An Efficient End-host Architecture for Cluster Communication Services

Xin Qi, Gabriel Parmer and Richard West

Computer Science Department
Boston University
Boston, MA 02215
{xqi, gabepl, richwest} @cs.bu.edu

Abstract

Cluster computing environments built from commod-
ity hardware have provided a cost-effective solution for
many scientific and high-performance applications. Like-
wise, middleware techniques have provided the basis for
large-scale applications to communicate and exchange data
across the various end-hosts in a distributed system. Unfor-
tunately, middleware services are typically encapsulated in
user-level address spaces that suffer from scheduling delays
and communication overheads induced by the host kernel.
For various high performance distributed computing appli-
cations such overheads are unacceptable. This paper there-
fore addresses the problem of providing an efficient end-
host architecture to support application-specific communi-
cation services at user-level, without the need to explicitly
schedule such services or copy data via the kernel.

We briefly describe a sandboxing mechanism that allows
applications to configure and deploy services at user-level,
that may execute in the context of any address space. Using
Linux as the basis for our approach, we focus specifically on
the implementation of a user-space network protocol stack,
that avoids copying data via the kernel when communicat-
ing with the network interface. Our approach enables ser-
vices to efficiently process and forward data via proxies, or
intermediate hosts, in the communication path of high per-
formance data streams. Unlike other user-level networking
implementations, our method makes no special hardware
requirements. Results show that we achieve a substantial
increase in throughput, and a reduction in jitter, over com-
parable user-space communication methods.

1. Introduction

Cluster computing environments have proved a cost-
effective solution to many distributed computing problems
by leveraging inexpensive hardware. Likewise, middleware

implemented on general-purpose systems has provided the
basis for large-scale applications to communicate and ex-
change data across the various end-hosts in a distributed
system. Unfortunately, general-purpose systems provide a
generic set of abstractions that are not well-suited for effi-
cient middleware services needed by high performance ap-
plications. Specifically, abstractions such as BSD sockets
and kernel-based network protocols are common to modern
systems, but they are not tailored to the needs of applica-
tions that require low latency, high-bandwidth communica-
tion (e.g., involving real-time data streams). These mecha-
nisms are necessarily general so that they can provide fair,
consistent, and simple abstractions of the base hardware to
all application processes. With this generality, fine grained
control is sacrificed. For instance, there is little support
for using efficient custom communication protocols in com-
mon systems. These generic mechanisms do not provide
the power to efficiently utilize modern networking systems
such as Gigabit Ethernet [22], ATM [12], and Myrinet [6].

To efficiently use many of the modern high throughput,
low latency networking systems, specialized approaches
must been taken that depart from the traditional operat-
ing system abstractions. Streamlined network processing
stacks, zero-copy data movement, and asynchronous net-
work processing are now seen as necessary for the high-
est degree of networking performance [25, 26]. A mini-
mal networking path is important to reduce the latency in-
volved in communication. For example, zero-copy tech-
nigues avoid superfluous memory usage, while execution at
interrupt time avoids unnecessary scheduling overheads.

Many systems have been devised that combine a number
of the above optimizations to provide a platform for high de-
mand communication [10, 19, 25]. Most of these systems,
however, require non-trivial changes to their host kernel and
specific functionality built into the hardware of the network
interface to achieve enhanced performance. This is accept-
able when the environment is controlled, as is the case in
a research or government lab for scientific applications, but



not feasible on the scale of the Internet where commercial-
off-the-shelf (COTS) systems must be considered.

The basic objective of this paper is to provide a method
by which efficient middleware services can be implemented
on COTS systems. In providing such a method, we wish
to empower applications with the ability to configure and
deploy services for their specific needs, while avoiding the
traditional costs associated with general-purpose systems.
Specifically, the aim is to provide support for the construc-
tion of services at user-level that have the same capabilities
and privileges of traditional kernel services, with the excep-
tion that the kernel may always revoke access rights to any
service abusing its capabilities. In effect, an efficient mech-
anism is required with which an application can receive
more control of the underlying hardware while still main-
taining safety and isolation. Just as a kernel service may
be invoked without scheduling overheads (e.g., at interrupt-
time) and may directly access hardware, certain user-level
services should be treated similarly.

In effect, this is related to work in the area of extensible
systems, that allow applications to customize services for
their specific needs. Some systems allow untrusted appli-
cation extensions to be executed in the context of the ker-
nel, by enforcing safety using type-safe languages [4]. Oth-
ers implement minimal kernels that provide interfaces for
higher-level abstractions in user-space [11]. Linux provides
the ability for trusted code to link directly into the address
space of the kernel, without protection. Each of these mech-
anisms permit a greater degree of control of the hardware
than would be otherwise available.

As part of the work presented in this paper, we intro-
duce a sandboxing mechanism [29] to support efficient and
configurable user-level services. We use this mechanism to
implement a user-level network stack that can be executed
at interrupt-time, and that has regulated access to the net-
work interface. Increased control of the network interface
card (NIC) allows for zero-copy communication which re-
duces memory bus usage. Even with these privileged ca-
pabilities, sandboxed services execute at user-level without
access to the kernel address space. Furthermore, because
they execute in the application domain, they may link with
user-level libraries. By allowing the kernel to control access
rights to user-level sandboxed services, regulated access to
1/0 devices is guaranteed, whereas this would be difficult to
achieve with extensions executing in the kernel.

In summary, the contributions of this paper center around
support for efficient user-level implementations of network
services. The aim is to provide a means by which high
performance distributed computing applications can cus-
tomize network services for their specific needs. We lever-
age our ongoing work on user-level sandboxing to support
the implementation of a network subsystem in user-space
that avoids unnecessary intervention of the kernel. More-

over, our approach allows high performance applications
to communicate with the network interface without either:
(2) the need to copy data via the kernel, or (2) scheduling
overheads. This is achieved on commonly available hard-
ware. We compare various implementations of a network-
ing stack, traditionally implemented in the kernel, that for-
ward data between end-hosts in a distributed system. This
scenario would be applicable for efficient peer-to-peer rout-
ing of high bandwidth data streams, or in situations where
a proxy server is handling remote procedure calls. Results
show our system is flexible enough to allow applications
to customize networking services for their specific needs,
while providing efficient throughput comparable to kernel-
level methods of forwarding network data.

The remainder of the paper is organized as follows: Sec-
tion 2 briefly describes the sandboxing mechanism required
for our user-level networking services. Section 3 then dis-
cusses the implementation of a networking stack in a user-
level sandbox. This is followed by Section 4 that compares
the performance of various networking implementations.
Finally, related work is described in Section 5, followed by
conclusions and future work in Section 6.

2. User-level Sandboxing

Our user-level sandboxing mechanism [29] is the basis
for an extensible end-host architecture. It involves modifi-
cation to the address spaces of all processes, or logical pro-
tection domains, so they contain one or more shared pages
of virtual memory. The virtual address range shared by all
processes provides a sandboxed memory region into which
extensions may be mapped. Under normal operation, these
shared pages will be accessible only by the kernel. How-
ever, when the kernel wishes to pass control to an extension,
it assigns user-level privileges to the shared page (or pages)
containing the extension code and data. This prevents the
extension code from violating the integrity of the kernel.
The extension code itself can run in the context of any user-
space process, even one that did not register the extension
with the system, thereby eliminating scheduling overheads.

There is potential for corrupt or ill-written extension
code to modify the memory area of a running process. To
guard against this, we require extension code registered
with the system to be written by a trusted programmer. By
virtue of running at user-level, the kernel itself is always
shielded from any extension software faults.

2.1. Hardware Support for Memory-Safe
Extensions

Our approach assumes that hardware support is lim-
ited to page-based virtual memory (i.e., processors with an



MMU). * This minimum hardware requirement is met by
many processors made today. These relaxed requirements
will allow wide deployment across a heterogeneous envi-
ronment such as the Internet.

On many processors, switching between protection do-
mains mapped to different pages of virtual (or linear) ad-
dresses requires switching page tables stored in main mem-
ory, and then reloading TLBs with the necessary address
translations. Such coarse-grained protection provided at the
hardware-level is becoming more undesirable as the dispar-
ity between processor and memory speeds increases [23].
This is certainly the case for processors that are now clock-
ing in the gigahertz range, while main memory is accessed
in the 103Hz range. In practice, it is clearly desirable to
keep address translations for separate protection domains in
cache memory as often as possible. User-level sandboxing
avoids the need for expensive page table switches and TLB
reloads by virtue of the fact that the sandbox is common to
all address spaces.
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Figure 1. User-level sandboxing: each pro-
cess address space has a shared virtual
memory region for mapped extensions, ac-
tivated by upcalls from the kernel.

With user-level sandboxing (Figure 1), each process
address space is divided into two parts: a conventional
process-private memory region and a shared, but normally
inaccessible, virtual memory region. The shared region acts
as a sandbox for mapped extensions. Kernel events, deliv-
ered by upcalls to sandbox code, are handled in the context
of the current process, thereby eliminating scheduling costs.

2.2 Sandbox Regions

In our current implementation on the Intel x86 proces-
sor, the sandbox consists of two 4M B regions of virtual
memory that are identically mapped in every address space

1A series of caches, most notably one or more untagged translation
look-aside buffers (TLBs) is desirable but not necessary.

to the same physical memory. For convenience, the two re-
gions are assigned to adjacent (extended) page frames. That
is, regions employ the x86 page size extensions and each
occupy one 4 megabyte page directory entry 2.

In this paper, the two 4M B regions form a single larger
region that is permanently assigned read-write permission at
kernel-level, but by default is inaccessible at user-level. The
sandbox memory area can be made accessible to user-level
by toggling the user/supervisor flags of the corresponding
page directory entries, and invalidating the relevant TLB
entries. This is only allowed when an upcall occurs from
the trusted kernel.

2.3 Sandbox Threads

If code in the sandbox is allowed to invoke system calls,
it is possible for an extension registered by one process to
block the progress of another process. For example, if pro-
cess p; registers an extension e; that is invoked at the time
process p; is active, it may be possible for e; to affect the
progress of p; by issuing ‘slow” system calls. The current
solution to this problem is to execute extensions that issue
blocking system calls in their own thread context. Sandbox
threads have scheduling costs comparable to those of kernel
threads [29].

2.4 Pure Upcalls

Traditionally, signals and other such kernel event noti-
fication schemes [2, 17] have been used to invoke actions
in user-level address spaces when there are specific kernel
state changes. Unfortunately, there are costs associated with
the traversal of the kernel-user boundary, process context-
switching and scheduling. The aim is to implement an up-
call mechanism with the speed of a software trap (i.e., the
mirror image of a system call), to efficiently vector events to
user-level where they are handled by service extensions, in
an environment that is isolated from the core kernel. A pure
upcall occurs when a sandbox extension is invoked without
any scheduling costs. It should be noted that sandbox ex-
tensions cannot be invoked other than via the trusted kernel.

3 User-level Networking

The motivation for this work is to support high per-
formance distributed applications that require system ser-
vices configured for their specific needs. In meeting this
goal, we have implemented an entire networking subsystem
in a user-level sandbox that can be customized to support
application-specific protocols and services. This section de-
scribes the issues involved in constructing this subsystem.

2The 32-hit x86 processor uses atwo-level paging scheme, comprising
page directories and tables.



e Memory management; Memory resources in the sand-
box area must be managed efficiently to oversee packet
placement and to ensure all allocations occur within
the sandbox. The mal | oc interface provided with
glibc is not satisfactory for this high performance role.
It is beneficial to have a slab allocator [7] that has apri-
ori knowledge of objects such as packet descriptors
(sk_buf f _heads).

e Kernel bypass: An abstraction for passing control to
an extension via a bottom half asynchronous execu-
tion path must exist. This abstraction must include
hooks which are executed during packet reception in
the kernel, to trigger execution in the sandbox. This
allows the network execution path in the kernel to be
bypassed in favor of the more specialized extension’s
code. The abstraction allows insertion of customized
network code into the critical networking path. This is
seen as primary to obtaining high networking perfor-
mance [25, 10].

e NIC interaction: An interface between the network in-
terface card (NIC) and the sandbox allowing packets
to be received into, and sent from, the sandbox directly
using ‘Direct Memory Access’ (DMA). This is essen-
tial in data stream processing because the packets will
be very large, and we will benefit from the zero-copy
afforded to us by this interface.

In consideration of all these criteria, we chose User-
mode Linux (UML) [24] as the basis for network service
extensions. UML is, in essence, the Linux kernel ported
to user-space. It is a type of virtual machine that executes
as an application on top of a host Linux kernel. All of the
hardware of a real machine is emulated using the system-
call, signaling, and ptrace interfaces of the host kernel. It
provides all of the services that Linux itself does includ-
ing, most importantly, memory allocation, a modular device
interface, and a fully functional, well tested, efficient and
modular networking stack. Both UML and extensions to its
networking code can be loaded into the sandbox. Further-
more, because UML is a user-space application, it is much
easier to port to the sandbox than a normal kernel. UML
satisfies the memory management requirements with its in-
ternal kmal | oc-based interfaces. Using UML allows us to
manage the memory resources in the sandbox with the same
efficiency and granularity as in the host kernel. A benefit of
this decision is that memory is strictly controlled within the
8 M B sandbox region.

The design choice to use UML makes the conditions for
kernel bypassing easily satisfiable. Driver abstractions exist
within the Linux kernel, and therefore in UML, to receive
and transmit packets. These abstractions make it simple to
write a driver in UML that functions as an intermediary be-
tween the host kernel bottom half and the extension net-
working stack. It is only because the sandbox is mapped

across all process address spaces that it is possible to sup-
port efficient bottom half execution. Typically, it would not
be efficient or desirable to execute a user-level handler in the
context of a bottom half because it is impossible to guaran-
tee that a process’s virtual address space will be currently
loaded. Executing the process’s code could require a con-
text switch. This is a costly operation to do for every inter-
rupt caused by network hardware. Similarly, scheduling de-
cisions based on process priorities may ordinarily cause un-
bounded delays before a specific address space is executed.
Such issues are eliminated using user-level sandboxing.

UML, however, does provide abstractions and mech-
anisms that are unnecessary in a sandbox environment.
Namely, the UML analogy of user-level processes are su-
perfluous to our purposes of providing a customizable net-
working stack in the sandbox. Only a few hundred lines
of UML code needed alteration to eliminate unwanted “vir-
tual’ user-level processes, and include a specific driver to
interface with the host kernel.

Because extensions running in the sandbox cannot issue
privileged instructions, they cannot directly modify or in-
fluence the networking hardware to copy packets directly to
and from the sandbox using DMA. Instead, the host kernel
and sandbox interface through a well defined set of com-
munication channels to pass the desired memory location
for packet arrival or transmission. In this way, all protected
instructions and all kernel memory remains protected from
sandbox extensions. Independent of which process is run-
ning at any given moment, the networking card can DMA
directly to or from the sandbox region. This type of com-
munication is only possible because the sandbox exists in
every process virtual address space. Consequently, no spe-
cial requirements are placed on the networking hardware.
We exploit the DMA capabilities common to modern net-
working cards, but this is not a requirement of our user-
level networking subsystem. The aim is to deploy our end-
system architecture on an Internet-scale, so support for di-
verse hardware is important.

In this manner the NIC interaction criteria for provid-
ing a high performance, user-level, networking interface is
fulfilled. This interface is leveraged to provide a minimal
copy capability where packets coming in from the network
can be copied using DMA directly into the sandbox and,
after processing by the customizable stack, can be copied
directly back to the network. This ability has been used to
provide a direct proxying service within the sandbox. Con-
sequently, host-based processing and routing of packets is
possible without unnecessary copying via the kernel.

Demultiplexing: The demultiplexing of packets is one
of the challenges when developing a user-level network-
ing stack. Other technologies rely on programmable NICs
which have apriori knowledge of the destination of incom-
ing packets so they can transfer them directly to the correct



destination. We do not take this approach because we wish
to target non-specialized NICs. Instead, a light-weight clas-
sifier can be written either in the lowest levels of the host
kernel or in the sandbox, which then dispatches packets ap-
propriately. In either case, all incoming packets must still
be allocated and transfered (perhaps via DMA) to the sand-
box address range. The sandbox networking scheme is not
intended to be an architecture for the efficient processing
of all packets. Rather, we restrict efficient user-level pro-
cessing to those packets with corresponding network ser-
vice extensions. This is not a serious limitation because it
is unlikely that every networking stream will require cus-
tomizable high-performance communication services.

3.1. Control Flow With Sandboxed Networking
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Figure 2. User-level asynchronous network-
ing in a sandbox.

The control path, for the case when sandboxed network
services are invoked asynchronously with respect to the cur-
rent execution context, is shown in Figure 2. This is the con-
trol path experienced by pure upcalls into the sandbox, that
are executed in the context of the active address space at the
time of the upcall. We modified the kernel network driver
so that packet processing and interaction with the NIC (via
the SBnet driver) take place in the sandbox. That said, the
various stages of asynchronous computation involving the
networking stack are as follows:

1. When a packet is received by the NIC, an interrupt ser-
vice routine (top half) is invoked in the network driver.
This is a basic notification that a packet is ready and a
minimal amount of processing is undertaken. No mod-
ifications to the top half of the default driver are made,

so that it remains as efficient as possible.
2. When the top half returns, interrupts are re-enabled

and bottom half execution proceeds in the network

driver. Space is then allocated from a receiver ring
buffer (label (a)) in the sandbox, by an upcall that di-
rectly invokes the sandbox memory manager.

3. The return address of this allocation is passed to the
network driver. A check is performed to verify that the
memory location is within the sandbox region.

4. The network driver informs the NIC of the location
into which it can DMA the packet. Because this net-
work driver is executed in the kernel domain, it has
full 1/0 permissions for trusted communication with
the NIC.

5. The NIC copies the received packets into the allocated
sandbox memory using DMA.

6. After the new packet is resident in the sandbox, an up-
call to the SBnet driver and, hence, the protocol stack
occurs. Packets can be accessed from the ring buffer
(label (b)) in the context of a bottom half, so execution
is unaffected by host scheduling. Recall that when a
pure upcall is triggered, the handler runs with user per-
missions.

7. At this point in the configurable networking stack, ap-
plication specific handlers can execute. For example,
we provide an application that performs transport-level
forwarding of packets to another end-host.

8. After the network stack’s processing is complete, the
memory address of a packet awaiting transmission is
placed in an outgoing buffer (label (c)). Control then
returns to the kernel.

9. Now full I/O permissions are restored, the NIC is noti-
fied of the packet it should transmit.

10. The NIC uses DMA to retrieve and send the packet
onto the network.

11. After the DMA is complete, the network driver noti-
fies the sandbox extension that it can free the memory
formerly taken up by the packet (as in label (d)).

12. Upon return from this pure upcall, we have completed
the bottom half and can return to the previously exe-
cuting thread.

Though this entire control path seems complex, it is
highly optimized and yields significant performance im-
provements over conventional user-space network protocol
stacks confined to process-private address spaces. As will
be seen in Section 4, experimental results confirm the ben-
efits of our approach.

If the network control path attempts to block when re-
questing a timeout, as is the case in TCP processing, then
execution cannot be completed in a totally asynchronous
manner. We support synchronous network processing by
allowing any control path that may block to continue in
the context of its own sandbox thread. Recall that a sand-
box thread shares the page tables of the currently running
process, but has its own execution state, thus having rela-
tively inexpensive context switching costs. This processing
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Figure 3. User-level synchronous networking
in a sandbox.

model is demonstrated in Figure 3. Itis similar to the asyn-
chronous communication model demonstrated in Figure 2
except that after a limited amount of interrupt-time process-
ing, packets are placed into a queue (as shown in step (7)).
Control returns back to the kernel, as in step (8). A sand-
box thread is scheduled in step (9), to complete the network
processing of the packets in the queue. Steps (10) to (14)
are essentially the same as steps (8) to (12) in Figure 2.

4. Experimental Evaluation

This section describes experiments on a cluster of 8 IBM
x series 305 e-servers, each with a tigon3 gigabit Ethernet
card, interconnected by a gigabit Ethernet switch. Each ma-
chine has a 2.4GHz Pentium IV CPU and 1024M RAM,
running the Linux 2.4.20 kernel.

4.1. UDP Forwarding

We use a simple UDP forwarding agent to test the per-
formance characteristics of our implementation. This ap-
plication forwards UDP packets for specific streams of data
from one host, which we will call A, through the forward-
ing host, B, to the receiving host, C. More generally, an
application-specific service could be used to forward data
along a P2P overlay [3], or over a grid infrastructure [13].
Nonetheless, our UDP forwarding agent is similar to that
found in web proxies such as Squid [21], and serves to
demonstrate the high performance capabilities of our end-
host architecture.

To generate traffic and measure throughput and jitter, we
used the Iperf network performance tool [16] . Iperf gen-
erates packets at the source, A, and measures the perceived

throughput at the destination, C. Note that with UDP for-
warding, the perceived throughput can be affected by lost
packets e.g., at host B. All bandwidth figures shown in this
section are of the perceived throughput. Iperf also measures
the jitter of the arrival time of the packets. That is, it mea-
sures the deviation from the average transfer time of each of
the packets and it maintains a running total of this average
jitter.

4.2. Comparison of Networking Implementations

User-level Networking: The first set of experiments com-
pare the throughput of two different UDP forwarding agents
running on host B. One agent involves User Mode Linux
mapped into a conventional process address space, while
the other involves UML mapped as an extension in the sand-
box. MTU sized packets are routed from A to C and the
throughput is noted. The process-based forwarding agent
is similar to our sandboxed approach, although processing
and routing is done in the UML equivalent of a bottom half,
rather than a host kernel bottom half. Additionally, the
process-based agent must be scheduled by the host kernel
and cannot take advantage of the zero-copy benefits of the
sandbox approach. In this scenario, the sandbox approach
uses an asynchronous processing model, as in Figure 2.

Figure 4 shows the throughput corresponding to both of
these cases. Background threads, each mapped to a sepa-
rate process address space, are run to measure the effect of
system load on performance. These background threads are
simple while loops with minimal working-set sizes. It is
important to measure the throughput of our methods in the
presence of background threads, because we target COTS
systems on the Internet that could be performing other si-
multaneous tasks.
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Figure 4. Throughput comparison of UML in a
sandbox versus user-process using an asyn-
chronous processing model with UDP.



The results show that with no background threads, the

sandbox forwarding agent demonstrates an improvement of
130% over the process-based approach. With more back-
ground threads, the process-based agent has more compe-
tition for the CPU and suffers from increased scheduling
delays. The sandbox agent does not suffer from scheduling
delays and therefore maintains high throughput irrespective
of the number of background threads.
User- versus Kernel-Level Networking: The previous ex-
periments demonstrated that with minimal porting effort, a
user-level code base can be made to execute in the sandbox,
thus reaping performance benefits. However, using UML
for sandbox network services is not necessarily the best
approach for high-performance communication, because of
virtualization costs.

UML virtualizes interrupts using signals from the host
kernel. When synchronous access to a shared resource is
required, UML makes a system call that blocks the de-
livery of signals, thereby disabling virtualized interrupts.
However, our approach allows for delivery of synchronous
upcalls from bottom halves, in place of more expensive
asynchronous signals. Since only one bottom half (softirq
in Linux) can execute per processor at any one time, the
synchronization-related system calls within UML are un-
necessary.

After removing synchronization system calls, perfor-
mance increases by nearly a factor of three as can be seen
in Figure 5. Here, we compare the throughput of the sand-
box networking stack with two other implementations: (1)
a simple forwarding agent that uses a kernel thread to send
from one socket to another without copying the data (de-
noted ‘kernel” in the figure), and (2) a user-level application
that simply transfers data between a pair of sockets (denoted
‘socket’ in the figure). It should be noted that the user-level
application is mapped to its own process address space, sim-
ilar to conventional middleware approaches.

The same testing environment as before is maintained
and maximum throughput from A to C through B is mea-
sured with a certain number of background threads. One
can see that the sandboxed networking stack’s bandwidth
remains nearly constant as the number of processes in-
creases, whereas with the other two approaches this is not
the case. Observe that the kernel approach still requires a
thread to be scheduled, and so there is competition for the
CPU with background threads. Even with no background
threads, our user-level sandboxing approach performs bet-
ter than conventional middleware, and only slightly worse
than the kernel approach.

4.3. Transfer Time Jitter

Jitter measures the variation of the transit time of the
packets over a period of time. The reduction or elimina-
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Figure 5. UDP Throughput comparison of an
optimized sandbox stack versus both user-
level sockets and kernel implementations.
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tion of jitter is especially important in environments which
require quality of service (QoS) constraints to be met. If
network performance is unpredictable (i.e., high jitter is
present) then guaranteeing QoS constraints becomes in-
creasingly difficult if not impossible.

Running in the context of bottom halves gives the sand-
box pure upcall code the ability to immediately process each
incoming packet, which results in a very small amount of
variation in the transfer time of those packets. In contrast,
the kernel and process-based forwarding agents must suf-
fer from scheduling delays. The amount of deviation from
the average transfer time is a function of the size of the
scheduler’s run queue. Figures 6 and 7 show that a nearly
constant amount of jitter is demonstrated by the sandboxed
networking scheme, while the other two approaches show
larger and more variable jitter as the number of background
threads increases.
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4.4. Microbenchmarks

Operation | Costin CPU cycles
Null Pure Upcall 1370
Sandbox Packet Processing Time 6360
Kernel Packet Processing Time 4800

Table 1. Sandbox Overheads.

Table 1 shows microbenchmarks measured by using the
x86 timestamp counter. The round-trip time for a pure up-
call that jumps to the address of a sandbox function and
immediately returns to the kernel is 1370 clock cycles. Due
to various optimizations that avoid identifying the process
responsible for registering an upcall function, this value im-
proves upon the costs of upcalls in our earlier work [29].

The second value in Table 1 measures the time it takes
to process a packet using our user-level networking code.
A measurement is taken upon reception of a packet and
again when we transmit that packet. This overhead com-
pares favorably to the cost of executing a network bottom
half handler in the kernel. Hence, the overheads of using
our sandboxing scheme do not impose excessive costs on
the implementation of network services at user-level.

4.5. TCP Forwarding

This section shows the performance of sandbox network-
ing support for synchronous TCP forwarding. Part of the
network processing is done in the context of a sandbox
thread, as described in Figure 3. A series of experiments
measure the achievable throughput of an end-host while
servicing a number of background threads. As before, a
conventional process-based implementation of User-mode
Linux is compared to a sandboxed network approach, to for-
ward packets. Additionally, we compare the sandbox thread

approach using the POSIX.4 normal (SCHED_OTHER) and
real-time (SCHED_RR) scheduling policies. In all cases,
throughput results were captured using wget to receive data
from an Apache web server through an intermediary node
similarly to the UDP testing environment.

Figure 8 shows that the sandbox implementation can
achieve as much as 30% better throughput than the typ-
ical UML implementation when performing synchronous
processing in the context of a sandbox thread. Further, it
can be seen that if we prioritize the network thread (using
SCHED_RR with the highest real-time priority), even more
than 50% higher throughput can be attained, irrespective of
the number of background threads. This is similar to the
case in which UDP forwarding is performed in the context
of a bottom half.
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Figure 8. Throughput comparison of UML in
a sandbox versus user-process using a syn-
chronous processing model with TCP.

Summary: In summary, sandbox-based communications
yields improved throughput and efficiency compared to tra-
ditional user-level approaches. The flexibility of our sand-
boxing system allows users to customize and configure net-
work protocols and services for their needs without having
to embed code in the kernel. For the most part, sandbox
threads execute with the same low costs associated with ker-
nel threads, in that they never require heavyweight address
space switches. Additionally, by exposing the networking
interface to a user-level sandbox, we are able to avoid un-
necessary data copying. This is the same as if we executed
code inside the kernel, because there would be no need to
perform additional copies to user-space. Collectively, the
elimination of unnecessary data copying and heavyweight
address space switching results in improved service as seen
by the throughput results in this section. We envision our
approach as laying the foundations for a method of imple-



menting first-class user-level services that are tailored to the
needs of specific applications. By first-class, we mean any
service that has the same capabilities as traditional kernel
services, with the exception that the kernel may always re-
voke access rights to any service abusing its privileges.

5. Related Work

Many researchers have explored various methods for
high performance communication. For example, Active
Messages [26] can be used to implement an efficient
RPC [5] mechanism by running as handlers in the context of
the currently active protection domain. This avoids schedul-
ing and context switching overheads to implement network
services, as does our approach using user-level sandboxing.

In effect, our work is similar to that of U-Net [25], Eth-
ernet Message Passing (EMP) [19], and the Virtual Inter-
face Architecture (VIA) [10], that all provide abstractions
for user-level network implementation. In these alterna-
tive approaches to ours, the network interface card (NIC) is
virtualized and multiplexed across applications. Addition-
ally, if hardware permits, zero-copy capabilities are avail-
able. EMP requires programmable NIC interfaces to offload
message processing to hardware and provide zero-copy ca-
pability. While U-Net and VIA are also able to take ad-
vantage of advanced hardware, they can only run on non-
programmable NIC cards at the cost of efficiency. In con-
trast, our work allows user-level extensions to run efficiently
enough to be invoked as handlers for networking events,
without the need for special hardware support.

There have been a number of related research efforts
that focus on OS structure and extensibility, safety, and ser-
vice invocation. Extensible operating systems research [20]
aims to provide applications with greater control over the
management of their resources. SPIN [4], for example,
is an operating system that supports extensions written in
the type safe Module-3 programming language. By using
type safety and interface contracts to provide protection,
extensions can be injected into the operating system and
run at kernel level. In addition to being able to extend ker-
nel functionality, like memory management and scheduling,
they show their approach provides improved network la-
tency and lower CPU utilization over user-level implemen-
tations of protocol forwarders and video servers. Our work
attempts to bridge the performance gap between user and
kernel-level network implementations evident in the SPIN
experiments.

A transaction-based approach to system extensibility is
employed by the VINO [18] operating system. Unsafe ker-
nel extensions (or grafts) may be aborted, to allow the sys-
tem to return to consistent state. We are currently working
to provide CPU constrained execution for extensions run-
ning in the sandbox, using techniques found in the VINO

and SafeX [28] work. Such a method would allow us to
avoid the situation where an extension executing as a bot-
tom half uses more than a constrained amount of resources.

In contrast to safe kernel extensions, micro-kernels such
as Mach [1], and also exokernels [11, 14] offer a few ba-
sic abstractions, while moving the implementation of more
complex services and policies into application-level compo-
nents. Separating kernel and user-level services can intro-
duce inter-process (or protection domain) communication
overheads. In particular, this has caused micro-kernels to
fall out of favor despite substantial reductions [15] in com-
munication costs. We alleviate communication costs arising
from scheduling and context-switching, by supporting the
execution of service extensions in arbitrary address spaces.

Finally, observe that our work differs from user-level
resource-constrained sandboxing [8], by Chang et al. That
work focuses on predictable resource management by in-
strumenting applications to intercept resource requests. The
emphasis of our work is to develop an efficient execution
environment at user-level for kernel extensions and system
services, regardless of which address space is active at the
time extension code is invoked.

6. Conclusions and Future Work

This paper describes an efficient end-host architecture
for the deployment of application-specific services, suitable
for high performance distributed computing. Specifically,
we present the implementation of an efficient user-level net-
work stack using our sandboxing mechanism. The resultant
approach provides higher levels of throughput and lower
levels of jitter than those of traditional middleware services
implemented in process-private address spaces. In many
cases, our architecture enables user-level services to outper-
form equivalent kernel-based services that require schedul-
ing. Throughput gains are most significant with our ap-
proach when the end-host is not capable of saturating the
link bandwidth. However, even in cases where through-
put increases are not significant with our approach, the
elimination of scheduling overheads (particularly due to
the scheduling granularity of a timeslice in the millisec-
ond range) results in lower jitter between service invoca-
tions. Furthermore, when end-hosts have relatively low-
bandwidth network links (e.g., using DSL or cable modem
connections to the Internet), it may be possible for a simple
middleware service to saturate the link, but our approach
still minimizes CPU utilization, due to the elimination of
unnecessary context-switching overheads.

The user-level sandboxing scheme allows networking
extension code to safely and efficiently access and influ-
ence lower-level abstractions such as bottom halves and
the network hardware. It is through these exposed abstrac-
tions that such high performance is available. The sand-



boxing mechanism itself allows for customizable network
processing units or stacks to execute with user-level permis-
sions. These extensions, therefore, cannot compromise the
integrity of the kernel’s address space and are well encap-
sulated. Moreover, this efficiency and safety are provided
without cumbersome hardware requirements. The only reg-
uisite is that of a paging memory management unit which
is ubiquitous in modern computers. It follows that wide de-
ployment across a heterogeneous environment such as the
Internet is possible and desirable.

While a sandboxed service is isolated from the kernel,
it must either be written by a trusted source or in a man-
ner that is memory-safe. This is because sandbox services
could otherwise access one another’s memory space, or
that of a process-private address space. Although out of
the scope of this paper, we are currently studying various
techniques including type-safe languages [9] and software-
based fault isolation [27] for multiple services within the
sandbox memory region. Future developments to our ar-
chitecture will enable the kernel to revoke access rights to
any service abusing its resource capabilities, including that
of CPU usage. This will prevent a malicious service from
consuming all available resources. Finally, using binary-
rewriting techniques, we intend to eliminate modifications
to the host kernel, thereby increasing the portability of our
user-level sandbox approach.
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