VCPUs with 100%

total utilization for performance related experiments.

A. Address Translation Overhead

To show the costs of address translation as described

in Figure 2, we measured the latency to access a number

of data and instruction pages in a guest user-space

process. Figures 5 and 6 show the execution time

of a process bound to a Main VCPU with a 20ms

budget every 100ms. Instruction and data references to

consecutive pages are 4160 bytes apart to avoid cache

aliasing effects. The results show the average cost to

access working sets taken over 10 million iterations. In

the cases where there is a TLB flush or a VM exit, these

are performed each time the set of pages on the x-axis

has been referenced.

For working sets less than 512 pages Quest-V (Base

case) performs as well as a non-virtualized version of

Quest. Extra levels of address translation with extended

paging only incur costs above the two-level paging of a

32-bit Quest virtual memory system when address spaces

are larger than 512 pages. For embedded systems, we

do not see this as a limitation, as most applications will

have smaller working sets. As can be seen, the costs of

a VM-Exit are equivalent to a TLB flush, but Quest-

V avoids this by operating more in common with the

Quest-V Base case. Hence, extended paging does not

incur significant overheads under normal circumstances,

as the hardware TLBs are being used effectively.

B. Fault Isolation and Predictability

To demonstrate fault isolation in Quest-V, we created a

scenario that includes both message passing and network
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service across 4 different sandboxes. Specifically, sand-

box 1 has a kernel thread that sends messages through

private message passing channels to sandbox 0, 2 and

3. Each private channel is shared only between the

sender and specific receiver, and is guarded by EPTs. In

addition, sandbox 0 also has a network service running

that handles ICMP echo requests. After all the services

are up and running, we manually break the NIC driver

in sandbox 0, overwrite sandbox 0’s message passing

channel shared with sandbox 1, and try to corrupt the

kernel memory of other sandboxes to simulate a driver

fault. After the driver fault, sandbox 0 will try to recover

the NIC driver along with both network and message

passing services running in it. During the recovery, the

whole system activity is plotted in terms of message

reception rate and ICMP echo reply rate in all available

sandboxes and the results are shown in Figure 7.

In the experiment, sandbox 1 broadcasts messages

to others at 50 millisecond intervals, while sandbox

0, 2 and 3 receive at 100, 800 and 1000 millisecond

intervals. Also, another machine in the local network

sends ICMP echo requests at 500 millisecond intervals

to sandbox 0. All message passing threads are bound to

Main VCPUs with 100ms periods and 20% utilization.

The network driver thread is bound to an I/O VCPU with

10% utilization and 10ms period.
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Fig. 7. Sandbox Isolation

Results show that an interruption of service happened

for both message passing and network packet processing

in sandbox 0, but all the other sandboxes were unaf-

fected. This is because of memory isolation between

sandboxes enforced by EPTs.

Finally, we ran an experiment using the TORCS

driving simulator [21]. The AI engine for a self-driving

car was first run in a Quest-V sandbox and then in an

Ubuntu Linux 10.04 guest on Xen 4.1.3. In each case, we

simulated a fault that either affected an entire Quest-V

sandbox or Linux kernel. A “hot standby” version of the

AI engine also ran in a separate sandbox or, for Linux, a

different guest. Fault recovery triggered the hot standby,

which ran in a domain with a CPU hog attempting

to consume as much time as possible. For Linux, the

hog prevented the hot standby running as desired. For

Quest-V, the hog was restricted to a VCPU that allowed

the AI engine to acquire 2ms every 5ms of CPU time.

Consequently, Figure 8 shows the car was able to drive

smoothly around the track without the effects of faulting

services or competition for CPU resources in Quest-V.

For Linux on Xen, the vehicle’s trajectory was affected

as shown in the right-most figure. Other scenarios, not

shown, led to the Linux AI engine suffering enough

delay to cause the vehicle to crash.

Fig. 8. TORCS: Quest-V (left) and Linux-Xen (right)

The lack of real-time predictability in Linux means

there is no temporal isolation between a CPU hogging

thread and the AI engine. Similarly, the underlying

hypervisor is also not able to guarantee real-time CPU

shares to its Linux guests. These factors cause the

vehicle’s trajectory to be affected when a system fault

occurs. Moreover, the Linux guests are not running on

a hypervisor that is aware they are cooperating in fault

recovery. Consequently, the TORCS AI engine and the

hot standbys must be written in a way to be aware of each

others existence. Minimally, this requires filtering of the

hot standby’s messages exchanged with the server when

the primary AI engine is operational. In contrast, the

Quest-V driver layer can be configured to filter data from

hot standbys until they are needed in fault recovery. This

means applications do not have to be written explicitly

to coordinate with fault recovery processes.

C. Predictable Migration and Communication

To verify the predictability of the Quest-V migration

framework, we constructed a task group consisting of

2 communicating threads and another CPU-intensive

thread running a Canny edge detection algorithm on a

stream of video frames. The frames were gathered from

a LogiTech QuickCam Pro9000 camera mounted on our

RacerX mobile robot, which traversed one lap of Boston

University’s indoor running track at Agganis Arena 8. To

avoid variable bit rate frames affecting the results of our

experiments, we applied Canny repeatedly to the frame

shown in Figure 9 rather than a live stream of the track.

This way, we could determine the effects of migration on

a Canny thread by observing changes in processing rate

while the other threads communicated with each other.

Fig. 9. Track Image Processed by Canny

For all the experiments in this section, we have two

active sandbox kernels each with 5 VCPUs. The setup

is shown in Table I. The Canny thread is the target for

migration from sandbox 1 to sandbox 2 in all cases. Mi-

gration always starts at time 5. A logger thread was used

to collect the result of the experiment in a predictable

manner. Data points are sampled and reported in a one

second interval.

Figure 10 shows the behavior of Canny as it is mi-

grated in the presence of the two communicating threads.

The left y-axis shows both Canny frame rate (in frames-

per-second, fps) and message passing throughput (in

8RacerX is a real-time robot control project that leverages Quest-V.
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VCPU (C/T) Sandbox 1 Sandbox 2

20/100 Shell Shell

10/50 Migration Thread Migration Thread

20/100 Canny

20/100 Logger Logger

10/100 Comms 1 Comms 2

TABLE I
MIGRATION EXPERIMENT VCPU SETUP

multiples of a 1000 Kilobytes-per-second). The right y-

axis shows the actual CPU consumption of the migration

thread in (millions of, x1m) cycles. We can see from

this figure that none of the threads (2 communicating

threads and Canny) have been affected due to migration.

The sudden spike in migration thread CPU consumption

occurs during the migration of the Canny thread.

The average time to migrate an address space varies

from under 1 millisecond to about 10 - 20 milliseconds,

depending on the actual address space size. This is with

all caches enabled and with address spaces being limited

to a maximum of 4MB.
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Fig. 10. Migration With No Added Overhead

Table II shows the values of variables as defined in

Equation 2. The worst-case migration cost, ∆s, worst,

was the cost of copying a Canny address space with

all caches disabled (including the overhead of walking

its page directory). ∆s, actual was the actual migra-

tion thread budget consumption during migration. Both

worst-case and actual migration costs satisfy the con-

straints of Equation 2, while considering Equation 3.

Consequently, all VCPUs remain unaffected in terms of

their CPU utilization during migration.

Variables Es ∆s, worst ∆s, actual Cm Tm

Time (ms) 79.8 5.4 1.7 10 50

TABLE II
MIGRATION CONDITION

V. RELATED WORK

Barrelfish[2] is a multikernel that replicates system

state rather than sharing it, to avoid the costs of syn-

chronization and management of shared data structures.

As with Quest-V, communication between kernels is via

explicit message passing, using shared memory channels

to transfer cache-line-sized messages. In contrast to

Barrelfish, Quest-V uses virtualization mechanisms to

isolate kernel services as part of our goal to develop

high-confidence systems.

Factored OS (FOS) [22] and Corey [8] are partitioning

systems that distribute OS services and applications

across processing cores. These systems are focused on

scalability rather than Quest-V’s primary focus on fault

isolation and predictability.

There have been several systems that rely on vir-

tualization techniques to enforce logical isolation and

implement scalable resource management on multicore

and multiprocessor platforms. Cellular Disco [23] ex-

tends the Disco virtual machine monitor (VMM) [24]

with support for hardware fault containment. As with

Hive [25], the system is partitioned into cells, each

containing a copy of the monitor code and all machine

memory pages belonging to the cell’s nodes. Failure of

one cell only affects VMs using resources in that cell.

Xen[4] is a subsequent VMM that uses a special

driver domain and (now optional) para-virtualization

techniques to support multiple guests. In contrast to

VMMs such as Disco, Xen and also the Wind River

Hypervisor [26], Quest-V operates as a single system

with sandbox kernels potentially implementing different

services that are isolated using memory virtualization.

Quest-V also avoids the need for a split-driver model

involving a special domain (e.g., Dom0 in Xen) to handle

device interrupts.

Finally, PikeOS [27] is a separation micro-kernel [28]

that supports multiple guest VMs, and targets safety-

critical domains such as Integrated Modular Avionics.

The micro-kernel supports a virtualization layer that is

required to manage the spatial and temporal partitioning

of resources amongst guests. This contrasts with Quest-

V, where each sandbox kernel is responsible for its own

local scheduling on a subset of processor cores – a

VMM, or hypervisor, is not required for scheduling.

VI. CONCLUSIONS

This paper describes the Quest-V multikernel, de-

signed for real-time, safety-critical systems. Extended

page tables are used to isolate sandbox kernels across

different cores in a multicore system. Hardware virtual-

ization provides a fault containment mechanism via an

extra logical “ring of protection”. This enables untrusted

software to run with traditional kernel-level privileges,

without compromising the entire system. This contrasts

with the micro-kernel approach of providing the least

9



privileges necessary to software, and using the kernel as

a trusted communication channel for interaction between

less trusted software components. Quest-V, for the most

part, eliminates the trusted component (here, a monitor)

from the critical path of software execution. Monitors

are only needed for fault handling, migration, and up-

dating EPT mappings (e.g., to establish communication

channels with other sandboxes).

Experiments show that hardware virtualization does

not add significant overheads in our design, as VM-

Exits into monitor code are not normally needed. Un-

like conventional hypervisors that virtualize underlying

hardware for use by multiple disparate guests, Quest-

V assumes all sandboxes are operating together as one

collective distributed system on a chip. Each sandbox

kernel is responsible for scheduling of its threads and

VCPUs onto local hardware cores. Local scheduling

within each sandbox involves the management of time

budgeted, temporally-isolated VCPUs. Similarly, mem-

ory allocation and I/O management are handled within

each sandbox without involvement of a monitor. While

monitors must be trusted, they are rarely accessed and

have a small code base. Moreover, using technologies

such as Intel’s Trusted Execution Technology (TXT), it

is possible to enforce safety of the monitors themselves.

See http://questos.github.com for more information.
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VII. APPENDIX

Quest-V is designed to be robust against software

faults that could potentially compromise a system kernel.

As long as the integrity of one sandbox is maintained it

is theoretically possible to build a Quest-V multikernel

capable of recovering service functionality online. This

contrasts with a traditional system approach, which may

require a full system reboot if the kernel is compromised

by faulty software such as a device driver.

Although fault detection mechanisms are not necessar-

ily straightforward, faults are easily detected in Quest-V

if they generate EPT violations. EPT violations transfer

control to a corresponding monitor where they may be

handled. More elaborate schemes for identifying faults

will be covered in our future work.

Quest-V allows for fault recovery either in the local

sandbox, where the fault occurred, or in a remote sand-

box that is presumably unaffected. Upon detection of a

fault, a method for passing control to the local monitor

is required. If the fault does not automatically trigger a

VM-Exit, it can be forced by a fault handler issuing an

appropriate instruction. 9

A. Fault Recovery

To demonstrate the cost of fault recovery in Quest-

V, we intentionally corrupted the NIC driver on the

mini-ITX machine while running a simple HTTP 1.0-

compliant web server in user-space. Our web server

was ported to a socket API that we implemented on

top of lwIP [29]. A remote Linux machine running

httperf attempted to send 120 requests per second

during both the period of driver failure and normal web

server operation. Request URLs referred to the Quest-V

website, with a size of 17675 bytes.

Figure 11 shows the request and response rate at

0.5s sampling intervals. The driver failure occurred in

the interval [1.5s,2s], after which recovery took place.

Recovery involved re-initializing the NIC driver and

restarting the web server in another sandbox, taking

less than 0.5s. This is significantly faster than a system

reboot, which can take tens of seconds (or longer) to

restart the network service.

Fault recovery can occur locally or remotely. In this

experiment, we saw little difference in the cost of either

approach. Either way, the NIC driver needs to be re-

initialized. This either involves re-initialization of the

same driver that faulted in the first place, or an alternative

driver that is tried and tested. As fault detection is not in

the scope of this paper, we triggered the fault recovery

event manually by assuming an error occurred. Aside

9For example, on the x86, the cpuid instruction forces a VM-Exit.
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Fig. 11. Web Server Recovery

from optional replacement of the faulting driver, and re-

initialization, the network interface needs to be restarted.

This involves re-registering the driver with lwIP and

assigning the interface an IP address. Table III shows

the time for different phases of kernel-level recovery.

Phases
CPU Cycles

Local Recovery Remote Recovery

VM-Exit 885

Driver Replacement 10503 N/A

IPI Round Trip N/A 4542

VM-Enter 663

Driver Re-initialization 1.45E+07

Network I/F Restart 78351

TABLE III
OVERHEAD OF DIFFERENT PHASES IN FAULT RECOVERY

B. Forkwait Microbenchmark

We measured the overhead of making system calls

within Quest-V sandboxes to identify any costs as-

sociated with virtualization. Using a version of the

forkwait microbenchmark [13], 40000 new processes

were forked in each set of experiments, and the total

CPU cycles were recorded. We then compared the per-

formance of Quest-V against a version of Quest without

hardware virtualization enabled, as well as a Linux

2.6.32 kernel in both 32- and 64-bit configurations.

Results in Figure 12 suggest that hardware virtualization

does not add any obvious overhead to Quest-V system

calls. Moreover, both Quest and Quest-V took less time

than Linux to complete their executions.

C. Interrupt and I/O Management

Besides system calls, device interrupts also require

control to be passed to a kernel. We therefore conducted

a series of experiments to show the overheads of interrupt

delivery and handling in Quest-V. For comparison, we

recorded the number of interrupts that occurred and the

total round-trip time to process 30000 ping packets on

both Quest and Quest-V machines. A single (sandbox)
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kernel handled all interrupts in each case. Additionally,

all ICMP requests were issued in 3 millisecond intervals

from a remote machine. Results in Table IV show that

virtualization does not affect performance.

Quest Quest-V

# Interrupts 30004 30003

Total round-trip time (ms) 5737 5742

TABLE IV
INTERRUPT DISTRIBUTION AND HANDLING OVERHEAD

Figure 13 shows UDP throughput measurements using

netperf, which was ported to the Quest-V and non-

virtualized Quest-SMP systems. Up to 4 netperf clients

were run in separate guest domains, or sandboxes, for all

virtualized scenarios. We compared against para- (PVM)

and hardware-virtualized (HVM) Xen 4.1.2 supporting

Ubuntu 10.04 guests, as well as a non-virtualized Ubuntu

10.04 Linux system, with 1-4 netperf processes. In Xen

and Linux the netperf clients were free to run on any core

of the (Core i5) processor. Each client produced a stream

of 16KB messages. Although inferior to non-virtualized

Linux, Quest-V throughput is close to that of Quest-

SMP and better than the admittedly non-optimized Xen

system. Improvements to the network stack and Ethernet

driver will hopefully bring Quest-V performance closer

to Linux.
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Fig. 13. UDP Throughput

D. Inter-Sandbox Communication

The message passing mechanism in Quest-V is built

on shared memory. Instead of focusing on memory and

cache optimization, we tried to study the impact of

scheduling on inter-sandbox communication in Quest-V.

We setup two kernel threads in two different sandbox

kernels and assigned a VCPU to each of them. One

kernel thread used a 4KB shared memory message

passing channel to communicate with the other thread.

In the first case, the two VCPUs were the highest priority

with their respective sandbox kernels. In the second case,

the two VCPUs were assigned lower utilizations and

priorities, to identify the effects of VCPU parameters

(and scheduling) on the message sending and receiving

rates. In both cases, the time to transfer messages of

various sizes across the communication channel was

measured. Note that the VCPU scheduling framework

ensures that all threads are guaranteed service as long as

the total utilization of all VCPUs is bounded according

to rate-monotonic theory [9]. Consequently, the impacts

of message passing on overall system predictability can

be controlled and isolated from the execution of other

threads in the system.
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Figure 14 shows the time spent exchanging messages

of various sizes, plotted on a log scale. Quest-V Hi is

the plot for message exchanges involving high-priority

VCPUs having 100ms periods and 50% utilizations for

both the sender and receiver. Quest-V Low is the plot

for message exchanges involving low-priority VCPUs

having 100ms periods and 40% utilizations for both the

sender and receiver. In the latter case, a shell process

was bound to a highest priority VCPU. As can be seen,

the VCPU parameters affect message transfer times.

In our experiments, the time spent for each size of

message was averaged over a minimum of 5000 trials

to normalize the scheduling overhead. The communica-

tion costs grow linearly with increasing message size,

because they include the time to access memory.

12


