Coordinated CPU and Event Scheduling for Distributed
Multimedia Applications

Christian Poellabauer
College of Computing
Georgia Institute of
Technology
Atlanta, GA 30332

chris@cc.gatech.edu

ABSTRACT

Distributed multimedia applications require support from
the underlying operating system to achieve and maintain
their desired Quality of Service (QoS). This has led to the
creation of novel task and message schedulers and to the
development of QoS mechanisms that allow applications to
explicitly interact with relevant operating system services.
However, the task scheduling techniques developed to date
are not well equipped to take advantage of such interac-
tions. As a result, important events such as position up-
date messages in virtual environments may be ignored. If a
CPU scheduler ignores these events, players will experience
a lack of responsiveness or even inconsistencies in the vir-
tual world. This paper argues that real-time and multimedia
applications can benefit from coordinated schemes for CPU
and event scheduling and we describe a novel event delivery
mechanism, termed ECalls, that supports such coordina-
tion. We then show ECalls’s ability to reduce variations in
inter-frame times for media streams.

Keywords

Multimedia, Quality of Service, Scheduling

1. INTRODUCTION

The achievable end-to-end Quality of Service (QoS) for
distributed multimedia applications depends on the servers,
networks, and end systems involved in media manipulation.
This paper addresses the end (or client) systems, for which
it is well known that a lack of QoS support from their re-
spective operating systems can be a detriment to the effi-
cient implementation of applications like video conferencing,
distributed virtual environments, or video-on-demand. For
instance, digital audio and video must be played out con-
tinuously, where latency, data loss, and jitter [3] are bound
in order to prevent audible gaps in audio streams or choppy

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

ACM Multimedia, October 2001 Ottawa, Ontario, Canada

Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

Karsten Schwan
College of Computing
Georgia Institute of
Technology
Atlanta, GA 30332

schwan@cc.gatech.edu

Richard West
Computer Science
Department
Boston University
Boston, MA 02215

richwest@cs.bu.edu

replay of video streams. While buffering can help solve these
problems for play-out of stored media, this solution is not
easily applied to real-time multimedia applications like dis-
tributed virtual worlds and multi-player games, which have
to exchange position updates with other participants within
time bounds determined by player and game speeds.

The demanding requirements of multimedia applications
have been addressed by numerous research contributions,
including the development of architectures that improve the
performance of existing operating systems [7, 20, 26], effi-
cient OS support for digital audio and video [8, 12], novel
multimedia and real-time schedulers [10, 15], and lightweight
mechanisms for user/kernel communication [2, 5, 17]. Con-
siderable research has focused on scheduling techniques for
multimedia systems [8, 12, 14, 15] based on priorities, reser-
vations, or proportional share resource allocations [19].

This paper proposes to extend multimedia scheduling by
also explicitly taking certain events of importance to appli-
cations into account. Examples of events are notifications of
changes in kernel state like the receipt of a network packet,
a response by a kernel service to a request issued earlier
by the application, or an exception experienced within the
kernel. We show that the timely delivery and processing of
such events is particularly important for time-constrained
multimedia applications like virtual environments, interac-
tive distributed simulations [18], or distributed games that
integrate streaming audio and video [1, 11]. Consider, for
instance, a distributed game for which (1) jitter in the replay
of media streams should be minimized, and (2) game events
like position updates and certain actions of avatars must be
delivered in a timely fashion. Techniques like proportional
share scheduling of tasks and communications can reduce
jitter for continuous media streams. However, the coordi-
nation of task scheduling with important game events can
further reduce variations in inter-frame times and increase
responsiveness to player actions.

Our goal is to improve the performance of multimedia and
real-time applications by making these applications and the
system services they use event-aware. Toward this end, we
(1) provide an efficient operating system mechanism, termed
ECalls (Event Calls) [17], for the exchange of events be-
tween applications and the OS services they utilize, and (2)
develop policies for coordinating the scheduling of event de-
livery with the scheduling of operating system services. The
particular service addressed in this paper is task scheduling.

To illustrate the performance advantages derived from

event-awareness realized with ECalls, consider a distributed
video player (e.g., Realplayer'), which uses timed waits to
achieve the inter-frame times necessary for its desired frame
rates. In other words, this application sleeps for a certain
amount of time, and when it wakes up, it is placed back into
the run queue of the CPU scheduler. However, the delay
between the point when this application becomes schedula-
ble (i.e., wakes up) and when it begins to run (i.e., enters
the ’running state’) (see Figure 1) varies depending on the
scheduling policy implemented, the scheduling attributes as-
signed to this and other schedulable applications, and the
current CPU load. These delays — termed run queue delays

timed wait run queue gigplay next frame
dday — T
| | _
‘ ‘ time
‘ sleeping ‘ schedulable ‘ running ‘

Figure 1: Run queue delays depend on the CPU
scheduler, the scheduling attributes of all schedula-
ble applications, and the current CPU load.

in the remainder of this paper — can increase latencies and
jitters for continuous media streams, and they can reduce
the responsiveness of real-time applications like distributed
games. For instance, when running on a general-purpose
operating system like Linux, a single video player can expe-
rience significant run queue delays when it has to compete
with a second real-time process due to the coarse granular-
ity of the system’s time base, which is 10ms on Intel-based
Linux systems. When it has to compete with other video
players for the same CPU, run queue delays increase sub-
stantially, resulting in significant variations in inter-frame
times even for a small number of video players, as shown in
Figure 2.

505 —

o
b
}

385

26.4
219
r 151
oy 10312 H
1 2

3 4 5 6 7 8 9 10
Number of Video Players

Run Queue Delay [ms]
3 8 &
}

.
<

Figure 2: Average run queue delays for a number of
video players that have to compete with each other
and with another real-time process (running in an
endless loop) for the CPU.

We reduce run queue delays by associating application-
level events like message arrivals with kernel-level events
that act to minimize run-time delays for the tasks that pro-
cess these messages. Specifically, the arrival of a message

"http://www.realplayer.com

triggers a kernel-level event, which then uses the ECalls
mechanism to notify the application and also to adjust CPU
scheduling to ensure the timely delivery of the application-
level event. We use ECalls in place of the comparatively
expensive user/kernel communication mechanisms currently
supported in general-purpose operating systems [2, 4, 6, 26]
because it (a) offers lightweight alternatives to regular sys-
tem calls and signals offered in Linux, (b) reduces the num-
ber of user/kernel boundary crossings through event batch-
ing, (c) allows for the sharing of application-specific infor-
mation between kernel and user via pinned memory areas,
and (d) can affect CPU scheduling decisions.

In the remainder of this paper, we first provide a short
overview of the ECalls mechanism and its realization for the
Linux operating system (see Section 2). In Section 3, we de-
scribe the rules used to coordinate event delivery with CPU
scheduling in detail, using a novel hard real-time CPU sched-
uler, called DWCS (Dynamic Window-Constrained Sched-
uler) [23]. Coordinated scheduling is performed such that
task responsiveness to events is maximized while minimiz-
ing the variations of inter-frame times experienced by the
application’s media streams. Section 4 demonstrates exper-
imentally the importance of event-awareness and shows how
ECalls supports its implementation. Section 5 concludes the
paper with a summary and an overview of future work.

2. EVENT DELIVERY WITH ECALLS

ECalls [17] is an event-based mechanism that links user-
space applications with certain kernel-level services, allow-
ing them to share information and events in an inexpensive
and flexible way. ECalls is implemented as an extension to
the Linux 2.2.13 kernel, and it supports real-time and mul-
timedia applications by (1) delivering events between appli-
cations and kernel services in a timely fashion, (2) enabling
both to efficiently share relevant information, and (3) influ-
encing process scheduling in response to the receipt of new
events and/or pending events. ECalls offers several meth-
ods of event generation and event handling, thereby giving
event sources and sinks the flexibility to select a method that
is appropriate for the specific needs of an application. For
instance, an event source can choose the method of event
generation on a per-event basis. An event sink must regis-
ter for a certain way of event handling, but can change this
registration when desired. For the efficient transfer of data
between kernel and user, ECalls allocates two separate mem-
ory buffers for each pair of application and kernel service.
One buffer is used for data transfer from the application
to the kernel, the other for data transfer in the opposite
direction, thereby reducing the need for synchronization for
single-threaded applications. The sizes and contents of these
memory buffers are determined by the kernel service, which
supplies this information to the application via a C header
file. Buffers are pinned into memory to prevent paging.

User-to-kernel events. An application uses one or more
of the following methods to generate an event to a kernel
service: A Generic System Call can be used to produce
an event directed at any existing or new kernel service. The
memory buffer is used to transmit the system call attributes,
including an identifier for the kernel service targeted by the
system call. ECalls then uses this identifier to redirect the
system call to the corresponding kernel service, which, in
response, invokes a system call function. This removes the

need to implement new system calls each time a new kernel
service is added to the operating system. Fast User-ECalls
and Deferred User-ECalls are both lightweight versions
of traditional system calls, i.e., they reduce call overheads
by minimizing the actions performed when returning from
the call function, which include signal handling, interrupt
handling, and a possible scheduler invocation. Both calls
are intended for simple short-running and non-blocking ker-
nel calls, such as updating QoS parameters or polling status
flags in the kernel. The overhead for the invocation of Fast
User-ECalls is approximately 40% smaller than for regu-
lar system calls. Deferred User-ECalls reduce this overhead
even more in high load situations through the batching of
events, i.e., the handler invocation is deferred until the next
time the scheduler runs. The advantages are that (1) the
function is invoked when the application is already in the
kernel, thus removing the need for a user/kernel boundary
crossing, and (2) several Deferred User-ECalls between two
invocations of the scheduler cause only a single invocation of
the handler function, thereby further reducing the overhead.
This is useful for situations where events can be aggregated
or where only the most recent event is of use.

Kernel-to-user events. If a kernel extension raises an
event to an application, one or more of the following ac-
tions may be performed: From kernel to user, ECalls can be
used to raise Real-Time Signals to applications, or to in-
voke handler functions on behalf of applications, where these
functions can reside either in user space (User Handler
Function) or in kernel space (Kernel Handler Func-
tion). If these functions are non-blocking and short-running,
they can be invoked in interrupt context, otherwise a ker-
nel handler function has to run in the context of a kernel
thread (Kernel Handler Thread), which is taken from a
thread pool. This approach is similar to the functionality
of optimistic message handlers [21]. Finally, ECalls is able
to cooperate with the CPU scheduler, currently including
both the standard UNIX scheduler and a novel hard real-
time scheduler, termed DWCS [23], to influence scheduling
decisions in conjunction with event communications. This
feature of ECalls, called ECalls-based CPU Scheduling,
is the topic of the remainder of this paper.

3. COORDINATED SCHEDULING OF CPU
AND EVENTS

Most systems deploy CPU schedulers that ignore impor-
tant application-level events like message arrivals. ECalls of-
fers the basic functionality needed for creating event-aware
systems, by (1) associating kernel-to-user events with im-
portant application-level events and (2) using these kernel-
level events to affect CPU scheduling decisions. The ef-
fect is that processes acting as sinks of application-level
events are favored over other processes whenever they re-
ceive events. Thus, ECalls may be used to implement poli-
cies by which applications cooperate with system services
like CPU scheduling. One purpose of such cooperation is
to minimize the end-to-end delays experienced for the de-
livery and processing of important application-level events
mentioned in Section 1 above.

Implementation approach. ECalls’ implementation pre-
sented in this paper permits both user-level applications
(e.g., multimedia applications and media servers) and kernel-

Video Player,
Audio Player,

Virtual Worlds,
Media Server, ...

Kernel Service
(Packet Scheduler
Resour ce Manager,
DeviceDriver, ...)

Figure 3: ECalls-based CPU Scheduling.

level services (e.g., device drivers and resource managers) to
be sources and/or sinks for events generated in user and/or
kernel space. Both applications and kernel services can gen-
erate events via the event raiser (see Figure 3). The events
are added to an event queue, which is used by the event
dispatcher to deliver these events to the sink processes. In
addition, ECalls’ event scheduler can revise the decisions of
the CPU scheduler if necessary. The event scheduler takes
the first event from the event queue, determines the sink pro-
cess of this event, and compares the scheduling attributes of
the sink process with the scheduling attributes of the process
selected by the CPU scheduler. Events in the event queue
are ordered according to an event delivery time, which is
determined by the event source. If the delivery time of an
event is in the future, ECalls delays the delivery of the event
appropriately, otherwise the event is delivered at the next
possible time.

Coordinated scheduling support for processes and events
can be implemented for any ECalls-enabled CPU scheduler.
Our current implementation supports two such schedulers:
the traditional UNIX scheduler and the DWCS hard real-
time scheduler. Note that event and CPU schedulers are
separated, thus permitting the event scheduler to utilize
any appropriate CPU scheduler. We next describe the co-
ordinated scheduling implemented for each of the two task
schedulers we used.

3.1 Coordination Using the Traditional UNI X
Scheduler

The cooperative scheduling policies implemented via the
event scheduler and the UNIX scheduler are the following:

Rule 1: If a real-time process (a process in either the FIFO
or the round robin run queue) is the sink of an event
in the event queue, then it will be given preference over
other processes that reside within the same or in lower
priority classes.

Rule 2: If only non-real-time processes are currently schedu-
lable, then a process that is the sink of an event in the
event queue will always be given preference.

These rules ensure that non-real-time applications that are
event sinks are given preference over all other best-effort ap-
plications, while real-time applications that are event sinks
will be given preference over all other real-time applications
within the same or in lower priority classes.

3.2 Coordination for DWCS CPU Scheduling

The DWCS CPU scheduler. The traditional UNIX
scheduler has been shown to have unacceptable performance
for multimedia applications [13]. For example, an applica-
tion with a fixed real-time priority could have precedence
over all other applications at all times, and therefore, starve
best-effort applications. This has led to the development of
new scheduling approaches, including those based on reser-
vations and on proportional share resource allocations [16].
To efficiently support real-time applications, we use a hard
real-time CPU scheduler, called DWCS (Dynamic Window-
Constrained Schedulerz), which is based on a packet sched-
uler presented and evaluated in two other papers [23, 25].
DWCS assigns each process the following attributes: a pe-
riod T, a service time C, and a window-constraint x/y. Us-
ing these attributes, DWCS attempts to service a process
for at least C time units in a period of 71" time units, and
it guarantees that it will service a process in y — x peri-
ods in a window of y periods if the CPU utilization is less
than or equal to 100%. Thus, the minimum CPU utilization
consumed by a process i is determined by

Us(min) = (1 — 3 /ys) * Ci /T;.

The period T; of a process ¢ is used to set a deadline until
the scheduler has to service process i for at least C; time
units. If the process misses its deadline more than x; times
in a window of T; * y;, the scheduler violated the real-time
guarantees to this process. Each process can be scheduled
once in its period, unless it is marked as work-conserving, in
that case it is possible to schedule this process several times
within its period as long as CPU utilization allows.

Scheduling attributes are adjusted dynamically to reflect
the progress of a process. We distinguish between the origi-
nal window-constraint x/y and the current window-constraint
z' /3y, where the latter is modified dynamically according to
the following rules:

Rule a: If the scheduler allocates C; time units to process ¢
within a period T}, the window-constraint is relaxed by
decrementing the window denominator. If the denom-
inator and the numerator of the window-constraint are
equal (y; = z5), both are decremented until they reach
zero, at which they are reset to their original values:

if (y; > x7) then yi = y; — 1;

else if (y; = z;) and (z; > 0) then
=2 - Ly =y — 1

if (y; = x; = 0) then y; = yi; 2} = xy;

This ensures that a process that has been serviced al-
ready within its period, will relax its window-constraint.

Rule b: If a process misses to be scheduled within its cur-
rent period, the window-constraint is adjusted to re-
flect an increased urgency:

if (z; > 0) then z} =2} — 1; 4} = y; — 1;
if (y; = «; = 0) then 2} = z;; y; = yi;

else if (z} = 0) then y} = y} + 1;

This gives the process a tighter window-constraint and

therefore an increased probability of being scheduled

2http://www.cc.gatech.edu/~west /dwcs.html

in the near future. Note, that if the window numerator
is zero and a process misses to be scheduled within its
period, a wiolation has occurred.

Table 1 shows the precedence rules used by DWCS to find
the next process to be scheduled.

Table 1: Precedence rules amongst processes

Earliest deadline first (EDF)

Equal deadlines, order tightest
window-constraint first

Equal deadlines and zero window-constraints,
order highest window-denominator first

Equal deadlines and equal non-zero window-constraints,
order lowest window-numerator first

All other cases: first-come first-serve

The simplified pseudo-code for DWCS is as follows:

while (TRUE) {

find process i according to the rules in Table 1;

adjust window-constraints for process i (Rule a);

for (each process j<>i missing its deadline) {
adjust window-constraint for j (Rule b);
adjust deadline for j;

}

schedule ij;

adjust deadline for i;

}

In a different paper [22], we demonstrate and prove the real-
time guarantees of DWCS:

(a) DWCS is able to give firm bounds for the maximum
delay of service to a given process on the run queue in
both under-load and over-load situations.

(b) The least upper bound on the system utilization is 1.0
if C; = k and T; = nk Vi with k,n being integers > 1.

The remainder of this section describes the cooperation
between ECalls’ event scheduler and DWCS, where the goal
is to maximize event responsiveness without compromising
the hard real-time guarantees of DWCS.

Event scheduling with DWCS. If ECalls’ event queue
is non-empty, the event scheduler is invoked each time the
CPU scheduler runs. After the CPU scheduler finishded the
selection of the next process, the event scheduler compares
the scheduling attributes of this process with the attributes
of the sink process for the first event in the event queue.

Assume that process i is the process selected by DWCS
and process j is the sink of the first event on the event
queue. The event scheduler applies the following five rules
to processes i and j:

Rule 1: If j =i (i.e., DWCS already selected the sink pro-
cess), the only action the event scheduler has to per-
form, is to remove the event from the event queue.

Rule 2: If task i is a best-effort task, ECalls replaces
by j and removes the event for process j from the
event queue. DWCS schedules best-effort processes
only if all runnable real-time processes have been ser-
viced within their respective periods and none of them
is a work-conserving process. That means further that

process j receives an additional time unit in its current
period, so that it is able to react to an event immedi-
ately. No real-time guarantees are compromised since
all real-time processes have been serviced in their cor-
responding periods.

Rule 3: If process i is a work-conserving process that re-

ceived at least C; time units of CPU time in its current
period T;, the event scheduler replaces ¢ with j and re-
moves the event for process j from the event queue.
The real-time guarantees of i are not compromised in
this case, since process i received C; time units in its
current period already.

Rule 4: Assume that both processes i and j have not been

serviced in their current periods yet, and both have
the same deadline. Further assume, that DWCS se-
lected process ¢ as the next running process due to
its tighter window-constraint compared to process j.
ECalls’ event scheduler gives process j preference over
process i, if this does not lead to a missed deadline for ¢
(i.e., At—C; — C; > 0, where At is the remaining time
in period T;). In other words, process i will be delayed
by Cj, but since its deadline will not expire, DWCS
will select this process after process j has exhausted
its service time Cj.

Rule 5: In addition to the rules above, we introduce the

notion of a task server, which is a pseudo process with
scheduling attributes determined as follows:

mts/yts = O/ymamy Ymaz = mam{yz} + 1.

This assigns the task server the tightest window con-
straint possible. The service time Cts is the same as
the service time of the sink process of the first event
in the event queue, or 1 otherwise. The rest utilization
Ur of the system, which is the mazimum utilization
minus the current utilization, is used to determine the
value of the period Tis:

Tts = Cts/Ur-

The attributes for the task server have to be re-calculated

when the service time of the first event in the event
queue changes (e.g., when the first event has been de-
livered and the new event at the front of the queue
has a different service time). Each time the task server
is selected by DWCS, the event scheduler replaces it
with the sink of the first event in the event queue. If
there are no events pending, a best-effort task can be
scheduled instead. The purpose of the task server is
to reserve the remaining CPU time for processes that
have events pending.

The following examples illustrate Rules 2-5 in more depth:

e Case I: According to Rule 2, the event scheduler in

ECalls replaces a best-effort process that has been se-
lected by DWCS, with a real-time process that is the
sink for the first event from the event queue. Scenario
I in Table 2 shows a simple set of three tasks and their
scheduling attributes (z/y, T, and C). In this first
example, all processes are non-work-conserving, i.e.,
once a process has been serviced in its period, it will
be taken from the run queue until its current period ex-
pires. The first diagram in Figure 4(a) demonstrates
how DWCS will schedule this task set according to
their respective scheduling attributes. When no real-
time tasks are schedulable, DWCS selects best-effort
tasks (BE) if available. Now consider the situation
when an event for task T1 is generated at time 2.5.
This causes the event scheduler to run at the next in-
vocation of DWCS, which is at time 3, and to revise
DWCS’ decision. In this example, the best-effort task
selected by DWCS is replaced by task T'1, which is able
to receive and handle the event. This allows T1 to re-
act to the new event 2 time units earlier than without
the event scheduler.

Table 2: Task Sets

Scenario I Scenario II
zi/ys | Ti | Cs || zifys [Ti | Ci
Task 11 1/2 4 1 1/2 3 1
Task 1> 1/4 2 1 1/4 3 1

Case II: According to Rule 3, the event scheduler in
ECalls replaces a real-time process ¢ with another real-
time process j that is the sink for the first event from
the event queue, if 7 is work-conserving and has already
been serviced for at least C; time units in its period T;.
Consider the same task set as used in case I, but now
assume that all tasks are work-conserving, i.e., they are
allowed to run several times within their periods. The
first diagram in Figure 4(b) shows a similar schedule as
before, with the difference that when all real-time pro-
cesses have been serviced in their corresponding peri-
ods, DWCS selects the work-conserving real-time pro-
cess with the tightest scheduling attributes. Again, an
event for process T1 is being generated at time 2.5. At
the next scheduling point (t=3) the scheduler selects
process T2 as the next task to be run. According to
Rule 3, a process receiving an event is favored over a
work-conserving process that has been serviced in its
current period already, therefore, T1 is scheduled by

The event scheduler is presented in the following pseudo-
code, where i is the process selected by DWCS and j is the
sink process for the first event on the event queue:

the event scheduler at t=3. As in case I before, process
T1 receives the event 2 time units earlier than without
event scheduling.
while (TRUE) {
if (i == j) schedule ij;
else if (i is best-effort task) schedule j;
else if (i is work-conserving and has been serviced
in its current period) schedule j;
else if (deadline(i) = deadline (j) and a delay of i
does not cause a violation for i) schedule j;

e Case III: Consider scenario II shown in Table 2, both
tasks T1 and T2 have the same period and both tasks
are work-conserving. Figure 4(c) demonstrates how
DWOCS schedules this task set. Again, an event for pro-
cess T'1 is generated at time 2.5. At the next schedul-
else if (i is task server) schedule j; ing point (t=3), the scheduler selects process T2 as
else schedule i; the next process to be run. Both processes T'1 and T2

} have the same deadlines at this point, but since T2 has

pwes: [2]1]2Bg| 2] 1]2 [BE] 2] 1]
(2]1]2[af2]1]2/BE 2]1]

Casel:

pwes: |2]1]2]2]2]1]2]2] 2] 1]
caell: |2[1]2]1]2]1]2]2]2]1]

event(T1)

I e R
0 123 456 7 8 910
(b)

DWCS:

! time

pwes: [2]1]2]2]1]2]2]1]2]2]

Caselll: [2]1]2[1]2]2[2]1]2]2]

2| 1[rd 2 [rdlrs 1[rs[ts

caselv: |19 2| 1[15 2| 1]rg 1[rs|T

Figure 4: Examples for Rule 2 (a), Rule 3 (b), Rule 4 (c), and Rule 5 (d).

the tighter window-constraints, DWCS prefers process
T2. According to Rule 4, the event scheduler revises
the decision made by DWCS and schedules T1 instead
of T2, allowing process T1 to learn about the event
1 time unit earlier than without event scheduling. As
it can be seen from the diagram, this causes processes
T1 and T2 to swap their time slots compared to the
schedule made by DWCS.

Case IV: The last rule, Rule 5, states that a task
server can be introduced, whose attributes are deter-
mined by the utilization of the system. In scenario
II, the utilization is 42%, the rest utilization (58%) is
used to determine the period of the task server:

T=C/Ur=1/058=17=>T=2.

Note that we have to round up the period to a full
time unit according to the time base used. Further, the
service time C of the task server is 1 and the window-
constraint z/y is 0/5. This task is added to the task set
and Figure 4(d) demonstrates how DWCS schedules
this new task set. The task server is added to the
schedule and whenever it becomes the highest priority
task, the event scheduler selects the sink process for
the first event in the event queue. If there are no events
pending, the task server is replaced by a best effort
task. However, if an event is generated (e.g., at time
4.5 in Figure 4(d)), the scheduler uses the next task
server invocation to schedule the sink process for this
event. In this example, task T1 receives the event two
time slots earlier than without the support of the event
scheduler.

A side effect of the task server is that if no events
are pending, the task server is replaced by best-effort
tasks, which are now scheduled before the real-time
tasks. This minimizes the delay best effort tasks will
experience, without violating the real-time guarantees
of other processes.

4. EXPERIMENTAL EVALUATION

The following experiments have been performed on a work-
station with a Pentium II processor with 300MHz and 256 MB
RAM, running Linux 2.2.13.

Basic overheads. In Linux, the CPU scheduler is in-
voked frequently, e.g., each time a timer interrupt occurs
(100 times/second on Intel architectures), the scheduler can
decide to select a different process to run. Therefore, it is
important to reduce total scheduling overhead. The over-
head caused by the event scheduler in ECalls depends on
the CPU scheduler used, e.g., with DWCS, the event sched-
uler requires 3.5us to execute. This overhead is independent
of the length of the event queue since the event scheduler
only considers the first entry in the queue. The costs for
generating an event contribute an overhead of 6us. This
overhead increases minimally with the length of the event
queue (e.g., 6.2us for an event queue with 100 entries).
Scheduling video services. In the following experiments,
a number of video players request video streams from video
servers, which run on two Ultra 30 with 248MHz and 128MB
RAM each. The Linux workstation and the video servers are
connected via a switched 100Mbps Ethernet.

The Linux version on the workstation has been modified
as follows:

(a) The traditional UNIX scheduler has been replaced by
DWCS to support real-time and multimedia applica-
tions.

(b) The ECalls mechanism has been added for the support
of event communication between applications and ker-
nel services, as well as to support coordinated schedul-
ing of events and processes with DWCS.

(¢) A QoS module has been implemented, which gener-
ates events to applications depending on application-
specific information. For instance, this QoS module
can generate events when new packets arrive on a socket,
thereby replacing costly select system calls. In our ex-
periments, an application informs the QoS module via

ECalls about the desired frame rate and the number
of frames that have been received and displayed so far.
The QoS module uses this information to generate pe-
riodic events in case that either (a) new frames can be
read from the socket queue of the video application or
(b) the application has not displayed some previously
received frames. Using the terminology introduced in
Section 1, a timer raises periodic application-level
events in case there are frames available to display,

and these event generate kernel-level events via ECalls,

which notify the application and affect the scheduling
decisions of DWCS.

The following experiments demonstrate how coordinated
CPU/event scheduling can reduce run queue delays. For
this purpose, separate tests are performed for each schedul-
ing rule described above, i.e., the event scheduler uses only
one rule to decide whether the scheduling decision of DWCS
has to be revised. This allows us to isolate the effects of
the scheduling rules from each other and to show in which
scenarios each rule becomes active. The real-time applica-
tion used in these experiments is a simple distributed video
player based on the Berkeley MPEG Player®, which uses
timed waits. In the timed wait approach a video player
displays a frame and sleeps for a certain amount of time
depending on the desired frame rate. Figure 5 shows the
average run queue delays for an example of up to 10 players
running as work-conserving real-time tasks with periods of
T = 100ms, window-constraints of z/y = 1/5, service times
of C' = 20ms, and desired frame rates of 10fps. These re-
sults serve as base values for the following measurements.

60 o

50 o
a6.1

40 -

34.7

30 4 29.4

Run Queue Delay [ms]

20.7

13.4
10 o
6.1
4.1
2.3
0.2 °3 []
o
3 a s 6 7

1 2

Number of Video Players

Figure 5: Run queue delays of 1 - 10 video players
with desired frame rates of 10fps.

Event Scheduling (Case I)

Rule 2 in the event scheduling algorithm states that best-
effort processes can be replaced by processes that are sinks
for events on the event queue. Here, we run one video
player as a non-work-conserving process with a period of
T = 100ms, a service time of C' = 20ms, and a window-
constraint of x/y = 1/5. As a best-effort process we use
a simple application that runs an endless for loop. In this
case, 16.7% of all events cause ECalls’ event scheduler to

3http://bmrc.berkeley.edu/frame/research /mpeg

give preference to the video player instead of the best-effort
task, leading to a reduction in run queue delays (and varia-
tions in inter-frame times) of 14%. Table 3 summarizes the
results of this experiment.

Table 3: Event Scheduling (Case I)

Events causing process swaps (in %): 16.7
Run queue delay w/o event scheduling (avg.): | 42.5ms
Run queue delay w/ event scheduling (avg.): 36.7ms
Run queue delay w/o event scheduling (max): 559ms
Run queue delay w/ event scheduling (max): 160ms
Improvement in avg. run queue delay (in %): 147,

Event Scheduling (Case II)

In this example, the event scheduler uses only Rule 3,
which states that if DWCS selects a work-conserving process
¢ that has been serviced for at least C; time units in its cur-
rent period, this process can be replaced by a process receiv-
ing an event. All video players run as work-conserving pro-
cesses with the following scheduling attributes: 7" = 100ms,
C = 10ms, and z/y = 1/5. Figure 6 compares the run
queue delays (= variations in inter-frame times) for the two
scenarios described above and shows that event scheduling
can improve on these variations by approximately 10%.

Ciwithout event scheduling
50 o Ewith event scheduling

a6.1

laz.e

34.7
32.3]

Run Queue Delay [ms]
W
e}

a1 2 3 a 5 6 7 8 k=] 10
Number of Video Players

Figure 6: Run queue delays.

Table 4: Number of swapped processes
[Video Players | Swaps (in %) |

1 0

0

3.3

OO N[O O | W|IN
=
[o0)

-
o
[}
e
w

Table 4 summarizes the percentages of events that cause
the event scheduler to revise the scheduling decisions of
DWCS (swaps). For instance, with 10 players running, more

than 60% of all events cause the scheduler to give preference
to the sink process for the first event on the event queue,
thereby allowing the player to display the next frame earlier.
In the remaining 40%, the process selected by DWCS and
the process selected by the event scheduler are identical, so
no swaps are necessary.

Event Scheduling (Case III)

Rule 4 in the event scheduling algorithm states that a
process j that is a sink for an event on the event queue can
replace a process i, selected by DWCS, if the deadlines of ¢
and j are equal and if this will not lead to a violation for 1.
In this example, we run 10 video players as work-conserving
processes, each with a period T' = 20ms, a service time
C = 10ms and a window-constraint z/y = 1/5. Here, 15%
of all events cause ECalls’ event scheduler to give preference
to a process that is a sink for an event on the event queue
instead of the process selected by DWCS. This leads to a
reduction in inter-frame time variations of 24%. Table 5
summarizes the results of this experiment.

Table 5: Event Scheduling (Case III)

Events causing process swaps (in %): 15
Run queue delay w/o event scheduling (avg.): | 20.8ms
Run queue delay w/ event scheduling (avg.): 16ms
Run queue delay w/o event scheduling (max): 216ms
Run queue delay w/ event scheduling (max): 56ms
Improvement in avg. run queue delay (in %): 247,

Event Scheduling (Case IV)

Rule 5 in the event scheduling algorithm introduces the
notion of a task server, whose DWCS scheduling attributes
are determined using the system utilization. This task server
is inserted into the task set and whenever it becomes the
highest priority task, the event scheduler can select a process
receiving an event instead. In this example, we ran up to 4
video players, with a period of T' = 100ms, a service time
of C' = 10ms, and a window-constraint of z/y = 1/5 each.
The task server has a service time of C' = 10ms, a window-
constraint of x/y = 1/5 and a period, which is computed
the following way (in the case of 4 video players):

U, = 100% — 4 « (1 — 2 /y) * C/T = 68%

T =C/U, =10ms/0.68 = 14.7 = 20ms.

The period T for the task server results in 14.7ms, i.e., 20ms
for our experiments, since we have to set the period in mul-
tiples of the internal time base for the Linux system, which
is 10ms.

Figure 7 shows that the improvements achievable vary
between 9% and 36% depending on the system load. Note
that the run queue delays are significant higher than in the
previous experiments due to the task server, which prefers
best-effort tasks over real-time tasks if the no events are
pending. The number of swaps is reflected in Table 6.

Analysis
All experiments use different task sets and attributes, be-

cause each rule of the event scheduler focuses on a different
scenario:

Case I: According to Rule 2, the event scheduler replaces
best-effort processes with real-time processes that have

mwithout event scheduling
m with event scheduling

5.4

Run Queue Delay [ms]

2 3
Number of Video Players

Figure 7: Run queue delays.

Table 6: Number of swapped processes
[Video Players | Swaps (in %) |

1 96
2 88
3 71
4 62

events pending. This is useful in situations where (a)
the CPU load is less than 100% and (b) there are no
work-conserving real-time tasks schedulable.

Case II: In Rule 3, the event scheduler prefers processes
with events pending over other work-conserving pro-
cesses, if they have already been serviced for their re-
spective service times in their periods. That is, this
rule becomes active only when (a) the CPU load is
less than 100% and (b) there are real-time processes
that are work-conserving.

Case III: If two processes have the same deadlines, a pro-
cess that receives an event from the event queue can be
favored over another real-time process, if this does not
lead to a violation for the other process (Rule 4). This
rule can apply anytime, even in over-load situations
(i.e., when CPU load > 100%).

Case IV: The task server can only be put into the task set
if the utilization is less than 100%. In that case, it will
act as a place holder for processes that are sinks for
events on the event queue and best-effort processes if
no events are pending.

The different rules for the event scheduler can contribute
to reductions in run queue delays in different scenarios as
described above. In all scenarios described above we man-
age to achieve a reduction in run queue delays, however the
achievable performance gain is limited by factors such as
the CPU load or the rate of event generation. As an exam-
ple, if several processes have events pending, these events
are delivered according to their priority, i.e., processes with
lower-priority events are being delayed. On the other hand,
the event scheduler favors I/O-bound processes over CPU-
bound processes without violating the real-time guarantees

of these processes. Figure 8 shows a snapshot of a final ex-
periment, where all rules described above are activated and
the system is overloaded (i.e., CPU load > 100%).

rrrrr

250

Ready Queue Delay s

Ready Queue Delay [ms]

50 |H

Frame

Figure 8: Variations in inter-frame times for 100
frames.

Both graphs show the run queue delays (= variations
in inter-frame times) for the display of 100 frames for a
video player that competes for the CPU with a real-time
disturber process and 9 other video players. The video play-
ers are work-conserving and have the following attributes:
T = 100ms, C' = 10ms, z/y = 1/5. The disturber process
is a non-work-conserving process with a period T' = 20ms,
a service time of C = 10ms, and a window-constraint of
z/y = 1/5. The first graph shows the run queue delay with-
out the support of event scheduling, compared to the run
queue delays with the support of event scheduling in the
second graph. The average run queue delay in the first case
is 250ms, compared to 100ms in the second case. This is a
reduction of 60%. The worst case run queue delays in the
first case exceed 320ms, compared to 240ms in the second
case.

In the experiments presented above, we used video players
to show the performance improvements achievable by coor-
dinating the scheduling of tasks with the delivery of events.
Minimal event delivery delays are desirable for a variety of
real-time applications including virtual worlds and multi-
player games, where position updates and actions taken by
avatars have to be distributed to the other participants with
minimal delay to prevent inconsistencies.

5. CONCLUSIONSAND FUTURE WORK

Extensions to general-purpose operating systems such as
real-time schedulers succeed in improving the performance
and quality of service of multimedia applications. However,
typical CPU schedulers are not event-aware, that is, they
are not cognizant of important events shared by distributed
application components and/or of events shared by appli-
cations and kernel services. This can result in significant
delays in event delivery. Specifically, the operating system’s
contribution to the delay between the time an important
event is generated and the time the event is received and
processed by the application, which we term run queue de-
lay, can cause variations in inter-frame times for video ap-
plications, and it can lead to timing violations in real-time
applications like distributed multi-player games.

This paper demonstrates the utility of event-awareness for
distributed multimedia applications and in general-purpose
operating systems like Linux. It presents ECalls, an event
communication facility with which coordinated policies may
be implemented to minimize run queue delays. This ap-
proach is comparable to the rate-based execution model in-
troduced by Jeffay and Bennett [9], who allow applications
to specify their desired rate of progress in terms of the num-
ber of events they process in a certain amount of time. Using
ECalls and a set of coordination rules, we then demonstrate
performance gains with a distributed video player applica-
tion, realizing reductions in event delivery of up to 60%,
especially in over-load situations (i.e., when CPU load >
100%).

Future work will further investigate the performance ef-
fects of event-awareness, realized with ECalls and the coor-
dinated event/CPU scheduling policies we have developed
and using a distributed multi-player game that integrates
data, video, and audio streams. Furthermore, while this pa-
per focuses on event-awareness on a single end-system, other
work has investigated the use of intra- and inter-address
space/machine events to create event-aware adaptive appli-
cations [24]. We will extend such work to create event-aware
systems, by extending ECalls to operate across multiple op-
erating system kernels linked via networks. In addition, by
porting ECalls to a version of Linux running on a mobile
platform, we plan to address the effects of user mobility,
data loss, and limited battery power on the performance of
multimedia applications.

6. REFERENCES
[1] J. Bolot and S. Parisis. Adding Voice to a Distributed

Game on the Internet. In In Conference on Computer
Communications (IEEE Infocom), San Francisco,
California, March 1998.

[2] J. C. Brustoloni and P. Steenkiste. Evaluation of Data
Passing and Scheduling Avoidance. In Proc. 7th
International Workshop on Network and Operating
System Support for Digital Audio and Video
(NOSSDAV), 1997.

[3] M. Claypool and J. Riedl. End-to-End Quality in
Multimedia Applications. In In Chapter 40 in
Handbook on Multimedia Computing, CRC Press,
Boca Raton, FL, 1998.

[4] P. Druschel and L. Peterson. Fbufs: A
High-bandwidth Cross-domain Transfer Facility. In
Proc. of the Fourteenth ACM Symposium of Operating
Systems Principles, 1993.

[5]

[14]

[15]

[18]

[19]

R. Gopalakrishnan and G. Parulkar. Real-time
Upcalls: A Mechanism to Provide Real-Time
Processing Guarantees. Technical Report WUCS-9506,
Department of Computer Science, Washington
University, 1995.

R. Gopalakrishnan and G. Parulkar. Efficient User
Space Protocol Implementations with QoS Guarantees
using Real-time Upcalls. IEEE/ACM Transactions on
Networking, 1998.

R. Govindan and D. P. Anderson. Scheduling and IPC
Mechanisms for Continous Media. In Proc. of the 13th
ACM Symposium on Operating Systems Principles,
October 1991.

K. Jeffay. On Kernel Support for Real-Time
Multimedia Applications. In Third IEEE Workshop on
Workstation Operating Systems, April 1992.

K. Jeffay and D. Bennett. A Rate-Based Execution
Abstraction for Multimedia Computing. In Proc. of
5th Intl. Workshop on Network and Operating System
Support for Digital Audio and Video, 1995.

M. B. Jones, D. Rosu, and M.-C. Rosu. CPU
reservations: Efficient Predictable Scheduling of
Independent Activities. In Proceedings of the 16"
ACM Symposium on Operating System Principles,
pages 198-211, October 1997.

J. Lui, O. So, M. Chan, and T. Tam. Dynamic
Partitioning for a Distributed Virtual Environment. In
Proc. of the 3rd High Performance Computing Asia
Conference (HPC Asia’98), 1998.

C. W. Mercer, S. Savage, and H. Tokuda. Processor
Capacity Reservation for Multimedia Operating
Systems. In IEEFE International Conference on
Multimedia Computing and Systems, pages 90-99,
May 1994.

J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A.
Wall. SVR4 UNIX Scheduler Unacceptable for
Multimedia Applications. In Proc. of the 4th Int.
Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV °93),
Lancaster, UK, November 1993.

J. Nieh and M. Lam. SMART: A Processor Scheduler
for Multimedia Applications. In Proc. of SOSP 15,
December 1995.

X. G. Pawan Goyal and H. M. Vin. A Hierarchical
CPU Scheduler for Multimedia Operating Systems. In
2nd Symposium on Operating Systems Design and
Implementation, pages 107-121. USENIX, 1996.

T. Plagemann, V. Goebel, and P. Halvorsen.
Operating System Support for Multimedia Systems.
Computer Communications Journal, Special Issue on
Interactive Distributed Multimedia Systems and
Telecommunications Services (IDMS ’98), 1998.

C. Poellabauer, K. Schwan, and R. West. Lightweight
Kernel/User Communication for Real-Time and
Multimedia Applications. In Proceedings of 11th
International Workshop on Network and Operating
System Support for Digital Audio and Video, June
2001.

C. Shen. Discrete-event Simulation on the Internet
and the Web. In The International Conference on
Web-Based Modelling and Simulation, January 1998.
I. Stoica, W. Abdel-Wahab, and K. Jeffay. On the

(22]

23]

24]

(25]

(26]

Duality between Resource Reservation and
Proportional Share Resource Allocation. Multimedia
Computing and Networking, 1997.

V. Sundaram, A. Chandra, P. Goyal, P. Shenoy,

J. Sahni, and H. Vin. Application Performance in the
QLinux Multimedia Operating System. In Proceedings
of the Eighth ACM Conference on Multimedia, Los
Angeles, CA, November 2000.

D. A. Wallach, W. C. Hsieh, K. L. Johnson, M. F.
Kaashoek, and W. E. Weihl. Optimistic Active
Messages: A Mechanism for Scheduling
Communication with Computation. In Proceedings of
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPOPP), pages
217-225, July 1995.

R. West and C. Poellabauer. Analysis of a
Window-Constrained Scheduler for Real-Time and
Best-Effort Packet Streams. In Proceedings of the 21st
IEEFE Real-Time Systems Symposium, Orlando,
November 2000. IEEE.

R. West and K. Schwan. Dynamic
Window-Constrained Scheduling for Multimedia
Applications. In 6th International Conference on
Multimedia Computing and Systems, ICMCS’99.
IEEE, June 1999.

R. West and K. Schwan. Quality Events: A Flexible
Mechanism for Quality of Service Management. In
Proceedings of the IEEE Real-Time Technology and
Applications Symposium, May 2001.

R. West, K. Schwan, and C. Poellabauer. Scalable
Scheduling Support for Loss and Delay Constrained
Media Streams. In Proc. 5th Real-Time Technology
and Applications Symposium, Vancouver, Canada,
1999.

D. Yau and S. Lam. An Architecture Towards
Efficient OS Support for Distributed Multimedia. In
Proc. IS&T/SPIE Multimedia Computing and
Networking Conference, January 1996.

