
1

End-to-end Analysis and Design of a Drone Flight
Controller

Zhuoqun Cheng, Richard West, Senior Member, IEEE, and Craig Einstein

Abstract—Timing guarantees are crucial to embedded and
cyber-physical applications that must bound the end-to-end delay
between sensing, processing and actuation. For example, in a
flight controller for a multirotor drone, the data from a gyro or
inertial sensor must be gathered and processed to determine the
attitude of the aircraft. Sensor data fusion is followed by control
outputs that alter rotor speeds to adjust the drone’s flight. If
the processing pipeline between sensor input and actuation is
not bounded, the drone will lose control and possibly fail to
maintain flight.

This paper describes a composable pipe model for sensor
data processing and actuation tasks. The pipe model is used to
analyze two end-to-end semantics: freshness and reaction time.
We provide a mathematical framework to derive feasible task
periods and budgets that satisfy both schedulability and end-
to-end timing requirements. We demonstrate the applicability
of our design approach by using it to port the Cleanflight
flight controller firmware to our in-house real-time operating
system (RTOS) called Quest. Experiments show that Cleanflight
ported to Quest is able to achieve end-to-end latencies within the
predicted time bounds derived by analysis.

Index Terms—real-time systems, end-to-end timing analysis,
flight controller

I. INTRODUCTION

Common to many embedded and cyber-physical applica-
tions is a communicating task pipeline, to acquire and process
sensor data and produce outputs that control actuators. For
example, a multirotor unmanned aerial vehicle (a.k.a. UAV
or drone) typically processes inertial sensors to estimate its
current attitude 1, and then uses a control function to adjust
rotor speeds, which adapt the flight path.

The objective of our work is to develop a system that
supports real-time task pipelines with end-to-end timing guar-
antees. As a case study, we focus on the implementation of a
real-time flight controller that is the basis for an autonomous
drone. Our first step is to refactor a popular flight control
firmware, called Cleanflight [1] for use with our in-house real-
time operating system (RTOS) called Quest [2]. Cleanflight [1]
is used on racing drones that are operated by humans via
radio-control. By porting Cleanflight to run as a real-time
application on Quest, we have the opportunity to integrate it
with additional functionality necessary for a fully autonomous
flight management system. The aim is to replace radio-control
with on-board tasks that perform configurable flight missions,

Z. Cheng, R. West and C. Einstein are in the Computer Science Department,
Boston University, Boston, MA 02215.

This article was presented in the International Conference on Embedded
Software 2018 and appears as part of the ESWEEK-TCAD special issue.

1The attitude is the orientation of the drone relative to a reference frame
such as earth.

such as aerial photography, package delivery, and search and
rescue.

Using a multirotor drone flight controller as an example, the
challenge is to determine the required task timing constraints
necessary for end-to-end latency guarantees. Sensor data must
be sampled and processed at a minimum rate to ensure the
drone is operating according to the most recent estimates of
its attitude, direction, altitude, and speed. Similarly, the rotor
speeds must be updated within certain time bounds to be
relevant to the current sensor readings. For this reason, we
define two end-to-end timing constraints, in terms of sensor
data freshness and actuator reaction time that constrain the
problem of composing a feasible task pipeline.

In Quest, each pipelined task is a separate thread of control,
mapped to a virtual CPU (VCPU). A VCPU is guaranteed C
time units of service every period, T , when its corresponding
thread is runnable. This is achieved by treating every VCPU
as a bandwidth-preserving server [3]. Thus, for a set of tasks
in a pipeline, each mapped to a separate VCPU, the problem
is to determine a valid set of budgets and periods that ensure
end-to-end freshness and reaction times, while satisfying the
schedulability of all VCPUs.

The contributions of this paper are: 1) a composable pipe
model that guarantees bounded end-to-end processing and
communication delay amongst a set of independently activated
tasks assigned to bandwidth-preserving servers; 2) a method
to derive task periods and budgets from given end-to-end
timing constraints in the application design stage; 3) the
re-implementation and evaluation of the Cleanflight flight
controller on the Quest real-time operating system.

The following section provides background to the execution
model used in this paper. Section III describes the end-to-
end timing analysis of our proposed composable pipe model.
Section IV shows how the end-to-end time is leveraged in
the application design stage, while Section V details the re-
implementation and evaluation of Cleanflight on the Aero
board. Related work is discussed in Section VI, followed by
conclusions and future work in Section VII.

II. EXECUTION MODEL

This paper is motivated by our objective to implement an
autonomous flight management system for multirotor drones.
An autonomous drone is one that is able to reason about
and adapt to changes in its surroundings, while accomplishing
mission objectives without remote assistance from a human
being. As part of this effort, we have undertaken a port
of the Cleanflight firmware to the Quest real-time operating



2

system. The core software components of Cleanflight consist
of sensor and actuator drivers, a PID controller, the Mahony
Attitude and Heading Reference (AHRS) algorithm, various
communication stacks, and a logging system.

A. Task Model

We model the flight controller program as a set of real-time
periodic tasks {τ1, τ2, · · · , τn} , whose initial release times
are arbitrary. Each task τ j is characterized by its worst-case
execution time ej , period T j , and a deadline that is equal
to period. Additionally, each task communicates with zero or
more successors and predecessors, to exchange and process
data.
ej and T j are determined during the design stage and

are fixed at runtime. ej is usually profiled off-line under the
worst-case execution condition. Deciding the value of T j is
a challenging process, which is the major topic of this paper.
It mainly depends on the end-to-end latency constraints and
the schedulability test. All the periodic tasks are implemented
using user-level threads.

Apart from user-level threads, there are kernel threads
dedicated to I/O interrupts, which originate primarily from
the SPI and I2C bus in Cleanflight. Quest executes interrupts
in a deferrable thread context, having a corresponding time
budget. This way, the handling of an interrupt does not steal
CPU cycles from a currently running, potentially time-critical
task.

B. Scheduling Model

Threads in Quest are scheduled by a two-level scheduling
hierarchy, with threads mapped to virtual CPUs (VCPUs) that
are mapped to physical CPUs. Each VCPU is specified a
processor capacity reserve [4] consisting of a budget capacity,
C, and period, T . The value of C and T are determined by
the e and T of the task mapped to the VCPU. A VCPU is
required to receive at least C units of execution time every
T time units when it is runnable, as long as a schedulability
test [5] is passed when creating new VCPUs. This way, Quest’s
scheduling subsystem guarantees temporal isolation between
threads in the runtime environment.

Conventional periodic tasks are assigned to Main VCPUs,
which are implemented as Sporadic Servers [3] and scheduled
using Rate-Monotonic Scheduling (RMS) [6]. The VCPU with
the smallest period has the highest priority. Instead of using
the Sporadic Server model for both main tasks and bottom half
threads, special I/O VCPUs are created for threaded interrupt
handlers. Each I/O VCPU operates as a Priority Inheritance
Bandwidth preserving Server (PIBS) [7]. A PIBS uses a
single replenishment to avoid fragmentation of replenishment
list budgets caused by short-lived interrupt service routines
(ISRs). By using PIBS for interrupt threads, the scheduling
overheads from context switching and timer reprogramming
are reduced [8].

C. Communication Model

Control flow within the flight controller is influenced by
the path of data, which originates from sensory inputs and

ends with actuation. Inputs include inertial sensors, optional
cameras and GPS devices, while actuators include motors
that affect rotor speeds and the attitude of the drone. Data
flow involves a pipeline of communicating tasks, leading to
a communication model characterized by: (1) the interarrival
times of tasks in the pipeline, (2) inter-task buffering, and (3)
the tasks’ access pattern to communication buffers.

Periodic versus Aperiodic Tasks. Aperiodic tasks have
irregular interarrival times, influenced by the arrival of data.
Periodic tasks have fixed interarrival times and operate on
whatever data is available at the time of their execution. A
periodic task implements asynchronous communication by not
blocking to await the arrival of new data.

Register-based versus FIFO-based Communication. A
FIFO-based shared buffer is used in scenarios where data
history is an important factor. However, in a flight controller,
data freshness outweighs the preservation of the full history
of all sampled data. For example, the motor commands should
always be computed from the latest sensor data and any
stale data should be discarded. Moreover, FIFO-based com-
munication results in loosely synchronous communication: the
producer is suspended when the FIFO buffer is full and the
consumer is suspended when the buffer is empty. Register-
based communication achieves fully asynchronous communi-
cation between two communicating parties using Simpson’s
four-slot algorithm [9].

Implicit versus Explicit Communication. Explicit com-
munication allows access to shared data at any time point
during a task’s execution. This might lead to data inconsis-
tency in the presence of task preemption. A task that reads
the same shared data at the beginning and the end of its
execution might see two different values, if it is preempted
between the two reads by another task that changes the value
of the shared data. Conversely, the implicit communication
model [10] essentially follows a read-before-execute paradigm
to avoid data inconsistency. It mandates a task to make a local
copy of the shared data at the beginning of its execution and to
work on that copy throughout its execution. Simpson’s four-
slot algorithm [9] ensures the read and write stages avoid data
corruption without blocking.

This paper assumes a periodic task model, as this simplifies
timing analysis. Applications such as Cleanflight implement
periodic tasks to sample data and perform control operations.
Quest also adopts register-based, implicit communication for
data freshness and consistency.

III. END-TO-END TIMING ANALYSIS

In this section, we first distinguish two different timing
semantics for end-to-end communication, which will be used
as the basis for separate timing analyses. Secondly, we develop
a composable pipe model for communication, which is derived
from separate latencies that influence end-to-end delay. Lastly,
we use the pipe model to derive the worst-case end-to-end
communication time under various situations.

A. Semantics of End-to-end Time
To understand the meaning of end-to-end time, consider the

following two constraints for a flight controller:



3

• Constraint 1: a change in motor speed must be within 2 ms
of the gyro sensor reading that caused the change.
• Constraint 2: an update to a gyro sensor value must be within
2 ms of the corresponding update in motor speed.
The values before and after a change differ, whereas they may
stay the same before and after an update. These semantics
lead to two different constraints. To appreciate the difference,
imagine the two cases in Table I. In Case 1, the task that reads
the gyro runs every 10 ms and the one that controls the motors
runs every 1 ms. Case 1 is guaranteed to meet Constraint 1
because the motor task runs more than once within 2 ms, no
matter whether the gyro reading changes. However, it fails
Constraint 2 as the gyro task is not likely to run even once in
an interval of 2 ms. Conversely, Case 2 is guaranteed to meet
Constraint 2 but fails Constraint 1 frequently.

Gyro Period Motor Period
Case 1 10 ms 1 ms
Case 2 1 ms 10 ms

TABLE I
EXAMPLE PERIODS

This example demonstrates the difference between the two
semantics of end-to-end time, defined as follows:
• Reaction time is the time it takes for a sample of input
data to flow through the system, and is affected by the period
of each consumer in a pipeline. A reaction timing constraint
bounds the time interval between a sensor input and the first
corresponding actuator output.
• Freshness time is the interval within which a sampled
data input has influence on the system, and is affected by
the period of each producer in a pipeline. A freshness timing
constraint bounds the interval between a sensor input and the
last corresponding actuator output.

Constraint 1, above, is a constraint on reaction time, while
Constraint 2 is on freshness time. We perform analysis of
the two semantics of time in Section III-E2 and III-E3,
respectively.

B. Latency Contributors

The end-to-end communication delay is influenced by sev-
eral factors, which we will identify as part of our analysis. To
begin, we first consider the end-to-end communication pipeline
illustrated as a task chain in Figure 1. Task τ1 reads input data
Din over channel Chin, processes it and produces data D1.
Task τ2 reads D1 and produces D2, and τ3 eventually writes
output Dout to channel Chout after reading and processing
D2.

Fig. 1. Task Chain

Each task handles data in three stages, i.e., read, process
and write. The end-to-end time should sum the latency of
each stage in the task chain. Due to the asynchrony of

communication, however, we also need to consider one less
obvious latency, which is the waiting time it takes for an
intermediate output to be read in as input, by the succeeding
task in the chain. In summary, the latency contributors are
classified as follows:
• Processing latency represents the time it takes for
a task to translate a raw input to a processed output. The
actual processing latency depends not only on the absolute
processing time of a task without interruption, but also on the
service constraints (i.e., CPU budget and period of the VCPU)
associated with the task.
• Communication latency represents the time to trans-
fer data over a channel. The transfer data size, channel
bandwidth, propagation delay, and communication protocol
overheads all contribute to the overall latency. Since our
communication model is asynchronous and register-based as
described in Section II, queuing latency is not a concern of
this work.
• Scheduling latency represents the time between the
arrival of data on a channel from a sending task and when
the receiving task begins reading that data. The scheduling
latency depends on the order of execution of tasks in the
system, and therefore has significant influence on the end-
to-end communication delay.

C. The Composable Pipe Model

In Section III-B, we identified the factors that influence
end-to-end communication delay. Among them, the absolute
processing time and the transfer data size are determined by
the nature of the task in question. To capture the rest of the
timing characteristics, we develop a composable pipe model,
leveraging the scheduling approach described in Section II-B.
A task and pipe have a one-to-one relationship, as illustrated
in Figure 2.

Fig. 2. Illustration of a Pipe

A pipe has one pipe terminal and two pipe ends, with
one end for input and the other for output. A pipe terminal
is represented by a VCPU, guaranteeing at least C units
of execution time every T time units when runnable. Pipe
terminals are associated with conventional tasks bound to Main
VCPUs and kernel control paths (including interrupt handlers
and device drivers) bound to I/O VCPUs, as described in
Section II-B.

A pipe end is an interface to a communication channel,
which is either an I/O bus or shared memory. The pipe
end’s propagation delay is assumed negligible, while the



4

transmission delay is modeled by the bandwidth parameter,
W , of the communication channel. δ is used to denote the
software overheads of a communication protocol. Though we
are aware that δ depends on the data transfer size, the time
difference is negligible, compared to the time of actual data
transfer and processing. Therefore, for the sake of simplicity,
δ is a constant in our model.

Note that in our definition of a single pipe there is only one
terminal, not two at either end of the pipe. This differs from
the idea of a POSIX pipe, which comprises a task at both
sending and receiving ends. In our case, a pipe is represented
by the single terminal that takes input and produces output.

An example of two communicating pipes is shown in
Figure 3. This is representative of a communication path
between a gyro task and attitude calculation in Cleanflight
on the Aero board. The gyro task is mapped to Pipe 1, whose
input end is over the SPI bus connected to the gyro sensor
and output end is over a region of memory shared with Pipe
2. Pipe 1’s terminal is an I/O VCPU because the gyro task is
responsible for handling I/O interrupts generated from the SPI
bus. On the contrary, the terminal of Pipe 2 is a Main VCPU
as the AHRS task is CPU-intensive. The gyro task reads raw
gyro readings from Pipe 1’s input end, processes them, and
writes filtered gyro readings to Pipe 1’s output end. Similarly,
the AHRS task reads the filtered gyro readings from Pipe 2’s
input end and produces attitude data for its output end over
shared memory.

Fig. 3. Illustration of Two Communicating Pipes

1) Notation: The timing characteristics of a pipe are de-
noted by the 3-tuple, π = ((Wi, δi), (C, T ), (Wo, δo)), where:
• (Wi, δi) and (Wo, δo) denote the bandwidth and software

overheads of the input and output ends, respectively.
• (C, T ) denotes the budget and period of the pipe terminal.

A task τ is also denoted as a 3-tuple, τ = (di, p, do), where:
• di denotes the size of the raw data that is read in by τ in

order to perform its job, and do denotes the size of the
processed data that is produced by τ .

• p denotes the uninterrupted processing time it takes for
τ to turn the raw data into the processed data.

In addition, τ 7→ π denotes the mapping between task τ and
pipe π. A task τ = (di, p, do) is said to be mapped to a pipe
π = ((Wi, δi), (C, T ), (Wo, δo)) when
• data of size di is read from the input end with parameters

(Wi, δi), and data of size do is written to the output end
with parameters (Wo, δo);

• the pipe terminal with parameters (C, T ) is used for
scheduling and accounting of the read and write oper-
ations, as well as the processing that takes time p.

For the composition of a chain of pipes, the operator | connects
a pipe’s output end to its succeeding pipe’s input end. For
example, Figure 3 is represented as τgyro 7→ π1|τAHRS 7→ π2.
The scheduling latency between two pipes is denoted by
Sτ 7→π|τ ′ 7→π′ . Lastly, given a task set T = {τ1, τ2, · · · , τn}
identity mapped to a pipe set Π = {π1, π2, · · · , πn}, where
pipes are connected to each other in ascending order of sub-
script, Eτ1 7→π1|τ2 7→π2|···|τn 7→πn

denotes the end-to-end reaction
time of the pipe chain, and Fτ1 7→π1|τ2 7→π2|···|τn 7→πn

denotes the
end-to-end freshness time.

D. Reachability

Before mathematically analyzing end-to-end time, we intro-
duce the concept of reachability, inspired by the data-
path reachability conditions proposed by Feiertag et al [11].
The need to consider reachability is due to a subtle differ-
ence between our register-based asynchronous communication
model and the traditional FIFO-based synchronous communi-
cation. In the latter, data is guaranteed to be transferred without
loss or repetition. This way, end-to-end time is derived from
the time interval between the arrival of a data input and the
departure of its corresponding data output. Unfortunately, this
might result in an infinitely large end-to-end time in the case of
register-based asynchronous communication where not every
input leads to an output. Instead, unprocessed input data might
be discarded (overwritten) when newer input data is available,
as explained in Section II-C.

An infinitely large end-to-end time, while mathematically
correct, lacks practical use. Therefore, the following timing
analysis ignores all input data that fails to “reach” the exit of
the pipe chain it enters. Instead, only those data inputs that
result in data outputs from the pipe chain are considered. We
define this latter class of inputs as being reachable.

E. Timing Analysis

As alluded to above, the execution of a task is divided into
three stages, involving (1) reading, (2) processing, and (3) writ-
ing data. To simplify the timing analysis, we assume that tasks
are able to finish the read and write stages within one period
of the pipe terminal, to which the task is mapped. This is not
unrealistic for applications such as a flight controller, because:
1) data to be transferred is usually small, and 2) all three
stages are typically able to finish within one period. However,
to maintain generality, we do not impose any restriction on
the length of the processing stage.

1) Worst-case End-to-end Time of a Single Pipe: First,
we consider the case where there is a single pipe. Two key
observations for this case are: 1) the absence of scheduling
latency due to the lack of a succeeding pipe, and 2) the
equivalence of the two end-to-end time semantics (reaction
and freshness time) due to the lack of a preceding pipe. We
therefore use Lτ 7→π to unify the notation of Eτ 7→π and Fτ 7→π .

Given task τ = (di, p, do) mapped to pipe π =
((Wi, δi), (C, T ), (Wo, δo)), the worst-case end-to-end time is



5

essentially the execution time of the three stages of τ on
π. Due to the timing property of π’s pipe terminal, τ is
guaranteed C units of execution time within any window of
T time units. Hence, the worst-case latency Lwcτ 7→π is bounded
by the following:

Lwcτ 7→π =

⌊
∆in + p+ ∆out

C

⌋
· T + (∆in + p+ ∆out) mod C

(1)

where ∆in = di
Wi

+ δi and ∆out = do
Wo

+ δo.
2) Worst-case End-to-end Reaction Time of a Pipe Chain:

In this section, we extend the timing analysis of a single pipe
to a pipe chain. For the sake of simplicity, we start with a chain
of length two. We show in Section III-F that the mathematical
framework is applicable to arbitrarily long pipe chains. To
distinguish the tasks mapped to the two pipes, we name the
preceding task producer and the succeeding consumer.
The producer is denoted by τp = (dpi , p

p, d) and its pipe is
denoted by πp = ((W p

i , δ
p
i ), (Cp, T p), (W p

o , δ
p
o)). Similarly,

the consumer task and pipe are denoted by τc = (d, pc, dco)
and πc = ((W c

i , δ
c
i ), (C

c, T c), (W c
o , δ

c
o)). Following the def-

inition of the end-to-end reaction time, Eτp 7→πp|τc 7→πc
, in

Section III-A, we investigate the time interval between a
specific instance of input data, denoted by Di, being read by
τp, and its first corresponding output, denoted by Do, being
written by τc.

It is of vital importance to recognize that end-to-end time of
a pipe chain is not simply the sum of the end-to-end time of
each single pipe in the chain. We also need to account for the
scheduling latency resulting from each appended pipe.
As described in Section III-B, the scheduling latency depends
on the order of execution of tasks. We, therefore, perform the
timing analysis under two complementary cases: Case 1 - τc
has shorter period and thus higher priority than τp; Case 2 - τp
has shorter period and thus higher priority than τc, according
to rate-monotonic ordering.

Fig. 4. End-to-end Reaction Time in Case 1

a) Calculating the End-to-end Reaction Time: Case 1.
The key to making use of Lwcτp 7→πp

and Lwcτc 7→πc
in the timing

analysis of Ewcτp 7→πp|τc 7→πc
, is to find the worst-case scheduling

latency, Swcτp 7→πp|τc 7→πc
. As illustrated in Figure 4, the worst-

case scheduling latency occurs when τc preempts τp (Step

1 ) immediately before τp produces the intermediate output
Dint corresponding to Di. After preemption, τc uses up πc’s
budget and gives the CPU back to τp. Upon being resumed,
τp immediately produces Dint (Step 2 ). For τc to become
runnable again to read Dint in Step 3 , it has to wait for its
budget replenishment. The waiting time is exactly the worst-
case scheduling latency:

Swcτp 7→πp|τc 7→πc
= T c − Cc − (

d

W p
o

+ δpo) (2)

After replenishment, τc reads in Dint, processes it and
eventually writes out Do. As Eτp 7→πp|τc 7→πc

is defined to be
the time interval between the arrival of Di and the departure
of Do, the worst case of Eτp 7→πp|τc 7→πc

is as follows:

Ewcτp 7→πp|τc 7→πc
= Lwcτp 7→πp

+ Swcτp 7→πp|τc 7→πc
+ Lwcτc 7→πc

= Lwcτp 7→πp
+ Lwcτc 7→πc

+ T c − Cc − (
d

W p
o

+ δpo)

(3)

Note that if τc runs out of budget before writing Do, τp may
overwrite Dint in the pipe with new data (Step 4 ). However,
the implicit communication property guarantees that τc only
works on its local copy of the shared data, which is Dint until
τc initiates another read.

Case 2. The situation is more complicated when τp has
higher priority than τc. The worst-case scenario in Case 1
does not hold in Case 2 primarily because τp might overwrite
Dint before τc has a budget replenishment. This is impossible
in Case 1 because τp has a larger period than τc, which is
guaranteed to have its budget replenished before τp is able to
initiate another write. In other words, in Figure 4, Step 3 is
guaranteed to happen before Step 4 .

Fig. 5. End-to-end Reaction Time in Case 2

The data-overwrite problem in Case 2 is the reason for
introducing reachability in Section III-D. To find the worst-
case end-to-end reaction time in this case, we have to find
the scenario that not only leads to the worst-case scheduling
latency, but also originates from a reachable input. Figure 5
illustrates a scenario that meets these requirements. In the
figure, τp preempts τc immediately after τc finishes reading
τp’s intermediate output (Step 3 ), Dint, corresponding to
Di. It follows that the longest possible waiting time, between
Dint becoming available (Step 2 ) and τc reading the data



6

(Step 3 ), is the period of τp minus both its budget and the
execution time of the read stage of τc. This waiting time is
exactly the worst-case scheduling latency:

Swcτp 7→πp|τc 7→πc
= T p − Cp − (

d

W c
i

+ δci ) (4)

Between reading Dint and writing Do, τc might experi-
ence more than one preemption from τp, which repeatedly
overwrites the shared data. This will not, however, affect τc’s
processing on Dint either spatially or temporally, thanks to
the VCPU model and the implicit communication semantic.
Similar to Case 1, the worst-case end-to-end reaction time is
again the sum of Equation 1 of each pipe and Equation 4:

Ewcτp 7→πp|τc 7→πc
= Lwcτp 7→πp

+ Swcτp 7→πp|τc 7→πc
+ Lwcτc 7→πc

= Lwcτp 7→πp
+ Lwcτc 7→πc

+ T p − Cp − (
d

W c
i

+ δci )

(5)

Since the output end of τp and the input end of τc share the
same communication channel, it is reasonable to assume that
W p
o = W c

i and δpo = δci . With that, we proceed to unify the
worst-case end-to-end reaction time as follows:

Ewcτp 7→πp|τc 7→πc
=


T c − Cc − ( dW + δ)

+Lwcτp 7→πp
+ Lwcτc 7→πc

, if T c < T p

T p − Cp − ( dW + δ)

+Lwcτp 7→πp
+ Lwcτc 7→πc

, otherwise

(6)

where W = W p
o = W c

i and δ = δpo = δci
b) Special Cases: Real-time systems are often profiled

offline to obtain worst-case execution times of their tasks. In
our case, this would enable CPU resources for pipe terminals
to be provisioned so that each task completes one iteration of
all three stages (read, process, write) in one budget allocation
and, hence, period. This implies that ∆in + p+ ∆out + ε = C
in Equation 1, where ε is an arbitrarily small positive number
to account for surplus budget after completing all task stages.
With that, it is possible to simplify the worst-case end-to-end
reaction time derived in Section III-E2a. First, Equation 1 is
simplified as follows:

Lwcτ 7→π = bC − ε
C
c · T + [(C − ε) mod C]

= 0 · T + (C − ε) ≈ C
(7)

Using Equation 7, Equation 5 reduces to:

Ewcτp 7→πp|τc 7→πc
= T p − Cp −∆c

in + Lwcτp 7→πp
+ Lwcτc 7→πc

= T p − Cp −∆c
in + Cp + Cc

= T p + Cc −∆c
in

(8)

The same simplification applied to Equation 3 of Case 1
reduces Equation 6 to:

Ewcτp 7→πp|τc 7→πc
=

{
T c + Cp −∆, if T c < T p

T p + Cc −∆, otherwise
(9)

where ∆ = d
W + δ.

If we further assume that πp and πc communicate data
of small size over shared memory, it is possible to discard

communication overheads, such that ∆ = 0. With that,
Equation 9 simplifies to:

Ewcτp 7→πp|τc 7→πc
=

{
T c + Cp, if T c < T p

T p + Cc, otherwise
(10)

Finally, notice that by appending τc 7→ πc to τp 7→ πp,
the worst-case end-to-end reaction time is increased by the
following:

↑ Ewc = Ewcτp 7→πp|τc 7→πc
− Ewcτp 7→πp

= Ewcτp 7→πp|τc 7→πc
− Cp

=

{
T c, if T c < T p

T p − Cp + Cc, otherwise

(11)

3) Worst-case End-to-end Freshness Time of a Pipe Chain:
Techniques similar to those in Section III-E2 will be used
to analyze end-to-end freshness time. To avoid repetition, we
abbreviate the end-to-end freshness timing analysis by only
focusing on the special cases described in Section III-E2b.

Recall that freshness time is defined to be the interval
between the arrival of an input and the departure of its last
corresponding output. Therefore, we investigate the interval
between a specific instance of input data, Di, being read by
τp and its last corresponding output, Do, being written by τc.

Fig. 6. End-to-end Freshness Time in Case 1

Case 1. As illustrated in Figure 6, Di is read by the first
instance of τp at time 0 and the intermediate output, Dint, is
written to the shared data (Step 1 ). After that, τc produces
three outputs corresponding to Dint (Steps 2 , 3 and 4 ),
or to Di indirectly. The last output, Do, is the one preceding
τp’s write of new data, Dnew (Step 5 ). Thus, the worst-case
end-to-end freshness time, Fwcτp 7→πp|τc 7→πc

, occurs when: 1) the

two consecutive writes (Steps 1 and 5 ) from τp have the
longest possible time interval between them, and 2) the write
of Do happens as late as possible. The latest time to write
Do is immediately before the second write of τp, which is
preempted by higher priority τc.

From Figure 6 that the worst-case end-to-end freshness time
is:

Fwcτp 7→πp|τc 7→πc
= 2 · T p −∆p

out (12)



7

Again, when communicating over shared memory, Equation 12
can be further simplified to:

Fwcτp 7→πp|τc 7→πc
= 2 · T p (13)

Case 2. When τp has a smaller period than τc, it is
impossible for τc to read the same intermediate output of τp
twice. In Figure 6, Step 5 is guaranteed to happen before
3 . Thus, the worst-case freshness time is essentially the

worst-case reaction time, shown in Equation 5.
In summary, the worst-case end-to-end freshness latency

of two communicating pipes is represented in the following
conditional equation:

Fτp 7→πp|τc 7→πc
=

{
2 · T p, if T c < T p

T p + Cc, otherwise
(14)

F. Composability

The timing analysis for two pipes in Section III-E2 extends
to pipe chains of arbitrary length. Every time an extra task
τnew (mapped to πnew) is appended to the tail end of a
chain (τtail 7→ πtail), the worst-case end-to-end reaction time
increases by the worst-case end-to-end time of the newly
appended pipe, plus the scheduling latency between the new
pipe and the tail pipe. The actual value of the increase,
depending on the relative priority of the new pipe and the tail
pipe, is shown in Equation 11. Similarly, the added end-to-end
freshness time can be derived from Equation 14.

Composability is a crucial property of our pipe model,
since it significantly eases the end-to-end time calculation
for any given pipeline. This provides the basis for a design
framework that derives task periods from given end-to-end
timing constraints. This is detailed in the following section.

IV. END-TO-END DESIGN

There are significant challenges to porting a flight control
firmware such as Cleanflight to run as a multithreaded ap-
plication on a real-time operating system. One of the major
issues is how to determine the period of each thread so that the
application is able to meet its end-to-end timing constraints.
A naive approach would be to start by choosing a tentative set
of periods and use the timing analysis method in Section III to
validate the timing correctness. Upon failure, the periods are
heuristically adjusted and the validation step is repeated until
end-to-end timing guarantees are met. This approach, however,
is potentially time-consuming and labor-intensive when the
number of tasks or constraints increase.

Inspired by Gerber et al [12], we derive task periods
from end-to-end timing constraints, by combining the timing
analysis of the pipe model with linear optimization techniques.
In this section, we generalize our method for use with a
broader spectrum of cyber-physical control applications.

A. Problem Definition

Consider a set of tasks Γ = {τ1, τ2, · · · , τn} and a set of
pipes Π = {π1, π2, · · · , πn}, where τj = (dji , p

j , djo) and

Fig. 7. Application Task Graph

Reaction
Eτ1 7→π1|τ4 7→π4

≤ 10,
Eτ2 7→π2|τ4 7→π4

≤ 15,
Eτ2 7→π2|τ5 7→π5|τ6 7→π6

≤ 25,
Eτ3 7→π3|τ6 7→π6

≤ 15;

Freshness
Fτ1 7→π1|τ4 7→π4

≤ 20,
Fτ2 7→π2|τ4 7→π4

≤ 30,
Fτ2 7→π2|τ5 7→π5|τ6 7→π6

≤ 50,
Fτ3 7→π3|τ6 7→π6

≤ 20;

Schedulability

∑6
j=1

Cj

T j ≤ 6( 6
√
2− 1)

Execution Time
∀j ∈ {1, 2, · · · , 6},
dji = djo = 3,

W j
i =W j

o = 20,
δji = δjo = 0.1,
pj = 0.5;

TABLE II
APPLICATION TIMING CHARACTERISTICS

πj = ((W j
i , δ

j
i ), (C

j , T j),
(W j

o , δ
j
o)). We additionally require the following information:

• the mapping between Γ and Π. For ease of notation, we
assume tasks map to the pipe with the same subscript,
hence ∀j ∈ {1, 2, · · · , n}, τj 7→ πj ;

• the topology of Π (an example is shown in Figure 7);
• ∀j ∈ {1, 2, · · · , n}, the value of dji , p

j and djo;
• ∀j ∈ {1, 2, · · · , n}, the value of W j

i , δji , W j
o and δjo;

• the end-to-end timing constraints, namely the value of
Eτi 7→πi|τj 7→πj |···|τk 7→πk

and/or Fτp 7→πp|τq 7→πq|···|τr 7→πr

where i, j, k, p, q, r ∈ {1, 2, · · · , n}.
The aim is to find a feasible set of {(Cj , T j)} pairs for
j ∈ {1, 2, · · · , n} that: (1) meets all the specified end-to-end
timing constraints, (2) passes the task schedulability test, and
(3) ideally but not necessarily minimizes CPU utilization. A
task should not be run faster than necessary, to free resources
for additional system objectives.

B. Solving the Constraints

Our solution is carried out in a three-step process. To make
it easier to understand, we use a concrete example with actual
numbers to elaborate the process. Consider the pipe topology
graph shown in Figure 7, in which there are six tasks mapped
to six pipes. Tasks 1, 2 and 3 read inputs from sensors, Tasks
4 and 6 write their outputs to actuators, and Task 5 is an
intermediary responsible for complicated processing such as



8

PID control or sensor data fusion. The timing characteristics
of the tasks and pipes are shown in Table II. Note that the
execution times are assumed to be identical for all tasks. In
practice this would not necessarily be the case but it does not
affect the generality of the approach.

In Step 1, we use the given di, do, p, Wi, δi, Wo and δo
to compute the budget of each pipe terminal. The budget is
set to a value that ensures the three stages (i.e., read, process
and write) finish in one period. To compute C1, for example,
we aggregate the times for τ1 to read, process and write data.
Thus C1 =

d1i
W 1

i
+δ1i +p1+

d1o
W 1

o
+δ1o . All budgets are computed

in a similar way.
When the input to a pipe terminal comes from multiple

sources the value di is aggregated from all input channels.
For example, τ4 receives a maximum of d4i = d1 +d2 amount
of data every transfer from both τ1 and τ2. Data from a pipe
terminal is not necessarily duplicated for all pipe terminals
that are consumers. For example, τ2 generates a maximum
of d2o = d2 data every transfer, by placing a single copy of
the output in a shared memory region accessible to both τ4
and τ5. If the communication channels did not involve shared
memory, then data would be duplicated, so that d2o = 2d2.

In Step 2, we derive a list of inequations involving period
variables from the given end-to-end timing and scheduling
constraints in Table II. For simplicity, the scheduling constraint
is shown as a rate-monotonic utilization bound on the six pipe
tasks. However, for sensor inputs and some actuator outputs,
Quest would map those tasks to I/O VCPUs that have a
different utilization bound, as described in our earlier work [7].

The derivation is based on Equations 9 and 14, and the
composability property of the pipe model. According to the
conditional equations, however, every two pipes with unde-
termined priority can lead to two possible inequations. This
exponentially increases the search space for feasible periods.
In order to prune the search space, our strategy is to always
start with the case where T p > T c. This is based on the
observation that tasks tend to over-sample inputs for the sake
of better overall responsiveness. Thus, the reaction constraint
Eτ2 7→π2|τ5 7→π5|τ6 7→π6

≤ 25, for example, is translated to
inequation T 5 + C2 − ∆ + T 6 ≤ 25. This is derived by
combining Equations 9 and 11. It is then possible to translate
all timing constraints to inequations with only periods as
variables. In addition, periods are implicitly constrained by
T j > Cj ,∀j ∈ {1, 2, · · · , n}.

Given all the inequations, Step 3 attempts to find the max-
imum value for each period so that the total CPU utilization
is minimized. We are then left with a linear programming
problem. Unfortunately, there is no polynomial time solution
to the integer linear programming problem, as it is known
to be NP-hard. Though solutions are possible under certain
mathematical conditions [13], this is beyond the scope of
this paper. Instead, in practice, the problem can be simplified
because 1) there are usually a small number of fan-in and fan-
out pipe ends for each task, meaning that a period variable is
usually involved in a small number of inequations, and 2) a
sensor task period is usually pre-determined by a hardware
sampling rate limit. For example, if we assume T 3 is known

Fig. 8. Simulation Pipe Topology

to be 5, a feasible set of periods for the example in Table II
is easily found: {T 1 = 10, T 2 = 15, T 3 = 10, T 4 = 10, T 5 =
15, T 6 = 5}. If we ignore the integer requirement, it is
possible to find a feasible solution in polynomial time using
rational numbers rounded to integers. Though rounding may
lead to constraint violations, it is possible to increase the
time resolution to ensure system overheads exceed those of
rounding errors. If all else fails, one can resort to an exhaustive
search of all possible constraint solutions.

Note that the above approach aims to find a feasible,
rather than optimal, set of task periods. An optimal solution
depends on which constraints (freshness, reaction time, or
schedulability) are more important, which is out of the scope
of this paper.

V. EVALUATION

This section describes experiments on the Intel Aero board
with an Atom x7-Z8750 1.6 GHz 4-core processor and 4GB
RAM.

A. Simulation Experiments

We developed simulations for both Linux and Quest, to
predict the worst-case end-to-end time using the equations
in Section III. The simulations consist of seven tasks, all of
which search for prime numbers within a certain range and
then communicate with one another to exchange their results.
Each of the tasks is mapped to a separate pipe. The topology
of the pipes is shown in Figure 8. The communication channel
is shared memory with caches disabled and the data size
is set to 6.7 KB to achieve a non-negligible 1 millisecond
communication overhead. Each task is assigned a different
search range and the profiled execution time is shown in
Table III in milliseconds. The budget of each pipe is set to
be slightly larger than the execution time of its corresponding
task, to compensate for system overheads. The settings of
each pipe terminal (PT) are also shown in Table III, again
in milliseconds. Apart from the seven main tasks, the system
is loaded with low priority background tasks that consume all
the remaining CPU resources.

τ1 τ2 τ3 τ4 τ5 τ6 τ7
11.5 5.5 3.5 5.5 11.5 11.5 3.5
PT 1 PT 2 PT 3 PT 4 PT 5 PT 6 PT 7

(12,100) (6,50) (4,150) (6,100) (12,150) (12,100) (4,50)

TABLE III
SIMULATION SETTINGS



9

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

P1
Reaction

P2
Reaction

P1
Freshness

P2
Freshness

T
im

e
 (

m
s
)

Observed
Predicted

Fig. 9. Observed vs. Predicted Freshness & Reaction Times

We measure the end-to-end reaction time and freshness time
separately, for pipeline p1 → p2 → p3 → p4 → p5 (denoted
by P1), and p6 → p3 → p4 → p7 (denoted by P2), and
compare them to corresponding theoretical bounds. Figure 9
shows the results after 100,000 outputs are produced by τ5
and τ7, respectively on Quest. As can be seen, the observed
values are always within the prediction bounds.

The difference between observed and predicted freshness
times is greater than between observed and predicted reaction
times. This is because our strategy for deriving feasible task
periods starts with producers having greater periods than
consumers. As stated in Section III-A, the freshness time is
affected by the period of each producer, so the prediction may
not be as tight as for reaction time.

We also perform the same experiment on Yocto Linux
shipped with the Aero board. The kernel is version 4.4.76
and patched with the PREEMPT RT patch. While running the
simulation, the system also uncompresses Linux source code
in the background. This places the same load on the system
as the background tasks in Quest. Figure 10 summarizes
the average reaction time (AVGR), worst-case reaction time
(WCR), maximum variance of reaction time (MaxRV), average
freshness time (AVGF), worst-case freshness time (WCF) and
maximum variance of freshness time (MaxFV) of pipeline P1
for Quest and Linux. Compared to Linux, there is less variance
shown by the end-to-end times using Quest. Additionally, the
freshness and reaction times are lower than with Linux.

B. The Cleanflight Experiment

Our next experiments apply the end-to-end design ap-
proach to determining the periods of each task in the re-
implementation of Cleanflight. The flight controller is refac-
tored as a multithreaded application running on the Intel Aero
board. The hardware and software architecture is shown in
Figure 11.

Hardware. We currently only use Core 0 to run Cleanflight
on Quest. The remaining three cores are reserved for future
development of a complete autonomous flight management
system. Apart from the CPU, the Aero board also has an
FPGA-based I/O coprocessor. It provides FPGA-emulated
I/O interfaces including analog-to-digital conversion (ADC),

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

AVGR WCR MaxRV AVGF WCF MaxFV

T
im

e
 (

m
s
)

Quest
Linux

Fig. 10. Quest vs. Linux End-to-end Times

UART serial, and pulse-width modulation (PWM). Quest
currently uses the I/O hub to send PWM signals to electronic
speed controllers (ESCs) that alter motor and, hence, drone
rotor speeds. We modified the FPGA logic to improve the
timing resolution of PWM signals, as well as control their
duty cycle and periods. We also wrote drivers to use an on-
board Bosch BMI160 Inertial Measurement Unit (IMU). Both
the I/O hub and IMU connect to the main processor via an
SPI bus.

Fig. 11. Cleanflight Data Flow

Software. To avoid writing further device drivers, we dis-
abled non-time-critical auxiliary features of Cleanflight such
as telemetry, blackbox data logging, and UART-based flight
control configuration. The essential components are shown
as circular tasks in Figure 11. The AHRS sensor fusion task
takes the input readings of the accelerometer and gyroscope
(in the BMI160 IMU) and calculates the current attitude of the
drone. Then, the PID task compares the calculated and target
attitudes, and feeds the difference to the PID control logic. In
the original Cleanflight code, the target attitude is determined
by radio-control signals from a human flying the drone. In an
autonomous setting, the target attitude would be calculated ac-
cording to on-board computations based on mission objectives
and flight conditions. The output is nonetheless mixed with the



10

desired throttle and read in by the PWM task, which translates
it to motor commands. Motor commands are sent over the SPI
bus and delivered as PWM signals to each ESC associated with
a separate motor-rotor pair on the drone. We decouple all these
tasks into separate threads. For safety reasons, the sensor and
PWM tasks are given individual address spaces. For simplicity,
we use a synthetic radio input value (20% throttle and 0 degree
pitch, roll, and yaw angle) instead of reading from the real
radio driver. The tasks are profiled and execution times are
shown in Table IV.

Gyro AHRS PID PWM Accl Radio
Exec Times (µs) 174 10 2 970 167 12

TABLE IV
TASK EXECUTION TIMES

As can be seen in Figure 11, there are three data paths,
originating from the gyro, accelerometer, and radio receiver,
respectively. Unfortunately, there is little information available
on what end-to-end timing constraints should be imposed on
each path to guarantee a working drone. Most timing param-
eters in the original Cleanflight are determined by trial and
error. Instead of determining the optimum timing constraints,
the focus of this paper is on guaranteeing given constraints.
Therefore, we first port Cleanflight to Yocto Linux on the
Aero board, as a reference implementation. The Linux version
remains single-threaded and is used to estimate the desired
end-to-end time. For example, for the gyro path, the worst-
case reaction and freshness times are measured to be 9769
and 22972 µs, respectively. We round them to 10 and 23
ms, and use them as end-to-end timing constraints for our
flight controller implementation. Using the same approach,
we determine end-to-end reaction and freshness times for
the accelerometer path, which are set to 10 and 23 ms,
respectively. Finally, for the radio path, we set the end-to-end
reaction and freshness times to be 20 and 44 ms, respectively.

Using the execution times in Table IV and timing constraints
above, we apply the end-to-end design approach to derive the
periods. The results for each task are shown in Table V. Note
that there are four extra tasks inherited from the original Clean-
flight. They are responsible for checking system utilization,
battery current and voltage, and emitting low battery alerts.
However, they are not on the critical control path and we run
them only when there is surplus CPU time. Thus for brevity,
they are not shown in Figure 11 and not involved in the period
calculation.

Task Gyro AHRS PID
Budget/Period (µs) 200/1000 100/5000 100/2000

Task PWM Accl Radio
Budget/Period (µs) 1000/5000 200/1000 100/10000

TABLE V
TASK PERIODS

Evaluation. To measure the actual end-to-end time, we focus
on the longest pipe chain highlighted in Figure 11. We
instrument the Cleanflight code to append every gyro reading
with an incrementing ID, and also record a timestamp before
the gyro input is read. The timestamp is then stored in an
array indexed by the ID. Every task is further instrumented
to maintain the ID when translating input data to output. This

way, the ID is preserved along the pipe chain, from the input
gyro reading to the output motor command. After the PWM
task sends out motor commands, it looks up the timestamp
using its ID and compares it to the current time. By doing
this, we are able to log both the reaction and freshness end-
to-end time for every input gyro reading. We then compare the
observed end-to-end time with the given timing constraints, as
well as the predicted worst-case value. Results are shown in
Figure 12. As can be seen, the observed values are always
within the predicted bounds, and always meet the timing
constraints.

 3000

 6000

 9000

 12000

 15000

 18000

 21000

 24000

Reaction Freshness

T
im

e
 (

u
s
)

Observed Best Case
Observed Worst Case

Predicted
Constraint

Fig. 12. Cleanflight Times

VI. RELATED WORK

Feiertag et al. [11] distinguish four semantics of end-to-end
time and provide a generic framework to determine all the
valid data paths for each semantic. The authors do not perform
timing analysis as no scheduling model is assumed. Hamann et
al. [10] also discuss end-to-end reaction and age time. Their
work focuses on integrating three different communication
models, including the implicit communication model, into
existing timing analysis tools such as SymTA/S [14]. While
our composable pipe model is also based on implicit commu-
nication, we perform timing analysis for a sequence of RMS-
scheduled tasks running on bandwidth-preserving servers.

Others have proposed end-to-end timing analysis at the
model level in the automotive domain [15], [16]. Our approach
is applicable to any applications with data pipeline processing,
freshness and reaction constraints. A large portion of end-
to-end reaction time analysis is based on the synchronous
data-flow graph (SDFG) [17], where inter-task communication
is driven by the arrival of input data. Real-time scheduling
techniques have been used to analyze end-to-end latencies in
systems modeled by SDFGs [18], [19].

Gerber et al. [12] propose a synthesis approach that deter-
mines tasks’ periods, offsets and deadlines from end-to-end
timing constraints. Their work relies on task precedence con-
straints as there is no scheduling model used for the analysis.
Our work uses the Quest scheduling model to perform end-to-
end timing analysis. We then derive task periods and budgets
to ensure specific reaction, freshness and schedulability con-
straints.

In contrast to our work, there are programming languages
that allow the specification and verification of end-to-end



11

timing properties. For example, Prelude [20] and Giotto [21]
are languages designed to derive tasks’ periods based on
user-specified timing constraints. Lauer et al. [22], [23] use
formal methods to verify end-to-end timing properties for
avionic systems. Forget et al. [24] define a language to specify
formally end-to-end constraints and propose a technique to
verify those constraints.

VII. CONCLUSIONS & FUTURE WORK

This paper introduces a composable pipe model that is
built on task, scheduling and communication abstractions.
The pipe model is used to derive a set of task periods
and budgets that satisfy both schedulability and end-to-end
freshness and reaction timing constraints. We analyze reaction
and freshness time in the context of data flow through a task
pipeline in a drone flight controller, which performs sensor
data processing and motor actuation. Experiments show that
Cleanflight ported to the Quest RTOS is able to achieve end-
to-end latencies within the predicted time bounds derived by
analysis. The scheduling framework in Quest is rich enough
to provide bandwidth-guaranteed service to both tasks and
interrupt service routines via VCPUs. However, the analysis
presented herein is applicable to any OS capable of providing
CPU bandwidth guarantees to all task and I/O operations.

Future work will focus on the application of the pipe model
to a fully autonomous flight management system involving
additional tasks to those in Cleanflight. We intend to use
our in-house partitioning hypervisor, called Quest-V [25] to
simultaneously host Quest and Linux on the Aero board. Less
time-critical tasks such as telemetry, blackbox data logging,
path planning and camera-based object detection will be
assigned to Linux, to leverage pre-existing device drivers and
libraries. Time-critical flight control tasks will then be able to
execute without interference in Quest. This avoids the need
for a separate control board dedicated to time-critical tasks,
which requires space on the drone, and increases weight and
power consumption.

ACKNOWLEDGMENT

This work is supported by a gift from Intel Corporation,
and the National Science Foundation (NSF) under Grant #
1527050. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the NSF.

REFERENCES

[1] “Cleanflight: http://cleanflight.com/.”
[2] “Quest RTOS: http://questos.org/.”
[3] B. Sprunt, “Scheduling Sporadic and Aperiodic Events in a Hard Real-

Time System,” Software Engineering Institute, Carnegie Mellon, Tech.
Rep., 1989.

[4] C. W. Mercer, S. Savage, and H. Tokuda, “Processor Capacity Reserves
for Multimedia Operating Systems,” Pittsburgh, PA, Tech. Rep., 1993.

[5] J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,” in
Proceedings of the IEEE Real-Time Systems Symposium (RTSS), 1989.

[6] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[7] M. Danish, Y. Li, and R. West, “Virtual-CPU Scheduling in the Quest
Operating System,” in Proceedings of the 17th Real-Time and Embedded
Technology and Applications Symposium, 2011.

[8] E. Missimer, K. Missimer, and R. West, “Mixed-Criticality Scheduling
with I/O,” in Proceedings of the 28th Euromicro Conference on Real-
Time Systems (ECRTS), July 2016, pp. 120–130.

[9] H. Simpson, “Four-slot Fully Asynchronous Communication Mecha-
nism,” IEEE Computers and Digital Techniques, vol. 137, pp. 17–30,
January 1990.

[10] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst, “Commu-
nication Centric Design in Complex Automotive Embedded Systems,”
in Proceedings of the 29th Euromicro Conference on Real-Time Systems,
Dagstuhl, Germany, 2017.

[11] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A Compositional
Framework for End-to-End Path Delay Calculation of Automotive
Systems under Different Path Semantics,” in the IEEE RTSS Workshop
on Compositional Theory and Technology for Real-Time Embedded
Systems, November 30, 2008.

[12] R. Gerber, S. Hong, and M. Saksena, “Guaranteeing Real-Time Require-
ments With Resource-Based Calibration of Periodic Processes,” IEEE
Transactions on Software Engineering, Jul. 1995.

[13] S. Bradley, A. Hax, and T. Magnanti, Applied Mathematical Program-
ming. Addison-Wesley Publishing Company, 1977.

[14] Rafik Henia and Arne Hamann and Marek Jersak and Razvan Racu
and Kai Richter and Rolf Ernst, “System Level Performance Analysis -
the SymTA/S Approach,” in IEEE Proceedings Computers and Digital
Techniques, 2005.

[15] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Syn-
thesizing Job-Level Dependencies for Automotive Multi-rate Effect
Chains,” in the 22nd IEEE Intl. Conference on Embedded and Real-
Time Computing Systems and Applications, Aug 2016.

[16] S. Mubeen, M. Sjödin, T. Nolte, J. Lundbäck, M. Gålnander, and
K. L. Lundbäck, “End-to-End Timing Analysis of Black-Box Models
in Legacy Vehicular Distributed Embedded Systems,” in the 21st IEEE
International Conference on Embedded and Real-Time Computing Sys-
tems and Applications, Aug 2015, pp. 149–158.

[17] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” Pro-
ceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, Sept 1987.

[18] A. Singh, P. Ekberg, and S. Baruah, “Applying Real-Time Scheduling
Theory to the Synchronous Data Flow Model of Computation,” in
Proceedings of the 29th Euromicro Conference on Real-Time Systems,
Dagstuhl, Germany, 2017.

[19] J. Khatib, A. Munier-Kordon, E. C. Klikpo, and K. Trabelsi-Colibet,
“Computing Latency of a Real-time System Modeled by Synchronous
Dataflow Graph,” in the 24th International Conference on Real-Time
Networks and Systems, ser. RTNS ’16. New York, NY, USA: ACM,
2016, pp. 87–96.

[20] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens, “Multi-
task Implementation of Multi-periodic Synchronous Programs,” Discrete
Event Dynamic Systems, Sep 2011.

[21] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, Giotto: A Time-
Triggered Language for Embedded Programming. Springer Berlin
Heidelberg, 2001.

[22] M. Lauer, F. Boniol, C. Pagetti, and J. Ermont, “End-to-end Latency
and Temporal Consistency Analysis in Networked Real-time Systems,”
International Journal on Critical Computing-Based Systems, vol. 5, no.
3/4, 2014.

[23] F. Boniol, M. Lauer, C. Pagetti, and J. Ermont, “Freshness and Reactivity
Analysis in Globally Asynchronous Locally Time-Triggered Systems,”
in NASA Formal Methods. Springer Berlin Heidelberg, 2013.

[24] J. Forget, F. Boniol, and C. Pagetti, “Verifying End-to-end Real-time
Constraints on Multi-periodic Models,” in the 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
Sept 2017, pp. 1–8.

[25] R. West, Y. Li, E. Missimer, and M. Danish, “A Virtualized Separation
Kernel for Mixed-Criticality Systems,” ACM Transactions on Computer
Systems, vol. 34, no. 3, pp. 8:1–8:41, Jun. 2016.


