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Abstract—This paper describes an algorithm for scheduling packets in real-time multimedia data streams. Common to these classes

of data streams are service constraints in terms of bandwidth and delay. However, it is typical for real-time multimedia streams to

tolerate bounded delay variations and, in some cases, finite losses of packets. We have therefore developed a scheduling algorithm

that assumes streams have window-constraints on groups of consecutive packet deadlines. A window-constraint defines the number

of packet deadlines that can be missed (or, equivalently, must be met) in a window of deadlines for consecutive packets in a stream.

Our algorithm, called Dynamic Window-Constrained Scheduling (DWCS), attempts to guarantee no more than x out of a window of

y deadlines are missed for consecutive packets in real-time and multimedia streams. Using DWCS, the delay of service to real-time

streams is bounded, even when the scheduler is overloaded. Moreover, DWCS is capable of ensuring independent delay bounds on

streams, while, at the same time, guaranteeing minimum bandwidth utilizations over tunable and finite windows of time. We show the

conditions under which the total demand for bandwidth by a set of window-constrained streams can exceed 100 percent and still

ensure all window-constraints are met. In fact, we show how it is possible to strategically skip certain deadlines in overload conditions,

yet fully utilize all available link capacity and guarantee worst-case per-stream bandwidth and delay constraints. Finally, we compare

DWCS to the “Distance-Based” Priority (DBP) algorithm, emphasizing the trade-offs of both approaches.

Index Terms—Real-time systems, multimedia, window-constraints, scheduling.
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1 INTRODUCTION

LOW latency, high bandwidth integrated services net-
works have introduced opportunities for new applica-

tions such as video conferencing, telemedicine, virtual
environments [8], [20], groupware [14], and distributed
interactive simulations (DIS) [32]. Already, we have seen
streaming multimedia applications (e.g., RealNetworks
RealPlayer and Windows Media Player) that have soft
real-time constraints become commonplace among Internet
users. Moreover, advances in embedded systems and ad hoc
computing have led to the development of large-scale
distributed sensor networks (and applications), requiring
data streams to be delivered from sensors to specific hosts
[25], hand-held PDAs, and even actuators.

Many of the applications described above require strict

performance (or quality of service) requirements on the

information transferred across a network. Typically, these

performance objectives are expressed as some function of

throughput, delay, jitter, and loss-rate [11]. With many

multimedia applications, such as video-on-demand or

streamed audio, it is important that information is received

and processed at an almost constant rate (e.g., 30 frames per

second for video information). However, some packets

comprising a video frame or audio sample can be lost or
delayed beyond their deadlines, resulting in little or no
noticeable degradation in the quality of playback at the
receiver. Similarly, a data source can lose or delay a certain
fraction of information during its transfer across a network
as long as the receiver processes the received data to
compensate for the lost or late packets. Consequently, loss-
rate is an important performance measure for this category
of applications. We define the term loss-rate [31] as the
fraction of packets in a stream either received later than
allowed or not received at all at the destination.

One of the problems with using loss-rate as a perfor-
mance metric is that it does not describe when losses are
allowed to occur. For most loss-tolerant applications, there
is usually a restriction on the number of consecutive packet
losses that are acceptable. For example, losing a series of
consecutive packets from an audio stream might result in
the loss of a complete section of audio, rather than merely a
reduction in the signal-to-noise ratio. A suitable perfor-
mance measure in this case is a windowed loss-rate, i.e., loss-
rate constrained over a finite range, or window, of con-
secutive packets. More precisely, an application might
tolerate x packet losses for every y arrivals at the various
service points across a network. Any service discipline
attempting to meet these requirements must ensure that the
number of violations to the loss-tolerance specification is
minimized (if not zero) across the whole stream.

This paper describes the real-time properties of Dynamic
Window-Constrained Scheduling (DWCS), an algorithm
that is suitable for packet scheduling in real-time media
servers [38], [39]. DWCS is designed to explicitly service
packet streams in accordance with their loss and delay
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constraints, using just two attributes per stream. It is

intended to support multimedia traffic streams in the same

manner as the SMART scheduler [27], but DWCS is less

complex and requires maintenance of less state information

than SMART.
DWCS is closely related to weakly hard algorithms [5],

[6] and those that attempt to guarantee at least m out of k

packet deadlines for each and every stream [15]. Unlike

other approaches, DWCS is capable of fully utilizing all

available resources to guarantee at least m out of k

deadlines are met (or, equivalently, no more than x out of

y deadlines are missed) per stream. That is, in situations

where it is impossible to meet all deadlines due to resource

demands exceeding availability, DWCS can strategically

skip some deadlines and still meet service constraints over

finite windows of deadlines, while using all available

resources if necessary.

1.1 Contributions

The significant contributions of this work include the

description and analysis of an online version of DWCS that

is capable of fully utilizing 100 percent of resources to meet

per-stream window-constraints. We show how DWCS is

capable of ensuring the delay bound of any given stream is

independent of other streams and is finite even in overload

situations. This work focuses on the characteristics of

DWCS from the point of view of a single server, rather

than a multihop network of servers.
As will be shown in Section 4.5, DWCS is a flexible

algorithm, supporting many modes of operation that

include not only window-constrained service, but also

earliest deadline first, static priority, and fair scheduling.

While DWCS is primarily intended for use in end hosts (i.e.,

media servers), we believe it is efficient enough to work in

network access points or even programmable switches. In

fact, we have shown in prior work how DWCS can be

efficiently implemented in Intel i960-based I20 network

interface cards to support packet scheduling at Gigabit

wire-speeds [22], [21]. Similarly, we have implemented

DWCS as a CPU scheduler in the Linux kernel, where it has

been shown to be effective at meeting window-constraints

on periodic real-time threads [23], [36]. In the latter case,

DWCS successfully serviced CPU and I/O-bound threads

99 percent of the time even when the scheduler was fully

loaded and the rest of the Linux kernel was left essentially

non-real-time.
The remainder of this paper is organized as follows:

Section 2 describes related work. The scheduling problem is

then defined in Section 3, which includes a detailed

description of Dynamic Window-Constrained Scheduling.

Section 4 analyzes the performance of DWCS, including the

bounds on service delay for competing streams and

constraints under which real-time service guarantees can

be made. Section 5 compares the performance of DWCS to

the well-known “Distance-Based” Priority (DBP) algorithm

[15] for a number of simulations. Finally, conclusions are

described in Section 6.

2 RELATED WORK

Hamdaoui and Ramanathan [15] were the first to introduce
the notion of ðm; kÞ-firm deadlines in which statistical
service guarantees are applied to activities such as packet
streams or periodic tasks. Their algorithm uses a “distance-
based” priority scheme to increase the priority of an activity
in danger of missing more than m deadlines over a window
of k requests for service. This is similar to the concept of
“skip-over” by Koren and Shasha [19], but, in some cases,
skip-over algorithms unnecessarily skip service to one or
more activities, even if it is possible to meet the deadlines of
those activities.

By contrast, Bernat and Burns [4] schedule activities with
ðm; kÞ-hard deadlines, but their approach requires such hard
temporal constraints to be guaranteed by offline feasibility
tests. Moreover, Bernat and Burns’ work focuses less on the
issue of providing a solution to online scheduling of activities
with ðm; kÞ-hard deadlines, but more on the support for fast
response time to best-effort activities, in the presence of
activities with hard deadline constraints.

Pinwheel scheduling [17], [9], [2] is also similar to
DWCS. With pinwheel scheduling, resources are allocated
in fixed-sized time slots. For a given set of n activities, each
activity ai j 1�i�n requires service in at least mi out of
ki consecutive slots. To draw an analogy with window-
constrained scheduling, a time slot can be thought of as the
interval between a pair of deadlines for each and every
activity, but only one activity can be serviced in a single
slot. By comparison, generalized window-constrained sche-
duling allows each activity to have its own arbitrary request
period that defines the time between consecutive deadlines
and, in each request period, the corresponding activity may
have its own service time requirement, as in rate-monotonic
scheduling [24]. If an activity receives less than its specified
service requirement in one request period, it is said to have
missed a deadline. Different activities may have different
service time requirements, request periods, and window-
constraints on the number of consecutive deadlines that can
be missed (or, equivalently, met). Based on this information,
DWCS is capable of producing a feasible pinwheel-
compatible schedule, over finite windows of deadlines,
when 100 percent of available resources (such as band-
width) are utilized. By comparison, Baruah and Lin [2] have
developed a pinwheel scheduling algorithm that is capable
of producing a feasible schedule when the utilization of
resources approaches 100 percent, given that window sizes
approach infinity.

Other notable work includes Jeffay and Goddard’s Rate-
Based Execution (RBE) model [18]. As will be seen in this
paper, DWCS uses similar service parameters to those
described in the RBE model. However, in the RBE model,
activities are expected to be serviced with an average rate of
x times every y time units and there is no notion of missing,
or discarding, service requests.

By meeting window-constraints, DWCS can guarantee a
minimum fraction of link bandwidth to each stream it
services. This is possible for finite windows of time and,
hence, deadlines. As a result, fair bandwidth allocation is
possible with DWCS over tunable time intervals for each
stream. In essence, this is similar to the manner in which
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fair queuing algorithms [10], [41], [12], [3], [13], [30], [34]
attempt to provide proportional share service over the
smallest time intervals,1 thereby approximating the Gen-
eralized Processor Sharing model [29]. However, DWCS
differs in its explicit support for resource-sharing guaran-
tees over specific time windows.

It is worth noting that DWCS adjusts the importance of
servicing a stream by a function of the number of missed
packet deadlines in a given window of consecutive dead-
lines. This is similar to the dynamic priority approach used
in Distance-Based Priority scheduling [15]. In contrast, other
researchers have developed static priority approaches that
provide statistical guarantees on a periodic activity meeting
a subset of all deadlines in situations where service times
may vary and meeting all deadlines is impossible. For
example, Atlas and Bestavros developed an algorithm
called Statistical Rate Monotonic Scheduling [1], but this
approach makes no explicit attempt to make service
guarantees over a specific window of deadlines.

3 DYNAMIC WINDOW-CONSTRAINED SCHEDULING

(DWCS)

This section describes the DWCS algorithm for providing
window-constrained service to real-time streams. Before we
describe how DWCS works, we must precisely define the
requirements for a feasible schedule. In doing so, we begin
by clarifying the relationship between packet service times
and scheduling granularity. Observe that the service time of
a packet is a function of its length (in bits) and service rate
(in bits per second), due to server capacity, or link
bandwidth (whichever is limiting). If we assume the
scheduler has the capacity to process packets fast enough
to saturate a network link and link bandwidth is constant,
then all packets will have the same service time if they have
the same length. However, if packets vary in length or if the
server capacity fluctuates (either due to variations in link
bandwidth or variations in the service rate due to
scheduling latencies associated with supporting different
numbers of streams), then packet service times can be
variable. In such circumstances, if it is possible to impose an
upper bound on the worst-case service time of each and
every packet, then DWCS can guarantee that no more than
x packet deadlines are missed every y requests.

Note that, for these service guarantees to be made with
DWCS, resources are allocated at the granularity of one time
slot (see Fig. 1), where the size of a time slot is typically
determined by the (worst-case) service time of the largest
packet in any stream requiring service. Therefore, it is
assumed that, when scheduling packets from a chosen
stream, at least one packet in that stream is serviced in a time
slot and no other packet (or packets) from any other stream
can be serviced until the start of the next time slot. Unless
stated otherwise, we assume throughout this paper that at
most one packet from any given stream is serviced in a single
time slot, but, in general, it is possible for multiple packets
from the same stream to be aggregated together and serviced
in a single time slot as if they were one large packet.

3.1 Problem Definition

In order to define the real-time scheduling problem

addressed as part of this paper, we introduce the following
definitions, after which we describe the DWCS algorithm in

more detail.
Bandwidth Utilization. This is a measure of the fraction

(or percentage) of available bandwidth used by streams to

meet their service constraints. A series of streams is said to
fully utilize [24] available bandwidth, B, if all streams using

B satisfy their service constraints and any increase in the
use of B violates the service constraints of one or more

streams.
Dynamic Window-Constrained Scheduling (DWCS).

DWCS is an algorithm for scheduling packet streams, each

having a set of service constraints that include a request

period and window-constraint, as follows:

. Request Period—A request period, Ti, for a packet
stream, Si, is the interval between the deadlines of
consecutive pairs of packets in Si. Observe that the
end of a request period, Ti, determines a deadline by
which a packet in stream Si must be serviced. If we
consider all request periods begin from time, t ¼ 0,
the first deadline of Si is di;1 ¼ Ti, while the
mth deadline is di;m ¼ m:Ti.

. Window-Constraint—This is specified as a value
Wi ¼ xi=yi, where the window-numerator, xi, is the
number of packets that can be lost or transmitted late
for every fixedwindow, yi (thewindow-denominator),
of consecutive packet arrivals in the same stream, Si.
Hence, for every yi packet arrivals in stream Si, a
minimum of yi � xi packets must be scheduled for
service by their deadlines; otherwise, a service
violation occurs. At any time, all packets in the same
stream, Si, have the same window-constraint, Wi,
while each successive packet in a stream, Si, has a
deadline that is offset by a fixed amount, Ti, from its
predecessor. After servicing a packet from Si, the
scheduler adjusts the window-constraint of Si and all
other streams whose head packets have just missed
their deadlines due to servicing Si. Consequently, a
stream Si’s originalwindow-constraint,Wi, can differ
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1. Actually, the granularity of the largest packet service time.

Fig. 1. Example of two packets from different streams, S1 and S2 being
serviced in their respective time slots. Each time slot is of constant size
K. Observe that the packet in S1 requires K � �1 service time, thereby
wasting �1 time units before the packet in S2 is serviced. In this example,
S1 has a request period of three time slots, while S2 has a request period
of two time slots.



from its currentwindow-constraint,W 0
i .Observe that a

stream’s window-constraint can also be thought of as
a loss-tolerance.

Stream Characterization. A stream Si is characterized by
a 3-tuple ðCi; Ti;WiÞ, where Ci is the service time for a
packet in stream Si. This assumes all packets in Si have the
same service time or Ci is the worst-case service time of the
longest packet in Si. For the purposes of this paper, where
time is divided into fixed-sized slots, each and every packet
can be serviced in one such slot. However, the general
DWCS algorithm does not require service (and, hence,
scheduling) at the granularity of fixed-sized time slots. The
concept of scheduling in fixed-sized time slots is used only
to enforce predictable service guarantees with DWCS.

Feasibility. A schedule, comprised of a sequence of
streams, is feasible if no original window-constraint of any
stream is ever violated.DWCSattempts to schedule all packet
streams to meet as many window-constraints as possible.

Problem Statement. The problem is to produce a feasible
schedule using an online algorithm. The algorithm should
attempt to maximize network bandwidth. In fact, we show
in Section 4 that, under certain conditions, Dynamic
Window-Constrained Scheduling can guarantee a feasible
schedule as long as the minimum aggregate bandwidth
utilization of a set of streams does not exceed 100 percent of
available bandwidth. This implies it is possible to have a
feasible schedule, even in overload conditions, whereby
insufficient server capacity (or link bandwidth) exists to
guarantee all packet deadlines.

3.2 The DWCS Algorithm

DWCS orders packets for service based on the values of
their current window-constraints and deadlines, where each
deadline is derived from the current time and the request
period. Precedence is given to packets in streams according
to the rules shown in Table 1. This table of precedence rules
differs from the original table used in earlier versions of
DWCS [38], [39]. The basic difference is that the top two
lines in the table are reversed: The original table first
compares packets based on their streams’ current window-
constraints, giving precedence to the packet in the stream
with the lowest (numeric-valued) window-constraint. If
there are ties, the packet with the earliest deadline is chosen.
This approach works well for situations when packets in
different streams rarely have the same deadlines due to
working in real-time at a given clock resolution. Unfortu-
nately, in underload situations, earliest deadline first (EDF)

scheduling is often more likely to meet deadlines and,
hence, window-constraints. Notwithstanding, the original
DWCS algorithm is still better than EDF in overload cases
where it is impossible to meet all deadlines.

The desirable property of EDF, that all deadlines can be
met as long as the load does not exceed 100 percent [24], is
the motivation for revising the table of precedence rules.
However, since DWCS is table-driven, it is easy to change
the table of precedence rules to finetune the characteristics
of the algorithm. In this paper, we require that all packet
deadlines are aligned on time slot boundaries, thereby
forcing comparison of current window-constraints only if
two packets have equal deadlines when competing for the
same time slot. As stated earlier, we assume that scheduling
decisions are made once every time slot. This is merely for
analysis purposes in subsequent sections and not a
requirement of the algorithm in general.

Now, whenever a packet in Si misses its deadline, the
window-constraint for all subsequent packets in Si is
adjusted to reflect the increased importance of servicing
Si. This approach avoids starving the service granted to a
given stream and attempts to increase the importance of
servicing any stream likely to violate its original window-
constraint. Conversely, any packet in a stream serviced
before its deadline causes the window-constraint of any
subsequent packets in the same stream (yet to be serviced)
to be increased, thereby reducing their priority.

The window-constraint of a stream changes over time,
depending on whether or not another (earlier) packet from
the same stream has been serviced by its deadline. If a
packet cannot be serviced by its deadline, it is either
transmitted late or it is dropped and the next packet in the
stream is assigned a deadline corresponding to the latest
time it must complete service.

It should be clear that DWCS combines elements of EDF
and static priority scheduling to result in a dynamic priority
algorithm. Observe that EDF scheduling considers each
packet’s importance (or priority) increases as the urgency of
completing that packet’s service increases. By contrast,
static priority algorithms all consider that one packet is
more important to service than another packet, based solely
on each packet’s time-invariant priority. DWCS combines
both the properties of static priority and earliest deadline
first scheduling by considering each packet’s individual
importance when the urgency of servicing two or more
packets is the same. That is, if two packets have the same
deadline, DWCS services the packet which is more
important according to its current window-constraint. In
practice, it makes sense to set packet deadlines in different
streams to be some multiple of a, possibly worst-case,
packet service time. This increases the likelihood of multi-
ple head packets of different streams having the same
deadlines.

Notice from Table 1 that packets are ordinarily serviced
in earliest deadline first order. Let the deadline of the head
packet in Si be di;head and the deadline of the mth
subsequent packet be di;head þm:Ti. If at least two streams
have head packets with equal deadlines, the packet from
stream Si with the lowest current window-constraint W 0

i is
serviced first. If W 0

i ¼ W 0
j > 0 and di;head ¼ dj;head for Si and
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TABLE 1
Precedence among Pairs of Packets in Different Streams

The precedence rules are applied top-to-bottom in the table.



Sj, respectively, Si and Sj are ordered such that a packet
from the stream with the lowest window-numerator is
serviced first. By ordering based on the lowest window-
numerator, precedence is given to the packet with tighter
window-constraints since fewer consecutive late or lost
packets from the same stream can be tolerated. Likewise, if
two streams have zero-valued current window-constraints
and equal deadlines, the packet in the stream with the
highest window-denominator is serviced first. All other
situations are serviced in a first-come-first-serve manner.

We now describe how a stream’s window-constraints are
adjusted. As part of this approach, a tag is associated with
each stream Si to denote whether or not Si has violated its
window-constraint Wi at the current point in time. In what
follows, let Si’s original window-constraint be Wi ¼ xi=yi,
where xi is the original window-numerator and yi is the
original denominator. Likewise, let W 0

i ¼ x0i=y
0
i denote the

current window-constraint. Before a packet in Si is serviced,
W 0

i ¼ Wi. Upon servicing a packet in Si before its deadline,
W 0

i is adjusted for subsequent packets in Si, as shown in
Fig. 2. This adjustment policy is only applied to time-
constrained streams, whose packets have deadlines. For non-
time-constrained streams, window-constraints remain con-
stant and serve as static priorities.

At this point in time, the window-constraint, Wj, of any
other stream, Sj j j 6¼i, comprised of one or more late
packets, is adjusted as shown in Fig. 3. In the absence of a
feasibility test, it is possible that window-constraint viola-
tions can occur. A violation actually occurs when W 0

j ¼
x0
j=y

0
j j x0

j ¼ 0 and another packet in Sj then misses its
deadline. Before Sj is serviced, x0

j remains zero, while y0j is
increased by a constant, �, every time a packet in Sj misses a
deadline. The exception to this rule is when yj ¼ 0 (and,
more specifically,Wj ¼ 0=0). This special case allows DWCS
to always service streams in EDF order, if such a service
policy is desired.

If Sj violates its original window-constraint, it is tagged
for when it is next serviced. Tagging ensures that a stream is

never starved of service, even in overload. Later, Theorem 2
shows the delay bound for a stream which is tagged with
window-constraint violations. Consequently, Sj is assured
of service since it will eventually take precedence over all
streams with a zero-valued current window-constraint.

Consider the case when Si and Sj both have current
window-constraints, W 0

i and W 0
j, respectively, such that

W 0
i ¼ 0=y0i and W 0

j ¼ 0=y0j. Even if both deadlines, di;head and
dj;head, are equal, precedence is given to the stream with the
highest window-denominator. Suppose that Si is serviced
before Sj because y

0
i > y0j. At some later point in time, Sj will

have the highest window-denominator since its denomi-
nator is increased by � every request period, Tj, that a
packet in Sj is delayed, while Si’s window-constraint is
reset once it is serviced. For simplicity, we assume every
stream has the same value of �, but, in practice, it may be
beneficial for each stream Si to have its own value, �i, to
increase its need for service at a rate independent of other
streams, even when window-constraint violations occur.
Unless stated otherwise, � ¼ 1 is used throughout the rest of
this paper.

We can now show the pseudocode for DWCS in Fig. 4.
Usually, a stream is eligible for service if a packet in that
stream has not yet been serviced in the current request-
period,which is the timebetween thedeadlineof theprevious
packet and the deadline of the current packet in the same
stream. That is, no more than one packet in a given stream is
typically serviced in a single request period and the packet
must be serviced by the end of its request period to prevent a
deadline beingmissed.However,DWCSallows streams to be
marked as eligible for scheduling multiple times in the same
request period. This is essentially to provide work-conser-
ving service to a nonempty queue of packets in one stream
when there are no other streams awaiting service in their
current request periods. That said, for the purposes of the
analysis in this paper, we assume packets arrive (or are
marked eligible) for service at a rate of one every
corresponding request period.

To complete this section, Fig. 5 shows an example
schedule using both DWCS and EDF for three streams, S1,
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Fig. 2. Window-constraint adjustment for a packet in Si serviced before

its deadline.

Fig. 3. Window-constraint adjustment when a packet in Sj j j 6¼ i misses

its deadline.

Fig. 4. The DWCS algorithm.



S2, and S3. For simplicity, assume that every time a packet
in one stream is serviced, another packet in the same stream
requires service. It is left to the reader to verify the
scheduling order for DWCS. In this example, DWCS
guarantees that all window-constraints are met over
nonoverlapping windows of yi deadlines (for each stream,
Si) and no time slots are unused. Moreover, the three
streams are serviced in proportion to their original window-
constraints and request periods. Consequently, S1 is
serviced twice as much as S2 and S3 over the interval
t ¼ ½0; 16�. By contrast, EDF arbitrarily schedules packets
with equal deadlines, irrespective of which packet is from
the more critical stream in terms of its window-constraint.
In this example, EDF selects packets with equal deadlines in
strict alternation, but the window-constraints of the streams
are not guaranteed.

Note that EDF scheduling is optimal in the sense that if it

is possible to produce a schedule in which all deadlines are

met, such a schedule can be produced using EDF.

Consequently, if Ci is the service time for a packet in

stream Si, then, if
Pn

i¼1
Ci

Ti
� 1:0, all deadlines will be met

using EDF [24]. However, in this example,
Pn

i¼1
Ci

Ti
¼ 3:0, so

not all deadlines can be met. Since,
Pn

i¼1
ð1�WiÞCi

Ti
¼ 1:0, it is

possible to strategically miss deadlines for certain packets

and thereby guarantee the window-constraints of each

stream. By considering window-constraints when deadlines

are tied, DWCS is able to make guarantees that EDF cannot,

even in overload.

3.3 DWCS Complexity

DWCS’s time complexity is divided into two parts: 1) the
cost of selecting the next packet according to the precedence
rules in Table 1 and 2) the cost of adjusting stream window-
constraints and packet deadlines after servicing a packet.
Using heap data structures for prioritizing packets, the cost
of selecting the next packet for service is OðlogðnÞÞ, where n
is the number of streams awaiting service. However, after
servicing a packet, it may be necessary to adjust the
deadlines of the head packets, and window-constraints, of
all n queued streams. This is the case when all n� 1 streams
(other than the one just serviced) have packets that miss
their current deadlines. This can lead to a worst-case
complexity for DWCS of OðnÞ. However, the average case
performance is typically a logarithmic function of the

number of streams (depending on the data structures used
for maintaining scheduler state) because not all streams
always need to have their window-constraints adjusted
after a packet in any given stream is serviced. When only a
constant number of packets in different streams miss their
deadlines after servicing some other packet, a heap data
structure can be used to determine those packet deadlines
and stream window-constraints that need to be adjusted. It
follows that a constant number of updates to service
constraints using heaps, as described in an earlier paper
[39], requires OðlogðnÞÞ operations. Additionally, there is an
Oð1Þ cost per stream to update the corresponding service
constraints, after servicing a packet.

In reality, the costs associated with DWCS compare
favorably to those of many fair queuing, pinwheel, and
weakly hard algorithms. Observe that, with fair queuing
algorithms, the time complexity consists of: 1) the cost of
calculating a per packet virtual time, vðtÞ, upon packet arrival
at the input to the scheduler, which is then used to derive
an ordering tag (typically a packet start or finish tag) and
2) the cost of determining the next packet for service based
on each packet’s tag. The cost of part 2) is the same as the
cost of selecting the next packet for service in DWCS and
can be implemented in OðlogðnÞÞ time using a heap. The
calculation of the virtual time, vðtÞ, in part 1), is OðnÞ in
WFQ since it is a function of all backlogged sessions (i.e.,
streams) at time t.

We acknowledge that algorithms such as Start-time Fair
Queuing (SFQ) [13], [30], Self-Clocked Fair Queuing (SCFQ)
[12], or Frame-Based Fair Queuing (FFQ) and Starting-
Potential Fair Queuing (SPFQ) [33], have an Oð1Þ complex-
ity for calculating virtual timestamps (and ordering tags)
per packet, making their overall costs OðlogðnÞÞ per packet.
However, these algorithms typically suffer increased packet
delays. It is also worth noting that Xu and Lipton [40]
showed that the lower bound on algorithmic complexity for
fair queuing to guarantee Oð1Þ “GPS-relative” delay
guarantees [29] is OðlogðnÞÞ, discounting the cost of calculating
per packet virtual times.

As stated earlier in Section 1, DWCS has more in
common with pinwheel [17], [9], [2] and weakly hard [5],
[6], [15], [19] real-time schedulers than fair queuing
algorithms, although DWCS can provide fairness guaran-
tees. Most variants of these algorithms have time complex-
ities that are no better than that of DWCS. Irrespective of the
asymptotic scheduling costs, DWCS has been shown to be
an effective scheduler for packet transmission at Gigabit
wire-speeds, by overlapping the comparison and updating
of stream service constraints with the transmission of
packets [22], [21].

The per-stream state requirements of DWCS include the
head packet’s deadline (computed from a stream’s request
period and the current time), a stream’s window-constraint,
and a single-bit violation tag. Due to the time and space
requirements of DWCS, we feel it is possible to implement
the algorithm at network access points and, possibly, within
switches too. In fact, we have demonstrated the efficiency of
DWCS by implementation in firmware on I20 network
interface cards (NICs) [22], [21].

Other work [39] shows how DWCS can be approximated,
to further reduce its scheduling latency, thereby improving
service scalability [35] at the cost of potentially violating
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Fig. 5. Example showing the scheduling of three streams, S1, S2, and S3,

using EDF and DWCS. All packets in each stream have unit service

times and request periods. The window-constraints for each stream are

shown as fractions, x=y, while packet deadlines are shown in brackets.



some service constraints. Moreover, it may be appropriate

to combine multiple streams into one session, with DWCS

used to service the aggregate session. Such an approach

would reduce the scheduling state requirements and

increase scalability. In fact, this is the approach taken in

our simulation experiments in Section 5.

4 ANALYSIS OF DWCS

In this section, we show the following important character-

istics of the DWCS algorithm, as defined in this paper:

. DWCS ensures that the maximum delay of service,
incurred by a real-time stream enqueued at a single
server, is bounded even in overload. The exact value
of this maximum delay is characterized below.

. In specific overload situations, DWCS can guarantee
a feasible schedule by strategically skipping dead-
lines of packets in different streams.

. A simple online feasibility test for DWCS exists,
assuming each stream is serviced at the granularity
of a fixed-sized time slot and all request periods are
multiples of such a time slot (see Fig. 1). A time slot
can be thought of as the time to service one or more
packets from any given stream and no two streams
can be serviced in the same time slot. For simplicity,
we assume that at most one packet from any given
stream is serviced in a single time slot. Conse-
quently, if the minimum aggregate bandwidth
requirement of all real-time streams does not exceed
the total available bandwidth, then a feasible
schedule is possible using DWCS.

. For networks with fixed-length packets, a time slot is
at the granularity of the service time of one packet.
However, for variable rate servers or in networks
where packets have variable lengths, the service times
can vary for different packets. In such circumstances,
if it is possible to impose anupper boundon theworst-
case service timeof eachandeverypacket, thenDWCS
can still guarantee that no more than x packet
deadlines are missed every y requests. In this case,
service is granted to streams at the granularity of a
time slot,which represents theworst-case service time
of any packet. Alternatively, if it is possible to
fragment variable-length packets and later reassem-
ble them at the destination, per-stream service
requirements can be translated and applied to fixed-
length packets with constant service times, represent-
ing a time slot in a DWCS-based system.

. Apart from providing window-constrained guaran-
tees, DWCS can behave as an EDF, static priority, or
fair scheduling algorithm.

4.1 Delay Characteristics

Theorem 1. If a feasible schedule exists, the maximum delay of

service to a stream,2 Si j 1 � i � n, is at most ðxi þ 1ÞTi � Ci,

where Ci is the service time for one packet in Si.
3

Proof. Every time a packet in Si misses its deadline, x0
i is

decreased by 1 until x0
i reaches 0. A packet misses its

deadline if it is delayed by Ti time units without service.
Observe that, at all times, x0

i � xi. Therefore, service to Si

can be delayed by atmost xiTi untilW
0
i ¼ 0. IfSi is delayed

more than anotherTi � Ci timeunits, awindow-constraint
violation will occur since service of the next packet in Si

will not complete by the end of its request period, Ti.
Hence, Si must be delayed at most ðxi þ 1ÞTi � Ci if a

feasible schedule exists. tu

We now characterize the delay bound for a stream when

window-constraint violations occur, assuming all request
periods are greater than or equal to each and every packet’s

service time. That is, Ti � Ci; xi � 0; yi > 0; 8i j 1 � i � n.

Theorem 2. If window-constraint violations occur, the maximum

delay of service to Si is no more than

Tiðxi þ ymax þ n� 1Þ þ Cmax;

where ymax ¼ max½y1; � � �; yn� and Cmax is the maximum

packet service time among all queued packets.

Proof. The details of this proof are shown in Appendix A.tu

If Ti ! 1, then Si experiences unbounded delay in the
worst case. This is the same problem with static-priority

scheduling since a higher priority stream will always be
serviced before a lower priority stream. Observe that, in

calculating the worst-case delay experienced by Si, it is
assumed that dy0i=dt ¼ �=Tij� ¼ 1 (see Fig. 10). If �>1 or there

is a unique value, �i>1 for each stream Si, then the worst-
case delay experienced by Si is Tiðxiþymaxþn�1Þ

�i
þ Cmax. If

�i ¼ ðxi þ ymax þ n� 1Þ, then the worst-case delay of Si is

Ti þ Cmax, which is independent of the number of streams.
Consequently, the worst-case delay of service to each

stream can be made to be independent of all other streams,
even in overload situations.

4.2 Bandwidth Utilization

As stated earlier, Wi ¼ xi=yi for stream Si. Therefore, a

minimum of yi � xi packets in Si must be serviced in every

window of yi consecutive packets, for Si to satisfy its

window-constraints. Since one packet is required to be

serviced every request period, Ti, to avoid any packets in Si

being late, a minimum of yi � xi packets must be serviced

every yiTi time units. Therefore, if each packet takes Ci time

units to be serviced, then yi packets in Si require at least

ðyi � xiÞCi units of service time every yiTi time units. For a

stream, Si, with request period, Ti, the minimum utilization

factor is Ui ¼ ðyi�xiÞCi

yiTi
, which is the minimum required

fraction of available service capacity and, hence, bandwidth

by consecutive packets in Si. Hence, the utilization factor

for n streams is at least U ¼
Pn

i¼1
ð1�WiÞCi

Ti
. Furthermore, the

least upper bound on the utilization factor is the minimum of

the utilization factors for all streams that fully utilize all

available bandwidth [24]. If U exceeds the least upper

bound on bandwidth utilization, a feasible schedule is not
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2. The “maximum delay” is that imposed by a single server and is not the
maximum end-to-end delay across a network.

3. For simplicity, we assume all packets in the same stream have the
same service time. However, unless stated otherwise, this constraint is not
binding and the properties of DWCS should still hold.



guaranteed. In fact, it is necessary that U � 1:0 is true for a

feasible schedule, using any scheduling policy.
Mok and Wang extended our original work by showing

that the generalwindow-constrained problem is NP-hard for
arbitrary service times and request periods [26]. The general
window-constrained scheduling problem can be defined in

terms of n streams each characterized by a 3-tuple
ðCi; Ti;Wi ¼ xi=yiÞhaving arbitrary values.However,DWCS
guarantees that no more than xi deadlines are missed out of
yi deadlines for n streams, if U ¼

Pn
i¼1

ð1�xi=yiÞCi

Ti
� 1:0, given

1 � i � n, Ci ¼ K and Ti ¼ qK, where q 2 Zþ,4 K is a
constant, and U is the minimum utilization factor for a
feasible schedule.5

This implies a feasible schedule is possible even when
the server capacity, or link bandwidth, is 100 percent

utilized, given: 1) All packets have constant, or some known
worst-case, service time and 2) all request periods are the
same and are multiples of the constant, or worst-case,
service time. Although this sounds restrictive, it offers the
ability for a DWCS scheduler to proportionally share

service among a set of n streams. Moreover, each stream,
Si, is guaranteed a minimum share of link bandwidth over a
specific window of time, independent of the service
provided to other streams. This contrasts with fair queuing

algorithms that 1) attempt to share resources over the
smallest window of time possible (thereby approximating
the fluid-flow model) and 2) do not provide explicit isolation
guarantees. In the latter case, the arrival of a stream at a
server can affect the service provided to all other streams

since proportional sharing is provided in a relative manner.
For example, weighted fair queuing uses a weight, wi, for
each Si such that Si receives (approximately) wiPn

j¼1
wj

fraction of resources over a given window of time.
We now show the utilization bound for a specific set of

streams in which each stream, Si, is characterized by the
3-tuple ðCi ¼ K;Ti ¼ qK;WiÞ. In what follows, we consider
the maximum number of streams, nmax, that can guarantee
a feasible schedule. It can be shown that, for all values of n,
where n < nmax, a feasible schedule is always guaranteed if

one is guaranteed for nmax streams.

Lemma 1. Consider a set of n streams, � ¼ fS1; � � � ; Sng, where
Si 2 � is defined by the 3-tuple

ðCi ¼ K;Ti ¼ qK;Wi ¼ xi=yiÞ:

If the utilization factor, U ¼
Pn

i¼1
ðyi�xiÞ
qyi

� 1:0, then xi ¼
yi � 1 maximizes n.

Proof. Without loss of generality, we can assume K ¼ 1.
Further, for all nontrivial situations, n must be greater

than q, otherwise we can always find a unit-length slot in
any fixed interval of size q to service each stream at least
once. Now, for any window-constraint, xi=yi, we can
assume xi < yi since, if xi ¼ yi, then no deadlines need to
be met for the corresponding stream, Si. Consequently,

for arbitrary Si, yi � xi � 1.

Therefore, if we let yk ¼ maxðy1; y2; � � � ; ynÞ, it must be
that n�qyk since:

n

qyk
¼

Xn

i¼1

1

qyk
�

Xn

i¼1

ðyi � xiÞ
qyk

�
Xn

i¼1

ðyi � xiÞ
qyi

� 1

) n � qyk:

If all window-constraints are equal, for each and every
stream, we have the following:

Xn

i¼1

ðyi � xiÞ
qyi

� 1 ) nðyi � xiÞ
qyi

� 1

) n � qyi
yi � xi

� qyi

if xi ¼ yi � 1, then qyi
yi�xi

¼ qyi and n is maximized. tu
From Lemma 1, we now consider the conditions for a

feasible schedule when each Si 2 � is defined by the 3-tuple
ðCi ¼ 1; Ti ¼ q;Wi ¼ xi=yiÞ. If we envision � as a set of
streams, each with infinite packets, we can define a hyperper-
iod in a similar fashion to that in periodic task scheduling. As
with periodically occurring tasks, a stream with infinite
packets can be seen to require service at regular intervals. The
hyperperiod essentially defines a period inwhich a repeating
schedule of service to all streams occurs. Let the hyperperiod,
H, be lcmðqy1; qy2; � � � ; qynÞ. The following theorem can now
be stated:

Theorem 3. In each nonoverlapping window of size q in the
hyperperiod, H, there cannot be more than q streams out of n
with current window-constraint 0

y0i
at any time, when

U ¼
Pn

i¼1
yi�xi
qyi

� 1:0.

Proof. The details of this proof are shown in Appendix B.tu

We can now derive the least upper bound on bandwidth
utilization, for the set �, in which each stream Si 2 � is
characterized by the 3-tuple ðCi ¼ K;Ti ¼ qK;Wi ¼ xi=yiÞ.
Corollary 1. Using DWCS, the least upper bound on the

utilization factor is 1:0, for the set �, in which each
stream Si 2 � is characterized by the 3-tuple
ðCi ¼ K;Ti ¼ qK;Wi ¼ xi=yiÞ.

From Theorem 3 (where K ¼ 1 without loss of general-

ity), there can never be more than q streams out of n with

current window-constraint 0
y0i

when U ¼
Pn

i¼1
yi�xi
qyi

� 1:0.

For arbitrary values of K, Theorem 3 implies there can

never be more than qK streams out of n with current

window-constraint 0
y0i
. These streams will be guaranteed

service in preference to all streams with nonzero window-

constraints since all streams are serviced in fixed-sized time

slots, packet deadlines are aligned on time slot boundaries,

and the assumption is that all streams have the same

request periods. If all request periods are spaced qK time

units apart, DWCS guarantees that each and every stream,

Si, with current window-constraint 0
y0i

is serviced without

missing more than xi deadlines in a window of yi deadlines.

Observe that, for Si to have a current window-constraint

W 0
i ¼ 0

y0
i
, exactly xi deadlines have been missed in the

current window of yi deadlines.
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4. Zþ is the set of positive integers.
5. In the RTSS 2000 paper [37], we incorrectly stated Ti ¼ qiK.

However, the utilization bound proven here and outlined in that
paper holds for fixed q.



4.3 Fixed versus Sliding Windows

DWCS explicitly attempts to provide service guarantees
over fixed windows of deadlines. That is, DWCS assumes
the original window-constraint specified for each stream
defines service requirements over nonoverlapping groups
of deadlines. However, it is possible to determine a
corresponding sliding window-constraint for a specified
fixed window-constraint.

As stated earlier, DWCS tries to guarantee nomore than xi

out of a fixed window of yi deadlines are missed, for each
stream Si. This is the same as guaranteeing a minimummi ¼
yi � xi out of a fixed window of ki ¼ yi deadlines are met. It
canbe shown that, if nomore thanxi deadlines aremissed in a
fixed window of yi deadlines, then no more than xs

i ¼ 2xi

deadlines are missed in a sliding window of ysi ¼ yi þ xi

deadlines. Likewise, thismeans that, bymeetingmi deadlines
over fixed windows of size ki, then it is possible to guarantee
ms

i ¼ mi deadlines over sliding windows of size
ksi ¼ 2ki �mi. The proof is omitted for brevity.

Therefore, for any original window-constraint,
Wi ¼ xi=yi ¼ ðki �miÞ=ki, we can determine a correspond-
ing sliding window-constraint,

Ws
i ¼ xs

i =y
s
i ¼ 2ðki �miÞ=ð2ki �miÞ:

We will use this relationship between fixed and sliding
windows when comparing DWCS to Distance-Based
Priority Scheduling in Section 5.

4.4 Supporting Packets with Variable Service Times

For variable rate servers, or in networks where packets have
variable lengths, the service times can vary for different
packets. In such circumstances, if it is possible to impose an
upper bound on the worst-case service time of each and
every packet, then DWCS can still guarantee that no more
than x packet deadlines are missed every y requests. This
implies that the scheduling granularity, K (i.e., one time
slot), should be set to the worst-case service time of any
packet scheduled for transmission. For situations where a
packet’s service time, Ci, is less than K (see Fig. 1), then a
feasible schedule is still possible using DWCS, but the least
upper bound on the utilization factor is less than 1:0. That
is, if �i ¼ K � Ci, then the least upper bound on the
utilization factor is 1:0�

Pn
i¼1

ð1�WiÞ�i
Ti

.

Alternatively, if it is possible to fragment variable-length
packets and later reassemble them at the destination, per-
stream service requirements can be translated and applied
to fixed-length packet fragments with constant service
times. This is similar to the segmentation and reassembly
(SAR) strategy employed in ATM networks—ATM net-
works have fixed-length (53 byte) cells and the SAR
component of the ATM Adaptation Layer segments
application-level packets into cells that are later reas-
sembled. Consequently, the scheduling granularity, K,
can be set to a time which is less than the worst-case
service time of a packet.

For fragmented packets, it is possible to translate stream
Si’s service constraints as follows: Let Si have an original
3-tuple ðCi; Ti;WiÞ and a translated 3-tuple

ðC�
i ¼ K;T �

i ¼ qK;W �
i ¼ x�

i =y
�
i Þ;

where q and K are arbitrary positive integers. Then, x�
i and

y�i are the smallest values satisfying x�
i =y

�
i ¼ 1� qð1�WiÞCi

Ti
.

Example. Consider three streams, S1, S2, and S3, with the
following constraints:

ðC1 ¼ 3; T1 ¼ 5;W1 ¼ 2=3Þ;
ðC2 ¼ 4; T2 ¼ 6;W2 ¼ 23=35Þ; and
ðC3 ¼ 5; T3 ¼ 7;W3 ¼ 1=5Þ:

The total utilization factor is 1:0 in this example, but, due
to the nonpreemptive nature of the variable-length
packets, a feasible schedule cannot be constructed.
However, if the packets are fragmented and the per-
stream service constraints are translated as described
above, assuming q ¼ K ¼ 1, we have:

ðC�
1 ¼ 1; T �

1 ¼ 1; ;W �
1 ¼ 4=5Þ;

ðC�
2 ¼ 1; T �

2 ¼ 1;W �
2 ¼ 27=35Þ; and

ðC�
3 ¼ 1; T �

3 ¼ 1;W �
3 ¼ 3=7Þ;

then a feasible schedule exists. In the latter case, all
fragments are serviced so that their corresponding
stream’s window-constraints are met. These translated
window-constraints are equivalent to the original win-
dow-constraints, thereby guaranteeing each stream its
exact share of bandwidth. Observe thatC�

i ¼ T �
i ¼ 1 is the

normalized time to service one fragment of a packet in Si.
This fragment could correspond to, e.g., a single cell in an
ATM network, but, more realistically, it makes sense for
one fragment to map to multiple such cells, thereby
reducing the scheduling overheads per fragment. Simi-
larly, a fragment might correspond to a maximum
transmission unit in an Ethernet-based network.

4.5 Beyond Window-Constraints

In situations where it is not essential to guarantee all
streams’ window-constraints, DWCS still attempts to meet
as many window-constraints as possible. It should be
apparent that, for variable length packets, it is not possible
to always guarantee a stream’s window-constraints. This is
because an arbitrarily long packet could require so much
service time that a stream misses more than x consecutive
deadlines. We shall show an example schedule for variable-
length packets later in this section, but first we describe
some of the additional behaviors of DWCS.

Earliest-Deadline First Scheduling using DWCS. When
each and every stream, Si, has a window-constraint set to
0=0 (i.e., xi ¼ 0 and yi ¼ 0), DWCS degrades to EDF.
Intuitively, this makes sense since all streams have the
same importance, so their corresponding packets are
serviced based upon the time remaining to their deadlines.
It can be shown that, if all deadlines can be met, EDF
guarantees to meet all deadlines [7]. If packets are dropped
after missing their deadlines, EDF is optimal with respect to
loss-rate in discrete-time G/D/1 and continuous-time
M/D/1 queues [28].

Static Priority Scheduling using DWCS. If no packets in
any streams have deadlines (i.e., they effectively have
infinite deadlines), DWCS degrades to static priority (SP).
Static-priority scheduling is optimal for a weighted mean
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delay objective, where weighted mean delay is a linear
combination of the delays experienced by all packets [16]. In
DWCS, the current window-constraints associated with
each packet in every stream are always equal to their
original window-constraints and each packet’s window-
constraint serves as its static priority. As expected, pre-
cedence is given to the packet with the lowest window-
constraint (i.e., highest priority). For packets with infinite
deadlines, DWCS has the ability to service non-time-
constrained packets in static priority order to minimize
weighted mean delay.

Fair Scheduling using DWCS. Fair Queuing derivatives

share bandwidth among n streams in proportion to their

weights. Specifically, let wi be the weight of stream Si and

Biðt1; t2Þ be the aggregate service (in bits) of Si in the interval

½t1; t2�. If we consider two streams, Si and Sj, the normalized

service (byweight) receivedby each streamwill beBiðt1;t2Þ
wi

and
Bjðt1;t2Þ

wj
, respectively. The aim is to ensure that j Biðt1;t2Þ

wi
�

Bjðt1;t2Þ
wj

j is as close to zero as possible, considering that

packets are indivisible entities and an integer number of

packets might not be serviced during the interval ½t1; t2�.
DWCS also has the ability to meet weighted fair

allocation of bandwidth. In this mode of operation, the
original table of precedence rules [38] is more appropriate
than the one in Table 1, unless we have fixed-sized time
slots between scheduling invocations. The main difference
with the original table of precedence rules is as follows:
Packets are selected by first comparing their streams’
window-constraints and only if there are ties are deadlines
then compared. This has advantages for variable-length
packets. For example, Fig. 6 shows an example of
bandwidth allocation among two streams, S1 and S2,
comprising packets of different lengths (i.e., C1 ¼ 5 and
C2 ¼ 3). S1 and S2 each require 50 percent of the available
bandwidth. The service times for each and every packet in
streams S1 and S2 are five time units and three time units,
respectively. Deadlines in this example are shown as start

deadlines. Similarly, request periods for S1 and S2 are T1 ¼
5 and T2 ¼ 3, respectively. In general, fair bandwidth
allocation can be guaranteed over an interval that is the
lowest-common-multiple of each value yi:Ti.

Given stream weights, wi, in a fair bandwidth-allocating
algorithm, we can calculate the window-constraints and
deadlines that must be assigned to streams in DWCS to give
the equivalent bandwidth allocations. This is done as
follows:

1. Determine the minimum time window, �min, over
which bandwidth is shared proportionally among
n streams, each with weight wij1 � i � n;wi 2 Zþ:

Let ! ¼
Pn

i¼1 wi and let �i be the number of
packets from Si serviced in some arbitrary time
window �. (Note that �iCi is the total service time of
Si over the interval � and

Pn
i¼1 �iCi ¼ �. Further-

more, � is assumed sufficiently large to ensure
bandwidth allocations among all n streams in exact

proportions to their weights.) This implies that
�iCi

� ¼ wi

! .
If wi is a factor of !Ci, let �i ¼ !Ci

wi
, else let

�i ¼ !Ci.
Then, �min ¼ lcmð�1; . . . ; �nÞ, where lcmða; bÞ is

the lowest-common-multiple of a and b.
2. For DWCS, set Ti ¼ Ci, for each stream Si.
3. To calculate the window-constraint, Wi ¼ xi=yi set:

yi ¼ �min

Ci
and xi ¼ �min

Ci
� �0i,

where �0i ¼
�i�min

� ¼ wi�min

!Ci
.

If successive packet deadlines in Si are offset by Ti ¼ Ci,
as in Step 2, we can translate packet window-constraints
back into stream weights, wi, as follows:

wi ¼
ynðyi � xiÞ
yiðyn � xnÞ

;

where 0 < xi
yi
< 1.

Summary. DWCS is a flexible scheduling algorithm.
Besides having the ability to guarantee window-constraints
in a slotted time system, DWCS can be configured to
operate as an EDF, static priority, or fair scheduling
algorithm. DWCS ensures the delay of service to real-time
streams is bounded, even in the absence of a feasibility test,
whereby the scheduler may be overloaded and window-
constraint violations can occur. Consequently, a stream is
guaranteed never to suffer starvation. Finally, the least
upper bound on bandwidth utilization using DWCS can be
as high as 100 percent.

5 SIMULATION RESULTS

To investigate the ability of DWCS to meet per-stream
window-constraints, we conducted a series of simulations.
A number of streams, comprising constant (i.e., unit) length
packets, with different request periods and original
window-constraints were scheduled by a single server.
Each stream generated one packet arrival every request
period and the scheduler was invoked at fixed intervals.
The performance of DWCS, using the precedence rules
shown in Table 1, was compared to that of the Distance-
Based Priority (DBP) algorithm [15].
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Fig. 6. Example DWCS scheduling of two streams, s1, s2, using the

original table of precedence rules [38]. Note that the fine-grained loss-

constraints of each stream are no longer met, but each stream gets

50 percent of the bandwidth every 30 time units.



The DBP algorithm maintains a sliding window “history”
for each stream. That is, for the most recent ki deadlines of
stream Si, a binary string of ki bits is used to track whether
or not deadlines have been met or missed. Using this
information, DBP scheduling assigns priorities to streams
based on their minimum “distance” from a failing state,
which occurs when a stream Si meets fewer than mi out of
the most recent ki deadlines. For two or more streams with
the highest priority, DBP scheduling selects the packet at
the head of the stream with the earliest deadline.

We compared the performance of DBP scheduling and
DWCS over both fixed and sliding windows (as discussed
in Section 4.3), for the following three simulation scenarios:

. Scenario 1: There were eight scheduling classes for all
streams. The original (x=y) window-constraints for
each class of streams were 1=10, 1=20, 1=30, 1=40,
1=50, 1=60, 1=70, and 1=80 and the request period for
each packet in every stream was 480 time units. Each
packet in every stream required at most one time
unit of service in its request period or else that
packet missed its deadline.

. Scenario 2: This was the same as Scenario 1 except that
the request periods for packets in streams belonging
to the first four classes (with window-constraints
1=10 to 1=40) were 240 time units and the request
periods for packets in streams belonging to the
remaining four classes were 320 time units.

. Scenario 3: This was the same as Scenario 1 except that
the request periods for packets in streams belonging
to each pair of classes (starting from the class with a
window-constraint of 1=10) were 400, 480, 560, and
640 time units, respectively.

The numbers of streams in each simulation case were
uniformly distributed between each scheduling class and a
total of a million packets across all streams were serviced. It
should be noted that, in each of the three scenarios, the

window-constraints for different streams were chosen
simply to capture a range of utilization factors roughly
centered around 1:0. It could be argued that more realistic
window-constraints and simulation scenarios (e.g., those
suitable for MPEG multimedia streams) would be more
appropriate, but the above cases suffice to assess the
performance of DWCS and DBP scheduling over a range
of conditions.

Fig. 7 shows the results of Scenarios 1, 2, and 3,
respectively, where the number of streams, n, was varied
to yield a range of utilization factors, U , as defined in
Section 4.2. Umax is the utilization factor considering we try
to service a stream in every request period without missing
deadlines, D is the actual number of missed deadlines, and
Vf is the number of fixed window violations. In the latter
case, Vf captures the situations where more than xi

deadlines are missed in fixed windows of yi deadlines for
each stream Si. In contrast, Vs shows the number of sliding
window violations over ysi ¼ yi þ xi consecutive deadlines
in stream Si.

Deadline Misses and Fixed Window Violations. Figs. 8
and 9 show the total deadline misses (D) and fixed window
violations (Vf ) of DWCS and DBP scheduling for various
values of U . As can be seen from Fig. 8, DWCS never results
in more deadline misses than DBP scheduling. In Scenario 1,
all streams have the same request periods, so both DWCS
and DBP scheduling result in the same numbers of missed
deadlines. Additionally, both algorithms have no missed
deadlines when Umax�1:0.

Although some packets miss their deadlines when U is
less than 1:0 and Umax > 1:0, DWCS results in no fixed
window violations, Vf , in either of Scenarios 1 and 2 until U
exceeds 1:0. We showed U could rise to 1:0 in Corollary 1
and still guarantee a feasible schedule, under the assump-
tion that all stream request periods were equal. While all
request periods are equal in Scenario 1, which helps to
validate the deterministic service guarantees of DWCS,
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Fig. 7. Comparison between DWCS and DBP scheduling, in terms of window-constraint violations and missed deadlines.



Scenarios 2 and 3 involve streams with different request
periods. In practice, DWCS does well in all three scenarios
at minimizing fixed window violations when U � 1:0.
While DBP scheduling also performs well, its values of Vf

are generally worse than with DWCS, for cases when
U � 1:0. For example, DBP scheduling results in 2,136 fixed
window violations in Scenario 1, when n ¼ 496 streams and
U ¼ 0:9982. In other words, DBP scheduling fails to
guarantee zero fixed window violations for U � 1:0 when
all stream request periods are equal. In contrast, this
guarantee is assured with DWCS. Notwithstanding,
DBP scheduling tends to perform slightly better than
DWCS at minimizing the value of Vf as U starts to rise
significantly above 1:0. In this case, it is impossible to meet
all window-constraints over fixed intervals of time. How-
ever, DWCS tends to evenly spread deadline misses over
fixed windows, resulting in more fixed window violations,
while DBP scheduling may concentrate deadline misses in a
fewer number of nonoverlapping windows. It could be
argued that, in overload, DWCS is providing the more
desirable characteristics by attempting to prevent long
bursts of consecutive deadline misses.

Sliding Window Violations. As stated above, for each
stream Si, if no more than xi deadlines are missed in a fixed
window of yi deadlines, then no more than xs

i ¼ 2xi

deadlines are missed in a sliding window of ysi ¼ yi þ xi

deadlines. The tables in Fig. 7 include the total number of
violations, Vs, for each and every stream over sliding
windows of ysi deadlines. As can be seen, both DWCS and
DBP scheduling result in Vs ¼ 0 when the corresponding
value of Vf is zero.

To measure Vs using DBP scheduling, we had to rerun
our experiments with larger histories for each stream.
Observe that, for measuring values of Vf , we ran the

DBP scheduler with ki bit histories for each Si. However, for
sliding window violations, we maintained per-stream
strings of bits for the most recent ksi ¼ ysi ¼ yi þ xi ¼
2ki �mi deadlines. If more than ms

i ¼ mi deadline misses
occurred in the current history, a sliding window violation
was recorded.

The measured values of sliding window violations, Vs, for
DWCS are based on original window-constraints specified
over smaller fixed windows. In effect, DBP scheduling is
using more information from the recent past to make
scheduling decisions that minimize Vs. As a result, DBP
scheduling has lower values for Vs when U first exceeds 1:0.
However, with the exception of Scenario 3, DWCS has
smaller values for Vs when U is significantly above 1:0.

Summary. Results show that DWCS and DBP scheduling
have, in many cases, similar performance. DWCS explicitly
uses fixed window-constraints to provide service guaran-
tees, while DBP scheduling maintains a sliding window
history. Of the two algorithms, only DWCS is capable of
preventing fixed window violations when U � 1:0 and all
request periods are equal.

6 CONCLUSIONS

This paper describes a version of Dynamic Window-
Constrained scheduling (DWCS) [38], [39] for scheduling
real-time packet streams in media servers. In this paper, we
have shown how DWCS can guarantee no more than
xi deadlines are missed in a sequence of yi packets in
stream Si. Using DWCS, the delay of service to real-time
streams is bounded, even when the scheduler is over-
loaded. In fact, DWCS can ensure the delay bound of any
given stream is independent of other streams even in
overload. Additionally, the algorithm is capable of not only
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Fig. 8. Total deadlines missed versus utilization factor, U, for DWCS and DBP algorithms.

Fig. 9. Fixed window violations versus utilization factor, U, for DWCS and DBP algorithms.



satisfying window-constraints, but can operate as an EDF,
static priority or (weighted) fair scheduler.

If scheduling is performed at the granularity of fixed-
sized time slots and only one stream is serviced in any slot,
then DWCS behaves in a manner similar to pinwheel
scheduling [17]. Both DWCS and pinwheel scheduling will
attempt to provide service to an activity (such as a stream)
in at least m out of k slots. The main difference is that, in
window-constrained scheduling, activities may have their
own request periods6 and service time requirements within
such periods. This is similar to rate-monotonic scheduling
[24], but with the addition that service in some request
periods can be missed or incomplete.

The “Distance-Based” Priority (DBP) algorithm by
Hamdaoui and Ramanathan [15] is another example of a
window-constrained scheduling policy. Simulation results
show DWCS and DBP scheduling have similar performance
characteristics. DWCS explicitly uses fixed window-con-
straints to provide service guarantees, while DBP schedul-
ing maintains a sliding window history. Moreover, DWCS
is capable of providing service guarantees over fixed
windows, when resource usage reaches 100 percent, in
situations where DBP scheduling fails.

While DWCS is intended to support real-time multi-
media streams, it is often the case that such streams
comprise packets, or frames, of different importances. For
example, MPEG streams consist of I, P , and B frames,
where the impact of losing an I frame is considerably more
important than losing a B frame. In past work [38], we have
demonstrated the use of DWCS on MPEG-1 streams, by
packetizing each frame-type into a separate substream with
its own window-constraint and request period. That is,
I frames are placed in one substream, while P and B frames
are placed in different streams and all frames received at a
destination are buffered and reordered. Using this method,
we are able to support media streams whose contents have
multiple different service requirements.

Further information regarding DWCS, including kernel
patches and source code, is available from our website [23].
We have implemented the algorithm as both a CPU and
packet scheduler in the Linux kernel. Other work has
focused on efficient hardware implementations [22], [21] of
this algorithm and others.

APPENDIX A

Proof of Theorem 2. The worst-case delay experienced by
Si can be broken down into three parts: 1) the time for
the next packet in Si to have the earliest deadline among
all packets queued for service, 2) the time taken for W 0

i to
become the minimum among all current window-
constraints, W 0

k j 1 � k � n, when the head packets in
all n streams have the same (earliest) deadline, and 3) the
time for y0i to be larger than any other current
denominator, y0j j j 6¼ i; 1 � j � n, among each stream,
Sj, with the minimum current window-constraint and
earliest packet deadline. At this point, Si may be delayed
a further Cmax due to another packet currently in service.

Part 1): The next packet inSi is nevermore thanTi away
from its deadline.Consequently,Si will have apacketwith
the earliest deadline after a delay of at most Ti.

Part 2): W 0
i ¼ 0 is the minimum possible current

window-constraint. From Theorem 1, W 0
i ¼ 0 after a

delay of at most xiTi.

Parts 1) and 2) contribute a maximum delay of:

ðxi þ 1ÞTi: ð1Þ

Part 3): Assuming all streams have the minimum
current window-constraint and are comprised of a head
packet with the earliest deadline, the next stream chosen
for service is the one with the highest current window-
denominator. Moreover, the worst-case scenario is when
all other streams have the same or higher current
window-denominators than Si and every time another
stream, Sj, is serviced, deadline dj;head � di;head. To show
that dj;head � di;head holds, all deadlines must be at the
same time, t, when some stream Sj is serviced in
preference to Si. After servicing a packet in Sj for Cj

time units, all packet deadlines dk;head that are earlier
than tþ Cj are incremented by a multiple of the
corresponding request periods, Tk j 1 � k � n, depend-
ing on how many request periods have elapsed while
servicing Sj. The worst case is that Tj � Ti; 8j 6¼ i.
Furthermore, every time a stream, Sj, other than Si is
serviced, W 0

j ¼ 0. This is true regardless of whether or
not Sj is tagged with a violation, if Wj ¼ 0, which is the
case when xj ¼ 0.

Hence, the worst-case delay incurred by Si when
W 0

i ¼ 0 is Ti þ �i, where �i is the maximum time for y0i to
become larger than any other current denominator,
y0j j j 6¼ i; 1 � j � n, among all streams with the mini-
mum current window-constraint and earliest packet
deadline. Now, let state � be when each stream, Sk, has
W 0

k ¼ 0 for the first time. Moreover,W 0
k ¼ 0=y0k� and y0k� >

0 is the current window-denominator for Sk when in
state �.

Suppose Tj � Ti; 8j 6¼ i, and Tj is finite. For n streams,
the worst-case �i is when Tj ¼ K and Ti >> K, for some
constant, K, equal to the largest packet service time,
Cmax. Without loss of generality, it can be assumed in
what follows that all packet service times equal Cmax.
Now, it should be clear that, if Ti tends to infinity, then
the rate of increase of y0i approaches 0. Moreover, if each
and every stream, Sjjj 6¼ i, has a request period, Tj ¼ K,
then Si will experience its worst delay before y0i � y0j.
This is because y0j rises at a rate of 1=K for each stream Sj

experiencing a delay of K time units without service,
while y0i increases at a rate of 1=Ti, which is less than or
equal to 1=K.

Fig. 10 shows the worst-case situation for three
streams, Si, Sl, and Sm, which causes Si the largest
delay, �i, before y0i is the largest current window-
denominator. From the figure, y0l� ¼ y0m�

, and y0i increases
at a rate dy0i=dt ¼ �=Ti j � ¼ 1, until Si is serviced. When
Sm is serviced, y0m decreases at a rate of 1=K, while y0l
increases at a rate of 1=K. Conversely, when Sl is
serviced, y0l decreases at a rate of 1=K, while y0m increases
at a rate of 1=K. Only when y0m ¼ 0 isW 0

m reset. Likewise,
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6. Pinwheel scheduling essentially assumes activities’ request periods
are all equal to the size of a time slot.



only when y0l ¼ 0 is W 0
l reset. Consequently, y0i �

max½y0l; y0m� is true when y0i ¼ y0l� þ 1 ¼ y0m�
þ 1.

Suppose now, another stream, So (with y0o� ¼ y0l� ¼ y0m�

and To ¼ K), is serviced before either Sl or Sm when in
state �. Then, y0l ¼ y0m ¼ y0l� þ 1 ¼ y0m�

þ 1 after K time
units. If Sl is now serviced, then y0m ¼ y0m�

þ 2 after a
further K time units. In this case, y0i � max½y0l; y0m; y0o� is
true when y0i ¼ y0l� þ 2 ¼ y0m�

þ 2 ¼ y0o� þ 2. In general, for
each of the n� 1 streams, Sj, other than Si, each with
Tj ¼ K and y0j� � y0i� , i t i s the case that y0i �
max½y01; � � � ; y0i�1; y

0
iþ1; � � � ; y0n� is true when

y0i ¼ y01� þ ðn� 2Þ ¼ � � � ¼ y0n�
þ ðn� 2Þ:

Therefore, since dy0i=dt ¼ 1=Ti, it follows that

�i � Tiðy0j� � y0i� þ ðn� 2ÞÞ:

Now, observe that y0j� � yj for each and every stream,
Sj j j 6¼ i, since state � is the first time W 0

j is 0.
Furthermore, we have the constraints that

yj ¼ max½y1; � � � ; yi�1; yiþ1; � � � ; yn�;

yi � yj, and y0i� � 1. Therefore,

�i � Tiðyj þ ðn� 2ÞÞ: ð2Þ

If Tj > Ti; 8j 6¼ i and both Tj and Ti are finite, then y0i
and y0j converge more quickly than in the case above,
when Tj � Ti. Therefore, if window-constraint violations
occur, the maximum delay of service to Si (from (1) and
(2)) is no more than

ðxi þ 1ÞTi þ Tiðymax þ n� 2Þ þ Cmax;

or, equivalently,

Tiðxi þ ymax þ n� 1Þ þ Cmax;

where yj ¼ ymax in (2) and Cmax is the worst-case

additional delay due to another packet in service when

a packet in Si reaches the highest priority. tu

APPENDIX B

Proof of Theorem 3. When n�q, it is clear there are never

more than q streams with current window-constraint 0
y0i
.

For all nontrivial values of n, it must be that q < n � qyk,

given that yk ¼ maxðy1; y2; � � � ; ynÞ. From Lemma 1, if

y1 ¼ y2 ¼ � � � ¼ yn, and xi ¼ yi � 1; 8i, then n � qyi. It can

be shown that all lower values of n will yield a feasible

schedule if one exists for largest n.
Now, consider the set � comprised of one stream, Sj,

that has window-constraint, xj=yj, and n� 1 other
streams, each having window constraint, xi=yi. From
Lemma 1, it follows that if xj=yj < xi=yi, then n < qyi. In
this case, n is maximized if xj¼yj � 1, xj þ 1¼xi, and
xi ¼ yi � 1. Hence, xj < xi, yj < yi and n < qðxi þ 1Þ.

The set � is scheduled in the various nonoverlapping
intervals of the hyperperiod, resulting in changes to
window-constraints, as shown below.

1. Time interval ½0; qÞ: Stream Sj is scheduled first
since xj=yj < xi=yi. The current window-con-
straints of each stream are adjusted over the time
interval (shown above the arrows) as follows:

xj
yj
�!q xj

yj�1 ðone stream;Sj; serviced on timeÞ
xi
yi
�!q xi

yi�1 ðq � 1 streams serviced on timeÞ
xi
yi
�!q xi�1

yi�1 ðn� q streams not serviced on timeÞ:

2. Time interval ½q; qðxj þ 1ÞÞ: It can be shown that
n > qðxj þ 1Þ when n is maximized. Furthermore,
in this scenario, DWCS will schedule qxj streams
with the smallest current window-constraints,
updated every q time units. As a result, win-
dow-constraints now change as follows:

xj
yj�1�!

qxj 0
yj�1�xj

ðone stream;Sj; not servicedÞ
xi

yi�1�!
qxj xi�xj

yi�1�xj
ðq � 1 streams not serviced on timeÞ

xi�1
yi�1�!

qxj xi�1�xj
yi�1�xj

ðn� q � qxj streams not servicedÞ
xi�1
yi�1�!

qxj xi�xj
yi�1�xj

ðqxj streams serviced on timeÞ:

At this point, consider the n� q � qxj

streams in state
xi�1�xj
yi�1�yj

after time qðxj þ 1Þ.
We know, in the worst case, xj þ 1 ¼ xi to

maximize n, so we have

n� q � qxj ¼ n� qðxj þ 1Þ ¼ n� qxi:

We also know n < qðxi þ 1Þ, therefore

n� qxi < qðxi þ 1Þ � qxi ¼ q:

Consequently, at the time qðxj þ 1Þ, less than

q streams other than Sj are in state 0
y0i
. Even though

Sj is in state 0
y0j
, we can never have more than
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Fig. 10. The change in current window-denominators, y0i, y
0
l and y0m for

three streams, Si, Sl, and Sm, respectively, when all request periods,
except possibly Ti, are finite. The initial state, �, is when all current
window-constraints first equal 0 and the current window-denominators
are all greater than 0.



q streams with zero-valued numerators as part of

their current window-constraints. We know that,

by maximizing n, we have

xj þ 1 ¼ xi; xj þ 1 ¼ yj ) yj ¼ xi:

Therefore, at time qðxj þ 1Þ, all current window-

constraints can be derived from their original

window-constraints, as follows:

xj
yj

�!
qðxjþ1Þ

0
0 ð1 stream;Sj; served once; reset 0

0 to
xj
yj
Þ

xi
yi

�!
qðxjþ1Þ

0
1 ðn� qxi streams never serviced on timeÞ

xi
yi

�!
qðxjþ1Þ

1
1 ðq � 1 streams serviced once on timeÞ

xi
yi

�!
qðxjþ1Þ

1
1 ðqxj streams serviced once on timeÞ:

3. Time interval ½qðxj þ 1Þ; qðxj þ 2ÞÞ: At the end of
this interval of size q, the window-constraints
change from their original values, as follows:

xj
yj

�!
qðxjþ2Þ xj

yj�1 ð1 stream; Sj; serviced twice overallÞ
xi
yi

�!
qðxjþ2Þ xi

yi
ðn� 1 streams serviced at least once;

reset window-constraintsÞ:

4. Time interval ½qðxj þ 2Þ; 2qðxj þ 2ÞÞ: At the end of
this interval of size qðxj þ 2Þ, the window-
constraints change from their original values, as
follows:

xj
yj

�!
2qðxjþ2Þ xj

yj�2 ð1 stream;SjÞ
xi
yi

�!
2qðxjþ2Þ xi

yi
ðn� 1 streams;

reset window-constraintÞ:

Over the entire period ½0; yjqðxj þ 2Þ�, the win-

dow-constraints change as follows:

xj
yj

�!
yjqðxjþ2Þ xj

yj
ð1 stream;SjÞ

xi
yi

�!
yjqðxjþ2Þ xi

yi
ðn� 1 streamsÞ:

At this point, every stream has been served at

least once and no more than q streams ever have

zero-valued current window-constraints in any

given nonoverlapping interval of size q. Observe

that the hyperperiod is lcmðqy1; qy2; � � � ; qynÞ
which, in this case, is qyiyj. Since xj þ 2 ¼ yi,

yjqðxj þ 2Þ ¼ qyiyj, and we have completed the

hyperperiod. All streams have reset their win-

dow-constraints to their original values, so we

have a feasible schedule. tu
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