Telomere: Real-Time NAND Flash Storage

KATHERINE MISSIMER, MANOS ATHANASSOULIS, and RICHARD WEST,

Boston University

Modern solid-state disks achieve high data transfer rates due to their massive internal parallelism. However,
out-of-place updates for flash memory incur garbage collection costs when valid data needs to be copied
during space reclamation. The root cause of this extra cost is that solid-state disks are not always able to
accurately determine data lifetime and group together data that expires before the space needs to be reclaimed.
Real-time systems found in autonomous vehicles, industrial control systems, and assembly-line robots store
data from hundreds of sensors and often have predictable data lifetimes. These systems require guaranteed
high storage bandwidth for read and write operations by mission-critical real-time tasks. In this article, we
depart from the traditional block device interface to guarantee the high throughput needed to process large
volumes of data. Using data lifetime information from the application layer, our proposed real-time design,
called Telomere, is able to intelligently lay out data in NAND flash memory and eliminate valid page copies
during garbage collection. Telomere’s real-time admission control is able to guarantee tasks their required
read and write operations within their periods. Under randomly generated tasksets containing 500 tasks,
Telomere achieves 30% higher throughput with a 5% storage cost compared to pre-existing techniques.

CCS Concepts: « Computer systems organization — Real-time systems;
Additional Key Words and Phrases: Real-time storage, SSD, flash translation layer

ACM Reference format:

Katherine Missimer, Manos Athanassoulis, and Richard West. 2022. Telomere: Real-Time NAND Flash Storage.
ACM Trans. Embedd. Comput. Syst. 21, 1, Article 10 (January 2022), 24 pages.
https://doi.org/10.1145/3479157

1 INTRODUCTION

Autonomous vehicles, such as driverless cars and unmanned aerial vehicles, are becoming increas-
ingly important in our society. Unmanned aerial vehicles are used to deliver equipment to medical
facilities in times of crisis [40] and monitor public areas [5]. Autonomous vehicles rely on real-
time processing of sensor data to perform collision avoidance, path planning, object detection, 3D
scene reconstruction, simultaneous localization and mapping (SLAM), and other tasks. 3D cameras,
laser range finders, radar, sonar and inertial sensors provide numerous data streams that need to

This material is based upon work supported by the National Science Foundation under grants 2007707 and 1850202. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

Authors’ address: K. Missimer, M. Athanassoulis, and R. West, Boston University, Boston, USA; emails: kzhao@cs.bu.edu,
mathan@bu.edu, richwest@cs.bu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2022/01-ART10 $15.00

https://doi.org/10.1145/3479157

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

https://doi.org/10.1145/3479157
mailto:permissions@acm.org
https://doi.org/10.1145/3479157

10:2 K. Missimer et al.

be stored and retrieved periodically with timing guarantees. Google’s self-driving car has been re-
ported to generate on the order of 1 GB/s of data from its various onboard sensors [3]. Tesla recently
announced moving toward a “pure vision” approach, relying on eight cameras and 12 ultrasonic
sensors for autopilot. To accomplish mission objectives, these vehicles need to store, retrieve, and
process a vast amount of parallel data streams within specific time bounds. For example, Georgia
Tech’s Autonomous Mini Rally Car races around a track at 30 km/hour, calculating its trajectory
60 times every second [1]. This would require sensor data to be read in and processed every 16
msec. Assuming eight 4K 8-bit cameras streaming in 60 frames per second, we can calculate about
63 MB of camera data produced every 16 msec.

NAND flash memory has desirable characteristics for real-time information storage and re-
trieval, such as non-volatility, shock resistance, low power consumption, and fast access time [26,
37]. However, NAND flash memory management is complex because in-place updates are not
possible. Once a memory location is written to, it must be erased before it can be written to again.
Traditional solid-state disks (SSDs) designed for general or high-performance computing suffer
from unpredictability such as high tail latency and are unable to meet real-time deadlines [22]. A
large body of literature exists that provides throughput guarantees [14, 16, 38, 44]. However, related
work that provides the strict timing guarantees of a real-time system is scarce despite the increas-
ing demand for real-time sensor data storage. NAND flash memory also has a limited lifetime [29],
as repeated writes and erasures of the same physical block wears it, rendering it eventually not
usable. Thus, strategic placement of data in flash is important to reduce garbage collection (GC)
overhead and increase device lifetime. Tesla recently announced failure in the eMMC flash memory
card in their vehicles due to logging, which caused the flash memory to wear out too quickly [36].
Inefficient data storage in flash memory leads to poor performance, long latency, and short device
lifetime [15, 17, 20, 22, 46].

GC incurs substantial overhead in flash memory when data with different expiration times are
stored together in the same flash block. When a block needs to be reclaimed, the valid pages in that
block have to be copied to another block. This is why traditional flash translation layers (FTLs)
often have a tunable trade-off between storage and throughput utilization, as seen in Figure 1.
Storage utilization here refers to how much of the available capacity is exposed as usable capacity
to the user (the more capacity exposed to the user the higher the utilization), and bandwidth (or
throughput) utilization refers to how close to the maximum device bandwidth a device can operate.
Traditional flash designs copy valid pages during GC resulting in a write amplification factor (WAF)
greater than 1, which directly affects throughput utilization. WAF is the ratio of the number of page
writes on flash to the number of page write requests from the device driver. The higher the WAF
value, the lower the throughput utilization. The WAF value can be decreased by increasing over-
provisioning, or the amount of physical storage space that, instead of being available to the user, is
used to facilitate CG. Higher over-provisioning will decrease WAF at the expense of lower storage
utilization. If the SSD is able to figure out how to store data such that all the pages in a block become
invalid before it needs to be reclaimed, CG overhead would only be a block erasure, and it will not
require any over-provisioning. This is the approach taken by multi-stream SSDs [17, 23, 45], where
data with similar lifetime is assigned to a stream, and the FTL groups in the same physical blocks
data from a single stream.

State-of-the-art SSD devices support a block I/O interface and do not have a way to receive
application-specific knowledge needed to make the most informed decisions for data layout. In-
stead, they must infer data hotness, which often cannot be accurately predicted. We call this class
drive-managed devices. A new class of devices expose a limited percentage of the internals of the
SSD to the host-level software to enable fine-grained control over device operations from the host.
We call this class host-managed devices. A host-managed approach, however, cannot provide a

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

Telomere: Real-Time NAND Flash Storage 10:3

A
g =
= O Telomere
<
N & .
E
-}
)
Sz .
o
&z = RT FTLs

>
LOW HIGH

Bandwidth Utilization

Fig. 1. Intraditional NAND flash devices, there is a tunable trade-off between storage and throughput utiliza-
tion. Real-time FTL (RT FTL) designs typically use redundancy to provide timing guarantees, thus suffering
from lower storage and throughput utilization [28, 34, 38].

real-time solution when wear-leveling is handled in the device. Our design bridges this gap where
the application provides knowledge of the data lifetime and the throughput requirements and the
drive guarantees predictable high throughput and storage utilization.

The problem: Current real-time approaches under-utilize throughput and storage. Real-time FTLs
typically use redundancy to provide timing guarantees [28, 34, 38]. Writing parity data results in
lower throughput and storage utilization. Another technique often used in real-time FTL designs
to reduce latency is partial GC [34, 47]. However, these designs do not exploit the parallelism in
an SSD, thus resulting in low throughput.

Our approach: Telomere. Based on the preceding information, this article presents the design of
a drive-managed SSD system called Telomere, which allows data lifetime information to be passed
from the application to the device. This is beneficial to real-time systems featuring numerous
high bandwidth sensors (e.g., cameras) that must store, retrieve, and process data according
to throughput requirements, and which must replace stale data once it has expired. Telomere
carefully selects which data page to collocate in order to minimize GC overhead. Our throughput
admission control guarantees that tasks meet their deadlines and admits task sets with high read
and write throughput.

To capture real-time applications, we assume a real-time model where each application defines
a set of periodic tasks with a pre-determined data lifetime per task. For each task, these parameters
are passed to the operating system (OS) through the open() system call, then admission control
tests determine whether the task is accepted. If the system cannot guarantee the throughput and
lifetime requirements of a task, the open() syscall fails for that particular task.

Contributions. Our work offers the following contributions:

e A new interface that provides the drive with information about the lifetime of the data.
e Two block allocation algorithms for partitioning blocks among different tasks:
- Single Task Placement (SiP) that allocates each task to different blocks, and
— Shared Task Placement (SharP) that identifies which tasks exhibit similar data lifetime to
collocate blocks with similar access patterns.
e A throughput-aware admission control to guarantee performance.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

10:4 K. Missimer et al.

SSD Controller Flash Packages

NAND IF
& ECC
Engine
>
NAND IF
& ECC
Engine
>
NAND IF
& ECC
Engine
>
NAND IF
& ECC
Engine K ..
! N >
/ N,

e
~

Data OOB \\ Cache Register ~ Cache Register Dielly iDief2

\ ; I_l_l
1Page 1 Block 1 Block //

a

Processor m===

ROM —

RAM oy S
Region for CH1
Region for CH2
Region for CH3
Region for CH4 —

Host Controller

Host Interface s

DRAM Interface s

\4

CHANNEL4 CHANNEL3 CHANNEL2 CHANNEL1

Data Register Data Register

// NAND Flash NAND Flash ; ECC Engine /
* Memory Array Memory Array . Flash Queue
/ iBlocks j Blocks / Multiplexed
K Pages / / Interface
! Plane 1 Plane 2
Flash Block Flash Chip/Die Package

Fig. 2. SSD internal architecture.

e We both simulate and experiment on real hardware using an OpenSSD Cosmos board that
allows us to treat an SSD as a white box.

2 BACKGROUND

This section explains the internals of NAND flash memory and describes flash properties such as
GC, over-provisioning, and granularity to improve read and write throughput.

2.1 NAND Flash Memory

The internal structure of flash storage is significantly different from that of traditional mechanical
hard drives. As shown in Figure 2, the smallest read and write unit in flash devices is a page. A
page used to be standardized at 512 and 2,048 bytes [25]. However, recently much larger page
sizes have been seen ranging from 4 to 32 KB [27]. In addition to data, a page also contains some
extra bytes for an out of band (OOB) area, which is used to store bookkeeping information (e.g.,
error correction code (ECC)) for the corresponding page. Data in NAND flash memory cannot
be overwritten; instead, a block of pages must first be erased before a page is eligible for reuse.
When SSD initially became available, a flash block contained 32 or 64 pages [25]. Current flash
blocks in SSDs can range from 128 to 512 pages [27]. A 4-MB block, for example, can contain 512
pages with each page containing 8 KB. Multiple blocks form a plane, and typically two to four
planes form a die. The flash die, also known as a chip, is the smallest unit that can independently
execute commands or report status. Typically, up to 16 flash chips form a flash package.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

Telomere: Real-Time NAND Flash Storage 10:5

A flash package exists on a specific way on a specific channel. There are usually four to eight
ways on a channel. The ways, also called banks, on a channel share a common flash bus and an in-
ternal data bus. The way arbiter in the channel controller grants access to the shared buses. This is
called way interleaving or package-level parallelism. There are usually 4 to 8 channels in a consumer
SSD [21, 30], although high-end enterprise SSDs such as Flashtec 3016 and 3032 have controllers
with 16 and 32 channels, respectively. Each channel contains its own NAND interface block and
ECC block, so it can operate independently. This is called channel striping or channel-level par-
allelism. Way interleaving and channel striping are the two main methods of parallelization that
modern flash controllers support [10].

2.2 Garbage Collection

In a page-level mapping FTL, every logical page number is mapped to a physical page number.
When a logical page gets updated, the physical page containing the old data gets marked as invalid
and the new, updated content is written to a different physical page. When GC is triggered, a block
is selected to be erased. All valid pages in that block are copied to a clean block, and the mappings
are updated.

The need to reclaim space in NAND flash memory results in potentially unacceptable worst-
case performance for a real-time system. When free space becomes limited, GC selects a block to
reclaim. The valid pages in the selected block are copied to another block, and the selected block
is erased. In the worst case, only one invalid page out of P pages in a block is reclaimed. Therefore,
if a write request triggers GC, it could be blocked waiting for one block erasure and P — 1 read and
write operations to copy the valid pages.

To mitigate GC costs and efficiently perform wear-leveling, extra physical blocks are reserved
to migrate valid data from blocks that are being reclaimed. These extra blocks make up the over-
provisioning space in the SSD. With over-provisioning, the logical address space becomes a frac-
tion of the physical address space in the SSD. Let A be the device utilization:

logical address space
A= —=— : (1)
physical address space

Another frequently used metric for measuring the extra FTL capacity is defined as the ratio
between the extra capacity and the user capacity, denoted as a:

_ extra capacity 1

()

user capacity A

2.3 Access Granularity

When the read and write granularity of a request is more than one flash page, the FTL could stripe
the request across different parallel units to increase read and write throughput. Although write
requests with granularity of one page could be buffered and written to flash memory in parallel,
the worst-case scenario for read requests is that all the pages that need to be read exist on a single
flash die and cannot be performed in parallel. Therefore, the read bandwidth can be achieved when
the read and write granularity equals the number of parallel units in the SSD.

2.4 Drive-Managed vs. Host-Managed Design

To support the block I/O interface, traditional drive-managed SSDs include an FTL, which performs
address mapping, GC, wear-leveling, and error correction [24]. However, these SSDs suffer from
shortcomings such as log-on-log [46], high tail- [15], and unpredictable I/O latency [2, 11].
Figure 3(a) shows the FTL for a drive-managed design. The I/O interface does not provide the
drive with any knowledge of the lifetime of the data being stored. Without this application-specific

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

10:6 K. Missimer et al.

A 4

Applications Applications
A A
READ, WRITE READ, WRITE
A 4
X H T
FIIIIIIIII T | _Address Mapping | GC
ii Address ' Flash Translation Layer
E Mapping =
% = FLASH READ,
= = FLASH WRITE, FLASH ERASE

{ Wear-Leveling ' ! Error Correction

Solid State Drive Open-Channel SSD

(a) Drive-managed (b) Host-managed

Fig. 3. In drive-managed designs, the SSD includes a layer of indirection (the FTL). In host-managed designs,
the mapping and GC is managed by a software FTL layer in the OS or in the application layer.

knowledge, drive-managed SSDs can only infer update frequencies to try to store hot (recently up-
dated) and cold data in different blocks. Storing hot and cold data together increases GC overhead.
This is caused by writing hot data to a new block, invalidating old pages of the updated data in
a victim block, copying valid pages for cold data in the victim block to the new block, and then
erasing the victim block. The copying of the valid data would be eliminated if it were not located
in the same block as hot data. Prior work [17, 23, 45] shows that writing data with similar hotness
or lifetime to the same flash blocks results in improved performance.

To overcome the shortcomings of drive-managed SSDs, the Open-Channel SSD community has
been pushing for host-managed devices [8]. For example, approaches such as LightNVM [9] and
Zoned Namespaces [7, 42] expose the SSD internals to host-level software, which is able to control
data placement and I/O scheduling. Figure 3(b) shows a host-managed design, where the mapping
and GC is handled by a software FTL in the OS, or in the application itself.

Currently, the Open-Channel SSD community is developing a standard as part of the NVMe
2.0 specification, to allow an SSD to expose a logical address namespace using zones [7]. In this
new interface, applications can intelligently decide where to place the data in zones based on their
knowledge of data hotness. Samsung showed that by passing information from the application
down to the drive to specify data hotness, they were able to improve the update throughput by
56% [17]. The increase in throughput is attributed to lower valid page copies and GC overheads.
However, with host-managed devices, wear-leveling [29, 32] is still implemented in the device,
where it is able to track bad blocks and perform error correction. This leads to movement of data
and erasure of blocks outside the control of the software FTL or the application layer. In turn, this
adds timing unpredictability to the performance of applications, which is undesirable in a real-time
system.

3 TELOMERE DESIGN

Our proposed design, called Telomere, is a drive-managed design, where data lifetime is passed
down to the FTL, enabling it to efficiently store data such that GC overhead is only a block erasure.
It is a NAND flash storage system targeted for sensor data in real-time systems. As shown in
Figure 4, Telomere stripes data across parallel units in the SSD and eliminates write amplification

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

Telomere: Real-Time NAND Flash Storage 10:7

Telomere Task Set

| Task 1 | | Task 2 | I Task 3 |

x 7y
open(period, lifetime...) ~ READ, WRITE

: Telomere Block Allocator '
' Tasks Diel Die2 Die3 Died iy
I — [[T [:E

Flash Translation Layer

Cosmos OpenSSD

Fig. 4. A Telomere-compliant application defines a set of periodic tasks with a pre-determined data lifetime
per task. These parameters are passed to the OS on the open() syscall, and admission control tests determine
if the task is accepted. Then, Telomere places data with similar expiration times together in the same block
so that GC overhead is minimized.

by using a block expiration time.! Data has a lifetime value and each block is associated with a
future timestamp at which point all the data inside that block will become invalid. Telomere places
data with similar expiration times together in the same block so that GC overhead is minimized. It
eliminates the need to copy valid pages to a new block to reclaim the invalid pages in that block.
Instead, pages with similar expiration times and update frequencies are stored together and the
block is reclaimed when all the pages become invalid. Thus, GC in Telomere is simply a block
erasure.

3.1 Task Model

Let {11, 73, ..., 7,} be a set of n periodic tasks on the FTL performing read and write requests. Each
task 7; is associated with a real-time CPU task §; with a capacity and a period. On open(), the user
specifies a task with a read period T/, a write period T}”, the maximum number of flash pages read
r; and written w; during their respective periods, and a data lifetime [;*. Table 1 contains all the
symbol definitions. The read and write periods are multiples of the period of §;, the associated real-
time CPU task. The data lifetime is the number of write periods after the data is written during
which the data is valid. After [}” periods, the data expires and is no longer accessible. A periodic
task releases jobs at regular intervals based on its period. Each job has a request time and a deadline.
We assume the deadline equals the period. Note that a task in our model corresponds to opening
a file. A CPU task can open multiple files, which would result in multiple tasks in our model. Our
task model is similar to the one used in Partitioned Real-Time FTL [28].

During the open() syscall, the admission control executes to ensure there are enough resources
for the new task 7; to run. The admission control consists of two parts. First, we present the stor-
age admission control to guarantee the availability of free pages to write the data from task z;.
Second, we provide the throughput admission control to guarantee the read and write throughput
requirement of task ;.

!The name Telomere is inspired by the biological structures that cap the ends of chromosomes that are truncated during cell
division. Over time, the telomere ends become shorter; when they get too short, the cell can no longer divide and “expires”
or dies.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

10:8 K. Missimer et al.

Table 1. Telomere Symbol Definitions

| Symbol | Definition |
A Device utilization: logical over physical address space
o Over-provisioning: extra capacity over user capacity
7 A periodic task
T/ Read period for 7;
ri Number of pages read in one read period
T Write period for 7;
wi Number of pages written in one write period
Y Number of write periods before the data expires
g Read and write page granularity

P Number of pages in a flash block
Spages | Number of pages in the SSD
Spiocks | Number of blocks in the SSD
Schips | Number of flash chips in the SSD

t Flash page read latency

thy Flash page write latency

te Flash block erasure latency

4 STORAGE ADMISSION CONTROL

To guarantee that there are enough free pages available to write new data, we need to bound the
number of blocks used. To simplify the problem, we assume that the number of free pages needed
by a task is available at the beginning of each period. In addition, to ensure that the data can be
read regardless of when the CPU task is scheduled, we add an extra period to the expiration time.
For a task 7; with write period T}, we can calculate the latest write request start time s and the
time those pages will expire e at an time t as follows:

s=[t/TY]-T", 3)

e=s+1"T" +T". (4)

We present two block allocation algorithms to bound the number of blocks needed for a task set.
The Single Task Placement (SiP) allocates different blocks to each task. The Shared Task Placement
(SharP) groups together tasks with similar data lifetime and shares blocks among the group of
tasks.

4.1 Single Task Placement (SiP)

SiP allocates independent blocks to store the incoming write jobs from each task. For example,
assume that each block contains eight pages. Let task 7; request one page write every two time
units that expires after three periods, and let task 7, request two pages of data written every three
time units that expire after two periods.

To calculate the number of blocks to allocate to a task, we need to compute how much valid
data the task stores and how many extra pages are stored before the block containing the oldest
data expires. A block expires when all of its pages become invalid.

For example, in Figure 5, the maximum number of valid pages stored by task 7; at any point in
time is four pages. Let w; be the number of pages written in one period, and [} be the number of
periods before the data expires. K(z;) is the maximum number of valid pages stored by z; defined

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

Telomere: Real-Time NAND Flash Storage 10:9

Task 7: w=1, T\"=2, [|"=3 Task 7,: w,=2, T,"=3, ,"=2

7,0 5=0, e=8 70 5=16, e=24
7 s=2, e=10 7,0 5=18, =26 7 5=0, e=9 7 s=12, =2
T s=4, e=12 70 5=20, e=28
T, =3, e=12 T,: s=15, e=24
7. =6, e=14 7 5=22, e=30 ; :
7,0 5=8, e=16
=10, =18 7,: =6, e=15 7, 5=18, e=2T7
70 5=12, e=20
71 s=14, e=22 7 5=9, =18
B1 B2 B3 B4

Fig. 5. Telomere SiP: a block only contains data written by one task. 71 writes data to blocks B1 and B2. 73
writes data to blocks B3 and B4. No block contains data from both tasks.

as follows:
K(ri) = wi - (I +1). ®)
A block is alive if it contains valid data. For the block storing the oldest data to expire, 7; will
write at most another block of data. For example, in Figure 5, task 7; first writes four valid pages,
but for block B1 to expire, it will write at most another block, or eight pages, of data. At t = 22,
all the data in B1 are expired, so Bl can be erased. The maximum number of pages that will be
written during the time of a block erasure is (w; - [t./T;"]), where t is the time it takes to perform
a block erasure. Let P be the number of pages in a block. The total number of pages needed by a
task 7; under SiP is therefore (K(r;) + P + w; - [t./T,*7). Since a block is allocated to a task and
is not shared among tasks, SiP takes the ceiling of the total number of pages over P. We assume
in the following equation that the number of pages written in one period is less than the size of
a flash block (w; < P). When w; > P, the pages in blocks that store data from a single request
will either be all valid or all invalid. This is the trivial case, and those blocks are simply added to
the total number of blocks. H;(;) is the number of blocks needed by task 7; with read and write
granularity g = 1. It is defined as follows:

Hi(t;) = {K(Ti) P +;Vi) l-te/TiWW
K(7;) +w; - [te/T"] (6)
= { 2 } +1

Equation (6) assumes a read and write request size of one page. Oftentimes, requests of multiple
pages are striped across flash chips to improve throughput. We extend the calculation to a granu-
larity size of g pages. Similar to our previous assumption when g = 1, we assume in the following
equation that the number of pages written in one period is less than the granularity multiplied by
the size of a flash block (w; < g-P). Hy(z;) is the number of blocks needed by task 7; defined as

follows:)
K(z;) +wi - [te /T
Hy(c) = g ([7]+ 1) .)
Without the preceding assumption on w;, K, K’ and H are defined as follows:
K(ri) = [wi%(g-P)] - (1" + 1), 8)
’ Wi w
K'(ti)=g- {—J (I + 1), ©)
9P

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

10:10 K. Missimer et al.

Task 7,: w,=1, T,"=2, [["=3
Task 7, w,=2, T,"=3, [,"=2

7: $=0, e=8 T, s=12, e=21
T,: $=6, e=15
7 s=14, e=22
7, $=0, e=9
7, =8, e=16
1 5=2, e=1
7 572, e=10 T, §=9, e=18
Ty $=3, e=12
7,: s=10, e=18
7 s=4, e=12 7 5=12, e=20
7,: 5=6, e=14 T, s=12, e=21
B1 B2 B3

Fig. 6. Telomere SharP: a block contains data written by multiple tasks. Blocks B1, B2, and B3 are shared
among tasks 71 and 7.

K(z;) +w; - [t./TY
() - q (¢2) + wi - [t/ T
g-P
The total number of blocks needed for a task set, D, is the sum of the blocks needed for each

task. Let Spjocks be the total number of physical blocks. The storage admission control guarantees
that the SSD logical space (Spjocks - 4) can store data from all the tasks.

+ 1) + K'(1;). (10)

m
D= ZHg(Ti)Ssblocks A (11)

i=0

The benefit of SiP is the simplicity in its implementation, and, as we show in Section 6, its storage
cost is comparable to the more complicated SharP algorithm when the size of the task set is small.

4.2 Shared Task Placement (SharP)

SharP uses the observation that since a block is erased when all the data pages expire, data with
similar start and expiration times should be stored together. However, in the case that mixing has
no benefit, then SharP falls back to a SiP-like partitioning that each task would use different blocks
to store data. Figure 6 is an example of when it is more efficient to share blocks among the write
requests of tasks 7; and 7, compared to allocating independent blocks for each task. When a block
stores write requests from both tasks, only three blocks are needed compared to four blocks needed
in SiP.

To determine the number of blocks to allocate to a set of tasks 7;, ..., rj, SharP first computes
the percentage of a block that will be written to by each task. For example, in Figure 6, task 7,
writes to three to four pages of a block and task 7, will write to four to five pages of a block. SharP
determines how much of a block each task writes to based on the task’s throughput requirement
(%) compared to the total write throughput requirement of the set of tasks. Q(z;, {zy . .. 7x}) is
the fraction of write throughput requirement of 7; over the write throughput requirement of the
set of tasks {zy, ... 7¢}. It is defined as follows:

Wi/Tiw
ere{rh...rk}(wj/]}'w).

O(tis{tp ... 1)) (12)

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

Telomere: Real-Time NAND Flash Storage 10:11

Since each task can no longer write to all the pages in a block, the denominator in Equation (7)
is multiplied by Q(7;, {7y ... 7 }). Again, we assume that w; < g-P. J(7j,{7; ... 7x}) is number of
blocks needed by task 7; while sharing blocks with other tasks in the set. It is defined as follows:

+ 1). (13)

The total number of blocks needed by the set of tasks is the maximum J(j, {7; . .. 7x}) of all the
tasks.

K(1)) + wj - [te /T
g-P-Q(zj, {7i ... & })

J(zj 7. 7k }) =g'(

Hy({7i ... t}) = maxy,, J (1), {7i . . . 11c})? (14)

Again, without the assumption on w;, the equations are as follows:

(wi%(g-P))/Ti

is R = s 5
Qri: (2h - i) Yreltn...t0)(Wi%(g-P))/T; (13)

([K@) +wy T/ T ,
](Tj,{l’i...‘[k}) _g(g.P.Q(Tj’{’[i,,,Tk},g) +1)+K (Ti). (16)

SharP partitions the tasks in a task set such that each partition will use separate blocks to store
data. First, the tasks are sorted by the amount of time the data is alive, (T} - (I}V +1)). The algorithm
keeps track of a current partition and determines whether each task should be added to the current
partition. The pseudocode is shown in Algorithm 1. For each task 7y, the algorithm calculates the
number of blocks needed if 77 is added to the current partition (opt1) and if 7; is excluded from the
current partition—that is, whether 7; should be added to the next partition with the next task z,
(opt2) or if 7; should be its own partition and not be grouped with any other tasks (opt3).

The following example highlights why we need to consider task 7, in Algorithm 1. Assume there
are eight pages in a block, time to erase a block is 2.7 msec, g = 1, and the current partition is [7],
where 70 = (wg = 4,T)" = 9,1’ =9). Letr; = (w; =3, T} = 14,1} =7)and 1o = (wp, = 7,1, =
16,1 =7), where the period is in milliseconds. To determine whether or not 7; should be added to
the current partition, we calculate opt1 = H([y, 71]) +H(12) = 20, 0pt2 = H([7])+H([71, 2]) = 19,
and opt3 = H([ry]) + H(r1) + H(r2) = 21. Here, we find that opt2 provides the partition with the
smallest number of blocks, so 7; is not added to ;. If we did not consider task 7, in Algorithm 1,
we would have only calculated H([7, 7;]) = 11 and H([7]) + H(71) = 12, and ended up adding 7;
to the partition containing 7.

5 THROUGHPUT ADMISSION CONTROL

In addition to the storage admission control, we also need to guarantee the read and write through-
put requirement of the tasks. Due to out-of-place updates in NAND flash, the read and write
throughput can fluctuate due to interfering GC activities.

A read request with granularity g can be performed in parallel when g > 1. The read capacity
C! for task 7; is as follows:

cl = H 1, (17)
g

where ¢, is the time it takes to read a flash page.

Note that Hygy({7;}) of a list consisting of a single task is equivalent to H,(7;) in Equation (7).

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

10:12 K. Missimer et al.

ALGORITHM 1: Telomere SharP partitions tasks such that each partition will use separate blocks
to store data.

1: procedure TELOMERESHARP(tasks)

2 Sort tasks by increasing (T - (I + 1))

3 idx =0

4 i=0

5 tlen = tasks.length

6 while i < tlen — 1 do

7 71 = tasks[i]

8 7y = tasks[i + 1]

9: opt1 = H(tasks[idx : i + 1]) + H(12)
10: opt2 = H(tasks[idx : i]) + H([71, 2])
11: opt3 = H(tasks[idx : i]) + H(ry) + H(12)
12: minBlks = min(opt1, opt2, opt3)

13: if opt1 == minBlks then

14: i=i+1

15: else

16: Add tasks[idx : i] to partitions
17: if opt2 == minBlks then
18: idx =i

19: i=i+1

20: else

21: Add [7] to partitions
22: idx=i+1

23: i=i+2

24: end if

25: end if

26: end while

27: optl = H(tasks[idx : tlen — 1])
28: opt2 = H(tasks[idx : tlen — 1]) + H(tasks[tlen — 1])
29: if opt1 < opt2 then

30: Add tasks[idx : tlen] to partitions

31: else

32: Add tasks[idx : tlen — 1] to partitions
33: Add [tasks[tlen — 1]] to partitions

34: end if

35: end procedure

A write request is first written to a buffer and later written to flash. Since there are no in-place
updates in flash memory, a write request consisting of multiple pages can be distributed to different
flash chips. The write capacity C}” for task z; is as follows:

o= |2, (18)
Schips

where t,, is the time it takes to write a flash page.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

Telomere: Real-Time NAND Flash Storage 10:13

Every write task has a corresponding GC task:

11
chips

TW/[%-‘, if w; > P

(19)

g =
i TY - [ij , otherwise

where ¢, is the latency for block erasure.

A schedulability test is invoked to ensure that all the read and write requests are schedulable.
We use Earliest Deadline First (EDF). The largest non-preemptive period is the longest flash
operation that takes place on write flash chips, which is a block erasure. The feasibility of the real-
time write requests can be verified by the following equation derived from Theorem 2 in Baker’s
Stack Resource Policy work [4], which presents a sufficient condition of the schedulability of tasks
that have non-preemptible portions under EDF:

L (oo
+ —t+t——=+—=]<1, 20
min(T) Z(T{ Y 1! 20

i=1 L

where min(T) is the minimum period in all T/, T,*, and Tl.g .

6 EVALUATION

The experimental evaluation consists of three sections: simulation-based schedulability tests,
event-driven simulation to measure GC overheads, and hardware experiments on the OpenSSD
Cosmos board. The admission control simulation shows that Telomere has a higher feasible
throughput utilization with an additional storage cost. The event-driven simulation presents
Telomere’s low GC overhead. Hardware experiments with the OpenSSD Cosmos board show that
Telomere is able to maintain high and predictable throughput.

6.1 Admission Control Simulations

6.1.1 SSD Parameters. We assume the following parameters for an SSD with 1 TB of storage.
There are 16 flash channels, each containing 4 flash chips. There are 4,096 blocks per flash chip and
128 pages in a block, and each page is 32 KB. The average page read time is 0.2 msec, the average
page write time is 0.7 msec, and the average block erasure time is 2.7 msec. The read bandwidth
is 100 MB/s, the write bandwidth is 41.4 MB/s, and the block erasure bandwidth is 1.4 GB/s [16].

6.1.2 Data Generation Parameters. Fifty random task sets were generated with two varying
total utilizations, U® for storage and U? for bandwidth, using the UUniFast algorithm [6] with
values ranging from 0.01 to 1.0 in 0.01 increments. Each task set contains 500 tasks. Each task 7; has
a storage utilization U;’ and a bandwidth utilization Ul.b such that (3; U7 = U®)and (3 v; Ul.b = Ub).
The read period T, and write period T, for each task is calculated based on the number of pages
read and written per period. Data is striped across all flash chips, so the read and write granularity
is 64. Let BR be the read bandwidth, and let BY _ be the write bandwidth. We generate reads

max max
and writes up to half of their respective bandwidths.

r Ti

e I B (21)
Uib'(Bﬁax/z)

w Wi

W L (22)

' Uib'(Br‘/r‘l]ax/z)

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

10:14 K. Missimer et al.

0.9 T T T T
£ 085 ix o -
E
= 0.8 | 1
5 SharP g=16 &
g 075 . SiPg=16 4
s SharP g=32 [
% 07 F ® i SiP g=32 |
SharP g=64 O
0.65 | | | | SiP g=64 []

0 02 04 06 038 1
Bandwidth Utilization
Fig. 7. Storage and throughput utilization at which 100% of the task sets are schedulable with different read

and write granularity. As granularity increases, both throughput utilization and storage cost increases. The
storage cost of Telomere SharP grows slower than Telomere SiP.

0.9 : : ‘
0.85 21, i
g 08 . .
g o5k i SharP =100 2
= ® SiPt=100 4
2 0.7 F] SharP =250 [
gn 065 | J SiPt=250 M
g 06 L | SharP t=500 ©)
Z X SiPt=500 @
0.55 | - SharP t=1000 ©
0.5 ‘ SiPt=1000 e

| |
05 06 07 08 09 1
Bandwidth Utilization

Fig. 8. Storage and throughput utilization at which 100% of the task sets are schedulable with varying num-
ber of tasks in a task set. The number of tasks in a task set significantly affects the storage cost of Telomere
SiP since each task is assigned independent blocks.

The lifetime of the data depends on the storage utilization of the task and the number of pages
the task writes to guarantee that the SSD has the capacity to store all the valid data.

e U

,- - (23)

6.1.3 Telomere SiP and SharP. The storage cost of Telomere SiP and SharP depends on the read
and write granularity and the number of tasks in a task set. In Figures 7 and 8, we show the
maximum storage utilization out of a 1-TB drive with device utilization A = 0.90 as we vary these
parameters.

Figure 7 shows how the read and write granularity affects the storage cost and throughput of
Telomere SiP and SharP. When granularity increases, more pages are striped across flash chips.
This means that multiple pages can be read and written in parallel, which leads to increased
throughput. The striping of data also results in increased storage cost for Telomere SiP and SharP.
Figure 7 shows the maximum storage and throughput utilization at which 100% of the task sets
are schedulable. We do not plot the gradient from 100% to 0% schedulable because it is very small
(within 1% to 2% storage or throughput utilization). Note that in our simulation, there are 64 flash
chips, so there will not be any throughput or storage cost increase for granularity g > 64.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

Telomere: Real-Time NAND Flash Storage 10:15

Figure 8 shows the storage cost of Telomere SiP and SharP as the number of tasks in each
task set varies. We plot the storage and throughput utilization at which 100% of the task sets are
schedulable for task sets with 100, 250, 500, and 1,000 tasks. As expected, the storage cost increases
as the number of tasks increases. However, the storage cost of Telomere SharP grows at a much
slower rate than that of Telomere SiP. The slight decrease in throughput utilization when the size
of the task set decreases is due to the shorter periods in the generated tasks, which results in a
larger value for the first term (#ﬁm) in Equation (20).

6.1.4 Comparison to Previous Work. We compare Telomere to previous real-time FTL: the
Worst-case and Average-case joint Optimization for Garbage Collection (WAO-GC) [47].
We do not compare with Partitioned Real-Time FTL [28] since writes and GC are partitioned onto
one-fourth of the flash chips to provide low and predictable read latency. Thus, the write band-
width is significantly lower than the methods compared to. Due to the limited number of real-time
FTLs to compare against, we also compare Telomere to non-real-time work by Stoica and Aila-
maki [41] on improving flash write performance using update frequency. Their work partitions
pages into sets with update frequencies that decrease in powers of 2. When a page becomes cold,
it moves to a set with a lower update frequency. Similarly, when it becomes hotter, it moves to a set
with a higher update frequency. Each set is stored as a log structure, and this algorithm is called
MultiLog data placement. Stoica and Ailamaki [41] also provide algorithms for estimating page
update frequency, including an Oracle algorithm that knows the exact page update frequency, and
thus has the lowest GC overhead. We compare Telomere to MultiLog-Oracle. In addition, we ap-
ply bank reservation [16] to provide throughput admission control based on the average observed
WAF value of MultiLog-Oracle for two different workloads. The work of Stoica and Ailamaki [41]
is selected for comparison because the motivation is similar to ours in that data with similar update
frequencies should be placed together. Real-time FTLs often sacrifice bandwidth for predictability.
We show that Telomere achieves better throughput under certain over-provisioning levels even
compared to non-real-time methods.

6.1.5 Comparison to WAO-GC. WAO-GC [47] builds upon the partial GC technique. In addition
to real-time bounds, WAO-GC shows that it is able to achieve better average-case performance
than Guarantee FTL [13] and Real-Time FTL [34] by using over-provisioning to delay GC. WAO-
GC derives a maximum A value using SSD parameters to guarantee that a page write will only be
blocked by one partial GC step. With our SSD parameters, the upper bound of A for WAO-GC is
0.74.

WAO-GC uses page-level mapping. Thus, the storage admission control needs can be calculated
as a function of its over-provisioning. Specifically, the number of pages needed by tasks to store
data has to be less than A times the total number of physical flash pages.

Z lw + 1 < A'Spages (24)

i=0

Figure 9 shows the maximum throughput and storage utilizations at which 100% of the task
sets are schedulable at different over-provisioning levels. When over-provisioning « = 0.10, 10%
of the physical space reserved for wear-leveling for each method, which is why in Figure 9(a)
task sets that need more than 10% of the storage space are not schedulable. Specific wear-leveling
techniques are outside the scope of this work, but we reserve the same capacity of the SSD for
wear-leveling purposes to make a fair comparison of the different methods with flash endurance
taken into account. Note that because Telomere does not copy valid pages during GC, it needs less
over-provisioning than other methods that need to perform wear-leveling during GC to achieve

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

10:16 K. Missimer et al.

Telomere SharP O MultiLog 80/20 4 WAO-GC =
Telomere SiP @ MultiLog Random ¥
1 T T T T 1 T T T T 1
""" Yoooh
5 0.8 | R g 08 F ... oo E 5 0.8 | R
3 H H T H H i
= 06 : : 1 = 06 F M 1 S 06k .. vt
5 : : 3 P 5 ot
% 04 : : E o 04 : : | o 04l .
< H H < N H o . .
S : : S o S ik
@ 02 b 02 b @ 02 -
O L L il L 0 L L M H L 0 L L L ol
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Bandwidth Utilization Bandwidth Utilization Bandwidth Utilization
(a) a=0.10 (b) x=10.30 (c)u=0.75

Fig. 9. Storage and throughput admission control. Lines indicate the maximum utilization at which 100% of
the task sets are schedulable. MultiLog-Oracle method is plotted in dotted lines because the bank reservation
throughput admission control [16] is not real time and the WAF is the average observed value, not the worst
case.

the same flash endurance. We can see that the storage cost of Telomere SiP is 19% and Telomere
SharP is 6%. Note that the storage utilization of WAO-GC cannot be higher 0.74 since WAO-GC
requires a certain amount of over-provisioning to guarantee that a page write will only trigger
one partial GC step. This is why at @ = 0.10, WAO-GC rejects more task sets than Telomere SharP
even with Telomere’s extra storage cost.

Figure 9 also shows the percentage of task sets schedulable under the throughput admission
control with different over-provisioning values. The Telomere throughput admission control is
calculated with Equation (20). WAO-GC does not provide admission control for multiple flash
chips. It only guarantees that a write request will be blocked by no more than a partial GC step.
We use the admission control in Equation (20) with the following write and GC capacities:

cY = [Wi } (tyy + max(te, tr + ty)), (25)
Schips

c) =o. (26)

The schedulability simulation shows that WAO-GC starts rejecting task sets at 38% throughput
utilization, whereas Telomere SiP and SharP are 100% schedulable at 83% throughput utilization.

6.1.6 Comparison to MultiLog-Oracle. The MultiLog-Oracle algorithm can be integrated into a
page-level mapping FTL, so the storage admission control can be calculated using Equation (24).
For the throughput admission control, because MultiLog-Oracle is not real time, we will rely on
the observed WAF value for two different workloads and use bank reservation [16] to provide
a throughput admission control on average. Banks are dynamically partitioned to service read
and write requests and perform GC based on the read and write throughput specified. Unlike
Telomere’s throughput admission control, bank reservation [16] does not guarantee that each task
will be able to perform its specified number of page reads and writes within its period. It only
guarantees that a total read and write throughput from all the tasks in the task set can be sustained
on average.

When over-provisioning ¢ = 0.10, MultiLog-Oracle has an average write amplification factor
experienced with a random workload at WAF = 5.0. Since our random workload generated may
be different from theirs, we also use their lower average write amplification factor value for a
skewed Zipf 80/20 distribution at WAF = 2.0. Table 2 summarizes the WAF for MultiLog-Oracle
at different over-provisioning levels. Note that these WAF values are the average estimated under

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

Telomere: Real-Time NAND Flash Storage 10:17

Table 2. MultiLog-Oracle WAF for
Different Over-Provisioning Levels [41]

| @ | Random | Zipf80/20 |
0.10 | WAF =5.00 | WAF =2.00
030 | WAF =2.20 | WAF =1.50
0.75 | WAF=1.25 | WAF=1.13

empirical observation. They are not the worst-case WAF values. Therefore, we plot the MultiLog-
Oracle method in dotted lines.

Figure 9(b) and (c) show the storage/throughput trade-off for MultiLog-Oracle at different lev-
els of over-provisioning. Lower storage utilization in MultiLog-Oracle leads to higher throughput.
The inverse relationship between throughput and storage utilization is because to achieve higher
throughput, the write amplification factor has to be lower, which means more over-provisioning,
which leads to lower storage utilization. Telomere SharP does not suffer from a decrease in through-
put when storage utilization increases.

For over-provisioning @ = 0.75, Figure 9(c) shows that MultiLog-Oracle for a workload with
a skewed Zipf 80/20 distribution has an observed WAF that admits a higher throughput using
bank reservation compared to Telomere. This is because bank reservation [16] only guarantees
that a total read and write throughput from all the tasks in the task set can be sustained on aver-
age, whereas Telomere’s throughput admission control guarantees that each task will perform its
specified number of page reads and writes within its period.

MultiLog-Oracle, like traditional FTLs, has a tunable storage/throughput trade-off. It can achieve
either high storage utilization with low throughput utilization, as seen in Figure 9(a), or high
throughput utilization with low storage utilization, as seen in Figure 9(c). Telomere, as seen in
Figure 9(a), can achieve both high throughput and storage utilization.

6.2 Wear-Leveling Experiments

We also measured the effectiveness of wear-leveling for Telomere and Pagemap under different
levels of over-provisioning using the health binning wear-leveling technique [33]. Pletka et al.
[32] measured raw bit error rates (RBER) of the worst page obtained from the blocks of a real
consumer-level 16-nm MLC flash chip and found that it is a function of the nominal endurance,
defined as the program/erase cycle normalized to the manufacturer-specified block endurance. The
wear of a 2D flash block of advanced age can be accurately modeled using the following log-log
model:

logio(Wp) = xp + yp-logio(E(D)), (27)
where E(b) denotes the program/erase cycle of block b normalized to the manufacturer-specified
block endurance, and x;, and y;, are parameters obtained from large-scale characterization and are
distinct for every block [32]. In the health binning wear-leveling technique, the health of a block
is determined by Equation (27). The hottest data is placed in the healthiest blocks, and cold data is
placed in less healthy blocks.

We run the event-driven simulator for Telomere and Pagemap under (1) no wear-leveling, where
the free blocks queue is a First-In-First-Out queue, and (2) RBER-balancing wear-leveling, where
the free blocks queue is sorted by the RBER of the blocks. Telomere is also run with health binning.
The page-map FTL is not run with health binning because WAO-GC page-map FTL does not co-
locate data with similar hotness. WAO-GC’s partial GC constraints restrict valid pages of a victim
block to be written to the same block as incoming write requests, regardless of data hotness. Thus,
health binning cannot be used since it only works with FTLs that collocate together data with

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

10:18 K. Missimer et al.

—]
Pagemap noWL —+—
Pagemap RBER —x—

Telomere noWL —%—
0.8 | Telomere RBER
Telomere HB

0.6

CDF RBER

0.4

0.2

107 1072
Raw Bit Error Rate (RBER)

Fig. 10. CDF of the measured RBER at the end of a simulation run for a task set at over-provisioning A = 0.10.

similar update frequency. For the simulation, we generate 20 task sets for each A value from 0.70 to
0.95 in increments of 0.05. Each task set contains 10 tasks that are generated with relative standard
deviation v = 70. The simulation runs until 2% of the blocks reach a wear value of W;, = 1072,
which is the RBER threshold for declaring a block dead [48]. Pletka and Tomic [33] observed that
once a small percentage of the blocks have been retired as they reach the error correction capability
of the ECC, write amplification jumps abruptly, and the performance of the device drops suddenly.
Thus, we end our simulation when 2% of the total number of flash blocks get retired.

Figure 10 shows the Cumulative Distribution Function (CDF) of the measured RBER at end
of the simulation run for a task set with A = 0.10 for Telomere and Pagemap with different wear-
leveling algorithms. We tested the health binning algorithm (HB), RBER-balancing wear-leveling
algorithm (RBER), and no wear-leveling with a First-In-First-Out free blocks queue (noWL). In the
ideal case, the blocks would all wear out at the same time. In the graph, the CDF for the RBER would
be 0% for RBER less than 1072 and then 100% at 1072. Telomere HB and Telomere RBER are both
more effective at wear-leveling than Telomere noWL, Pagemap RBER (page-map FTL with RBER
wear-leveling algorithm), and Pagemap noWL (page-map FTL with no wear-leveling algorithm).

6.3 Hardware Experiments

We use the OpenSSD Cosmos board [39], pictured in Figure 11, to implement three FTLs: Telomere,
WAO-GC, and page-map FTL. As shown in Figure 12, the board is connected via an external PCle
cable to a PC with an ASRock Z68 PRO3-M Motherboard and a 3.10-GHz Intel Core i3-2100 CPU
running the Quest real-time operating system [49].

The Cosmos board includes the Zynq-7000 with dual ARM Cortex-A9 and NEON DSP co-
processor for each core. The internal structure of a Zynq-7000 SoC has two components: the
processing system (PS) and the programmable logic (PL). The processing system component
includes the dual-core ARM processor, the memory interfaces, and the I/O peripherals. The PL
component includes the FPGA fabric. The flash storage controller is synthesized in the PL, and the
FTL firmware is running on the ARM Cortex-A9.

The OpenSSD Cosmos board has two small outline dual in-line memory modules (SO-
DIMMs), each containing Micron Technology’s MLC NAND flash (with part number

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

Telomere: Real-Time NAND Flash Storage 10:19

SD card

connector QSPImemory
&S \

User-configurable LED
S

Configuration mode SW

5.5mm

power connector
6-pin PCle
power connector

i Board
Ethernet |3 [L] powersw

PMbus

JTAG digilent connector

module

SMA connector
Fan connector

JTAG select SW -7

7&14pin 7

20pin | 12CPMOD ; PMOD 20pin S
JTAG JTAG /l { pin I| pin ARM JTAG User-configurable SW
User-configurable VCCO ADJ VCCO ADJ
GPIO pin select pin divide pin

Fig. 11. OpenSSD Cosmos board [39].

USB USB i o
UART terminal UART UARE I‘ Processing System Application
FTL Management
Dual core ARM
| Cortex-A9
USB usB =
=
- _.| JTAG JTAG I % 5
Xilinx E - 2
NAND PCle Q =
2 Q
R NAND Flash Interface g &
Flash Controller < § g
@ k=l
Q g
Module Programmable Logic § 2
T
Development PC OpenSSD Cosmos board Host PC

Fig. 12. OpenSSD Cosmos board setup.

MT29F256G08CMCABH2). A block contains 256 pages, and a page is 8 KB. The FTL sends
commands to way controllers directly; however, it cannot access the channel controller including
the way arbiter, page buffer, and the BCH ECC engine. The way arbiter grants permission in a
round-robin manner for the way controllers to use the common flash bus or the internal data
bus to access the page buffer. The page buffer stores 2 KB of data, 60 bytes of ECC parity, and
90 reserved bytes. Since a flash page is 8 KB, data transfer between the page buffer and the
encoder/decoder occurs four times for each flash page.

The FTL is implemented in the ARM Cortex-A9 and sends commands to the way controllers
directly. To perform a page write, when the way arbiter grants access to the internal data bus, the
command is issued and data is moved from DRAM to the page buffer. The data is then transferred
to the ECC encoder that calculates the parity and transfers data and parity to the page buffer. Then,
data is transferred to the way controller and finally to the NAND flash when the way arbiter grants
access to the common flash bus. To perform a page read, data arrive from the way controller and

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

10:20 K. Missimer et al.

Table 3. Tasks Running on the

FTL Implementations on the
OpenSSD Cosmos Board

L [n [T]w [TV] 1 |

7| 16 | 20 | 16 | 80 | 250

71| 8 |20 | 16 | 40 33

75| 16 | 20 | 16 | 40 | 330

31 0| 0 |16] 40 | 990
7| 0| 0 |11] 40 | 1,980
| 0| 0 |5 | 40 | 1,980

are transferred to the ECC decoder. If there are errors in the data, the ECC decoder corrects the
data and transfers the data to the page buffer. Data is then transferred to DRAM.

The device driver splits up each read or write request into flash page-size requests and inserts
them into a request circular buffer. The FTL retrieves the requests and orders them according to
EDF and starts handling the request if the flash chip is not busy. A flash page read request will
occur on a physical page that exists on a specific flash chip. A flash page write request is assigned
to a flash chip depending on whether there is a current flash block assigned for that task. If a
block is assigned, the page write will occur on a specific flash chip. Otherwise, the flash page write
request could occur on any available flash chip. In our FTL implementation, we use page-level
mapping and keep track of a free blocks list, which is used when a partition of tasks require a new
block. When a flash block expires (i.e., all the pages in the block become invalid), a block erasure
is triggered and the block is added to the free blocks list.

Table 3 shows the parameters of the read and write tasks. We ran an experiment with six
write tasks and four read tasks. The task set is synthetic with parameters that maximized the
read and write throughputs for the OpenSSD Cosmos board and highlighted the advantage
of SharP partitioning. As Figure 8 shows, when the number of tasks is small, the maximum
storage utilization for SharP is only slightly higher than SiP. We selected parameters for this
task set to show the difference between SiP and SharP. We ran the experiment with 21 blocks
per flash chip. The limit on the number of blocks per flash chip is due to time constraints. The
bookkeeping takes place on the FTL with metadata per page access, logging latency to verify that
timing guarantees are met. This hardware experiment is meant to demonstrate the effectiveness
of the different partitioning algorithms running on real hardware. It is not a case study of a
real application. However, we believe it shows the storage utilization advantage of the SharP
partitioning algorithm and the throughput guarantee based on our analysis. For varying task sets
with different parameters, please see our simulation results in Section 6.1.

We test four methods: Telomere SiP, Telomere SharP, WAO-GC, and page-map FTL. Figures 13
and 14 show the four methods, three of which run at different write throughputs due to the rejected
tasks. Telomere SharP and Pagemap start out with the highest write throughput, running all six
tasks at 1,800 pages per second. Telomere SiP’s storage admission control rejects 75, so it runs at
a lower throughput of 1,680 pages per second. WAO-GC rejects 73, 74, and 75 due to insufficient
logical address space and write throughput, so it runs at 1,000 pages per second. Telomere SiP,
SharP, and WAO-GC are all able to maintain the throughput accepted by their admission control
when read requests arrive at around ¢t = 97 as shown in Figure 14. The non-real-time page-map
FTL, however, is unable to maintain the write throughput and read throughput as the number of
pages written per second drops and both read throughput and write throughput fluctuate.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

Telomere: Real-Time NAND Flash Storage 10:21

2000 T T T T T T
l————e BB
o ——e——@¢ ——9¢ —0¢ ¢ o
= H
S 1500 |- 3‘ §
17} :
o) Lo
2 O Nk
= LA) o
g 1000 |- e >
K= i
= v B v
H 1
& 500 - Telomere SharP —e—
2; Telomere SiP —e—
WAO-GC
Pagemap --------
0 | | | | | |

80 90 100 110 120 130 140
Seconds
Fig. 13. Write throughput for the task set in Table 3 for Telomere SiP and SharP, WAO-GC, and page-map

FTL. Telomere SiP and WAO-GC run at a lower write throughput because their admission control could not
accept the entire task set.

- 1500 T T

=

1000 I -
a

= '

S

& 500 L Telomere SharP —e— |
§) Telomere SiP —o—
2 , WAO-GC

* | 5 | | | Pagem\ap -------\-

80 90 100 110 120 130 140
Seconds

Fig. 14. Read throughput for the task set in Table 3 for Telomere SiP and SharP, WAO-GC, and page-map FTL.
After read requests arrive at around t = 97, Pagemap is not able to maintain its read and write throughput
due to GC overhead.

7 RELATED WORK

A large body of work focuses on reducing write amplification by storing together data with similar
update frequencies. Rosenblum and Ousterhout [35] first pointed out that categorizing data as hot
or cold reduces cleaning overhead in a log-structured file system. This was followed by works
that tuned LFS on flash systems [19, 43]. Other research that detects data temperature can be
found in flash wear-leveling works such as Dynamic Age Clustering [12] as well as data placement
algorithms based on update frequency [31, 41]. However, drive-managed SSDs that provide the
traditional block I/O interface suffer from many shortcomings [2, 11, 15], including log-on-log
issues [46]. Solutions to these problems fall into two main categories: host-managed designs [7, 8,
18, 22] and some form of information sharing between the host and the FTL [17, 23, 45]. The latter
is the approach we have taken with Telomere.

Multi-stream SSDs show how write amplification can be reduced by assigning data with
different update frequencies to different streams, which are stored at a different physical

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

10:22 K. Missimer et al.

location [17, 23, 45]. Multi-streamed SSDs [17] and WARM [23] assign different stream IDs to dif-
ferent types of data (index files, log files, sstables, etc.), however, files of the same type may contain
data with different lifetime. AutoStream [45] automatically assigns stream IDs to data. Their exper-
iments show that WAF gets close to 1 when there is a large data lifetime difference with 4 streams of
data. However, with 16 streams of data with different lifetimes, AutoStream takes time to differen-
tiate blocks and some requests are mixed into 1 stream, resulting in WAF above 2. AutoStream does
not disclose crucial details including the over-provisioning, making it hard to compare against.

Previous work on reducing flash latency includes dividing GC for reclaiming a flash block into
partial steps that are distributed among host write requests [13]. There are a few real-time FTLs
that build upon the partial GC technique [34, 47]. However, these FTLs do not exploit the high
level of parallelism that exist in SSDs. Other work for exploiting redundancy for predictable read
performance include Flash on Rails [38] and PaRT-FTL [28]. Flash on Rails [38] uses two SSDs, one
performing write requests and the other performing read requests, and periodically exchanges the
SSDs and synchronizes data. Although this design provides high read throughput, it can suffer from
unpredictable write performance since it has no direct control of GC activities. PaRT-FTL [28] uses
a RAID design to rebuild read requests so that reads are never blocked by writes or GC. However,
because reads and writes are partitioned onto different parallel units in flash, the write bandwidth
is much lower.

8 CONCLUSION

The out-of-place property of flash memory requires GC to be performed when reclaiming a block.
When blocks contain data with different lifetime, GC can incur long latency and cause throughput
to drop and fluctuate. However, by intelligently placing data such that all the pages in a block
being reclaimed are invalid, we can minimize the GC overhead to simply a block erasure. We
present a new interface that provides the drive with information about the lifetime of the data. Our
results show that Telomere’s real-time admission control is able to guarantee tasks their required
read and write operations within their periods. Under randomly generated tasksets containing 500
tasks, Telomere achieves 30% higher throughput with a 5% storage cost compared to pre-existing
techniques.

ACKNOWLEDGMENTS

Special thanks to Craig Einstein for the name of Telomere.

REFERENCES

[1] Evan Ackerman. 2016. Autonomous Mini Rally Car Teaches Itself to Powerslide. Retrieved November
20, 2021 from https://spectrum.ieee.org/cars-that-think/transportation/self-driving/autonomous-mini-rally-car-
teaches-itself-to-powerslide.

[2] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and Rina Panigraphy. 2008. Design
tradeoffs for SSD performance. In Proceedings of the USENIX Annual Technical Conference (ATC’08).

[3] Amara D. Angelica. 2013. Google’s Self-Driving Car Gathers Nearly 1 GB/sec. Retrieved November 20, 2021 from
http://www.kurzweilai.net/googles-self-driving-car- gathers-nearly- 1-gbsec/.

[4] Theodore P. Baker. 1990. A stack-based resource allocation policy for realtime processes. In Proceedings of the Real-
Time Systems Symposium (RTSS’90).

[5] Miriam Berger. 2020. How the world’s beaches are readying for a summer of social distancing. Washington Post.
Retrieved November 20, 2021 from https://www.washingtonpost.com/world/2020/06/27/how-worlds-beaches-are-
readying-summer-social-distancing/.

[6] Enrico Bini and Giorgio C. Buttazzo. 2005. Measuring the performance of schedulability tests. Real-Time Systems 30,
1-2 (2005), 129-154.

[7] Matias Bjorling. 2019. From open-channel SSDs to zoned namespaces. In Proceedings of the Linux Storage and Filesys-
tems Conference (Vault’19).

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

https://spectrum.ieee.org/cars-that-think/transportation/self-driving/autonomous-mini-rally-car-teaches-itself-to-powerslide
http://www.kurzweilai.net/googles-self-driving-car-gathers-nearly-1-gbsec/
https://www.washingtonpost.com/world/2020/06/27/how-worlds-beaches-are-readying-summer-social-distancing/

Telomere: Real-Time NAND Flash Storage 10:23

(8]
(9]
(10]

[11]

[12]
[13]

[14]

[15]

[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]
[25]

[26]

[27]
[28]

[29]

[30]
[31]

[32]

Matias Bjorling, Philippe Bonnet, Luc Bouganim, and Niv Dayan. 2013. The necessary death of the block device
interface. In Proceedings of the Biennial Conference on Innovative Data Systems Research (CIDR’13).

Matias Bjorling, Javier Gonzalez, and Philippe Bonnet. 2017. LightNVM: The Linux open-channel SSD subsystem. In
Proceedings of the USENLX Conference on File and Storage Technologies (FAST’17).

Feng Chen, Binbing Hou, and Rubao Lee. 2016. Internal parallelism of flash memory-based solid-state drives. ACM
Transactions on Storage 12, 3 (2016), Article 13, 39 pages.

Feng Chen, Rubao Lee, and Xiaodong Zhang. 2011. Essential roles of exploiting internal parallelism of flash memory
based solid state drives in high-speed data processing. In Proceedings of the IEEE International Symposium on High
Performance Computer Architecture.

Mei-Ling Chiang and Ruei-Chuan Chang. 1999. Cleaning policies in mobile computers using flash memory. Journal
of System Software 48, 3 (1999), 213-231.

Siddharth Choudhuri and Tony Givargis. 2008. Deterministic service guarantees for NAND flash using partial block
cleaning. In Proceedings of the IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis.

John Colgrove, John D. Davis, John Hayes, Ethan L. Miller, Cary Sandvig, Russell Sears, Ari Tamches, Neil Vachhara-
jani, and Feng Wang. 2015. Purity: Building fast, highly-available enterprise flash storage from commodity compo-
nents. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’15).

Mingzhe Hao, Gokul Soundararajan, Deepak Kenchammana-Hosekote, Andrew A. Chien, and Haryadi S. Gunawi.
2016. The tail at store: A revelation from millions of hours of disk and SSD deployments. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST’16).

Sheng-Min Huang and Li-Pin Chang. 2018. Providing SLO compliance on NVMe SSDs through parallelism reserva-
tion. ACM Transactions on Design Automation of Electronic Systems 23, 3 (2018), Article 28, 26 pages.

Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. 2014. The multi-streamed solid-state drive. In
Proceedings of the USENLX Workshop on Hot Topics in Storage and File Systems (HotStorage’14).

Yangwook Kang, Jingpei Yang, and Ethan L. Miller. 2011. SCM: An efficient interface for storage class memories. In
Proceedings of IEEE Symposium on Mass Storage Systems and Technologies (MSST’11).

Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. 1995. A flash-memory based file system. In Proceedings of
the USENIX Technical Conference on UNIX and Advanced Computing Systems. 155-164.

Jaeho Kim, Donghee Lee, and Sam H. Noh. 2015. Towards SLO complying SSDs through OPS isolation. In Proceedings
of the USENIX Conference on File and Storage Technologies (FAST’15).

Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, and Sang-Won Lee. 2011. Fast, energy efficient scan inside
flash memory SSDs. In Proceedings of the International Workshop on Accelerating Data Management Systems.
Youyou Lu, Jiwu Shu, and Weimin Zheng. 2013. Extending the lifetime of flash-based storage through reducing write
amplification from file systems. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST’13).
Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and Onur Mutlu. 2015. WARM: Improving NAND flash memory
lifetime with write-hotness aware retention management. In Proceedings of the Conference on Mass Storage Systems
and Technology (MSST’15).

Dongzhe Ma, Jianhua Feng, and Guoliang Li. 2014. A survey of address translation technologies for flash memories.
ACM Computing Surveys 46, 3 (2014), 36.

Micron. 2005. Micron Technical Report: Small-Block vs. Large-Block NAND Flash Devices. Technical Report TN-29-07.
Micron.

Micron. 2017. Micron Reveals Critical Technologies for Autonomous Vehicles. Retrieved November 20,
2021 from https://investors.micron.com/news-releases/news-release-details/micron-reveals-critical-technologies-
autonomous-vehicles.

Micron. 2018. NAND Flash Die—128Gb Die: X8 300mm MLC MT29F128G08CBECB. Retrieved November 20, 2021
from https://prod.micron.com/media/documents/products/data-sheet/nand-flash/die/195b_die_128gb_nand.pdf.
Katherine Missimer and Richard West. 2018. Partitioned real-time NAND flash storage. In Proceedings of the Real-
Time Systems Symposium (RTSS’18).

Vidyabhushan Mohan, Taniya Siddiqua, Sudhanva Gurumurthi, and Mircea R. Stan. 2010. How I learned to stop
worrying and love flash endurance. In Proceedings of the USENIX Conference on Hot Topics in Storage and File Systems
(FAST’10).

HakJune Oh. 2013. Single Controller 4/8TB SSD. Retrieved November 20, 2021 from https://www.flashmemory
summit.com/English/Collaterals/Proceedings/2013/20130815_301A_Oh.pdf.

Dongchul Park and David H. C. Du. 2011. Hot data identification for flash-based storage systems using multiple
Bloom filters. In Proceedings of the Conference on Massive Storage Systems and Technology (MSST’11).

Roman Pletka, Ioannis Koltsidas, Nikolas Ioannou, Sasa Tomic, Nikolaos Papandreou, Thomas Parnell, Haralampos
Pozidis, Aaron Fry, and Tim Fisher. 2018. Management of next-generation NAND flash to achieve enterprise-level
endurance and latency targets. ACM Transactions on Storage 14, 4 (2018), Article 33, 25 pages.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

https://investors.micron.com/news-releases/news-release-details/micron-reveals-critical-technologies-autonomous-vehicles
https://prod.micron.com/media/documents/products/data-sheet/nand-flash/die/l95b_die_128gb_nand.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130815_301A_Oh.pdf

10:24 K. Missimer et al.

[33] Roman A. Pletka and Sasa Tomic. 2016. Health-binning: Maximizing the performance and the endurance of
consumer-level NAND flash. In Proceedings of the 9th ACM International Conference on Systems and Storage
(SYSTOR’16).

[34] Zhiwei Qin, Yi Wang, Duo Liu, and Zili Shao. 2012. Real-time flash translation layer for NAND flash memory storage
systems. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’12).

[35] Mendel Rosenblum and John K. Ousterhout. 1992. The design and implementation of a log-structured file system.
ACM Transactions on Computer Systems 10, 1 (1992), 26-52.

[36] Gustavo Henrique Ruffo. 2019. Tesla Cars Have a Memory Problem That May Cost You a Lot to Repair. https://
insideevs.com/news/376037/tesla-mcu-emmc-memory-issue/.

[37] SanDisk. 2018. iNAND Automotive Embedded Flash Drives. Retrieved November 20, 2021 from https://www.sandisk.

com/oem-design/automotive/inand.

Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins, Carlos Maltzahn, and Scott Brandt. 2014. Flash on rails: Con-

sistent flash performance through redundancy. In Proceedings of the USENIX Annual Technical Conference (ATC’14).

[39] Yong Ho Song, Sanghyuk Jung, Sang-Won Lee, and Jin-Soo Kim. 2014. Cosmos OpenSSD: A PCle-Based Open
Source SSD Platform. Retrieved November 20, 2021 from http://www.flashmemorysummit.com/English/Collaterals/
Proceedings/\2014/20140807_301B_Song.pdf.

[40] Josh Spires. 2020. How Drones Have Helped Fight COVID-19—And Become More Mainstream. Retrieved November
20, 2021 from https://dronedj.com/2020/06/04/.

[41] Radu Stoica and Anastasia Ailamaki. 2013. Improving flash write performance by using update frequency. In Pro-

ceedings of the International Conference on Very Large Data Bases (VLDB’13).

Western Digital. 2019. Zoned Storage. Retrieved November 20, 2021 from http://zonedstorage.io.

Michael Wu and Willy Zwaenepoel. 1994. eNVy: A non-volatile, main memory storage system. ACM SIGPLAN Notices

29, 11 (1994), 86-97.

[44] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman, Andrew A. Chien, and
Haryadi S. Gunawi. 2017. Tiny-tail flash: Near-perfect elimination of garbage collection tail latencies in NAND SSDs.
In Proceedings of the USENIX Conference on File and Storage Technologies (FAST’17).

[45] Jingpei Yang, Rajinikanth Pandurangan, Changho Choi, and Vijay Balakrishnan. 2017. AutoStream: Automatic
stream management for multi-streamed SSDs. In Proceedings of the ACM International Conference on Systems and
Storage (SYSTOR’17).

[46] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and Swaminathan Sundararaman. 2014. Don’t stack your
log on my log. In Proceedings of the Workshop on Interactions of NVM/Flash with Operating Systems and Workloads
(INFLOW’14).

[47] QiZhang, Xuandong Li, Linzhang Wang, Tian Zhang, Yi Wang, and Zili Shao. 2015. Optimizing deterministic garbage
collection in NAND flash storage systems. In Proceedings of the Real-Time and Embedded Technology and Applications
Symposium (RTAS’15). IEEE, Los Alamitos, CA.

[48] K.Zhao, W. Zhao, H. Sun, T. Zhang, X. Zhang, and N. Zheng. 2013. LDPC-in-SSD: Making advanced error correction
codes work effectively in solid state drives. In Proceedings of the USENIX Conference on File and Storage Technologies
(FAST’13).

[49] R. West, Y. Li, E. Missimer, and M. Danish. 2016. A virtualized separation Kernel for mixed criticality systems. ACM
Transactions on Computer Systems 34 (2016).

(38

[t

[42
[43

[l i

Received January 2021; revised June 2021; accepted July 2021

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 10. Publication date: January 2022.

https://insideevs.com/news/376037/tesla-mcu-emmc-memory-issue/
https://www.sandisk.com/oem-design/automotive/inand
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/\2014/20140807_301B_Song.pdf
https://dronedj.com/2020/06/04/
http://zonedstorage.io

