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Modern automotive systems feature dozens of electronic control units (ECUs) for chassis, body and powertrain
functions. These systems are costly and inflexible to upgrade, requiring ever increasing numbers of ECUs to
support new features such as advanced driver assistance (ADAS), autonomous technologies, and infotainment.
To counter these challenges, we propose DriveOS, a safe, secure, extensible, and timing-predictable system for
modern vehicle management in a centralized platform. DriveOS is based on a separation kernel, where timing
and safety-critical ECU functions are implemented in a real-time OS (RTOS) alongside non-critical software in
Linux or Android. The system enforces the separation, or partitioning, of both software and hardware among
different OSes.

DriveOS runs on a relatively low-cost embedded PC-class platform, supporting multiple cores and hardware
virtualization capabilities. Instrument cluster, in-vehicle infotainment and advanced driver assistance system
services are implemented in a Yocto Linux guest, which communicates with critical real-time services via secure
shared memory. The RTOS manages a real-time controller area network (CAN) interface that is inaccessible
to Linux services except via well-defined and legitimate communication channels. In this work, we integrate
three Qt-based services written for Yocto Linux, running in parallel with a real-time longitudinal controller
task and multiple CAN bus concentrators, for vehicular sensor data processing and actuation. We demonstrate
the benefits and performance of DriveOS with a hardware-in-the-loop CARLA simulation using a real car
dataset.
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1 INTRODUCTION

Modern vehicles each have as many as 150 electronic control units (ECUs), to manage chassis,
body and powertrain functions [19, 63]. The number of ECUs in a single vehicle is expected to
rise [44], as electronics play an increasing role in support of new features, such as “virtual cockpit”
instrument clusters (ICs), in-vehicle infotainment (IVI), advanced driver assistance systems (ADAS),
and autonomous operation. Each ECU has its own microcontroller and logic to interface to a
control network such as a CAN bus [47], as part of a vehicle’s automotive system. As the scale
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and complexity of automotive systems increases, hardware costs, wiring and packaging become
prohibitive. Short of reflashing or adding new ECUs, it is difficult, if not impossible, to upgrade
the capabilities of a vehicle already in use. Moreover, simple ECU hardware lacks modern-day
computing security guarantees [33], and functional errors are hard to detect and fix in a cumbersome
automotive control network [18].

An alternative to current vehicular systems is to replace ECU logic with software-defined
functions. These functions are easy to upgrade, replace and extend with new capabilities over time.
Software components could then be deployed on a centralized computing platform, omitting the
need for complex vehicular networks. Instead, simpler networks connect sensors and actuators
equipped with simple transceivers to the central computer, which hosts an appropriate bus interface.

Replacing ECUs with multiple software-defined functions requires a suitable operating system.
While Linux is used by automotive companies such as Tesla [60], BMW [39], and Toyota [16], it
lacks the necessary timing and safety requirements for correct vehicle operation in all conditions.
Real-time components must be executed according to strict timing guarantees. Safety-critical
software components must be isolated from less-critical services, according to different safety
integrity levels [29]. Without significant modifications and subsequent formal method verification,
Linux’s use in automotive systems is limited to non-critical functions. As evidence, security attacks
have been observed on Tesla’s Linux software stack, which remotely gain control over the vehicle’s
CAN network [46].

In this paper, we describe a new system that securely and predictably consolidates software-
defined functions into an integrated vehicle management system. Towards this goal, we introduce
DriveOS, which supports the co-existence of an RTOS and one or more legacy OSes such as Linux or
Android on a single computing platform. DriveOS is based on a real-time separation kernel [54, 62],
which maps guest OSes to secure sandbox domains that have direct access to partitioned machine
physical resources. DriveOS behaves like a partitioning hypervisor [14, 50, 62], whereby each guest
manages its own CPU cores, physical memory and I/O devices without runtime involvement of
a virtual machine monitor. DriveOS is bootstrapped by our own in-house real-time OS, Quest,
which establishes secure communication channels with other guests running Linux and/or Android.
Timing-sensitive services are deployed as real-time tasks in a Quest sandbox. Non-critical, legacy
and library-dependent software such as IVI, IC, and machine learning-based ADAS services are
deployed in Linux and Android sandboxes.

Unlike general purpose operating systems, DriveOS supports real-time and predictable I/O,
similar to what is available in typical microcontrollers. One or more USB-CAN interfaces [34]
connect a DriveOS central computer, acting as a CAN concentrator, to a network of sensors and
actuators. A real-time USB 3.0 protocol ensures predictable data movement between the DriveOS
host and peripheral devices connected to each CAN bus [23].

Figure 1 shows a high-level overview of DriveOS on a DX1100 Workstation [11]. This is an
industrial computing platform, being tested within our partner electric car company for integrated
vehicle management. Although DriveOS supports multiple guests such as Ubuntu and Android,
we use Yocto Linux in this paper. Our Yocto Linux sandbox features: (1) an IC application that
displays a graphical speedometer, battery meter and other indicator readings, (2) an IVI application
that provides heating and ventilation (HVAC) controls, navigation, and smartphone integration,
and (3) ADAS services for adaptive cruise control and autonomous driving. The Quest sandbox
implements a real-time CAN gateway service to facilitate sensor data processing, control, and
secure communication with separate IC, IVI, and ADAS services. Real-time service tasks such as an
ADAS longitudinal controller are also executed in Quest.

Contributions. In this paper, we: (1) describe the separation kernel that forms the basis of DriveOS,
(2) introduce a low-overhead and secure inter-sandbox communication framework, named shmcomm,
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which allows both synchronous and asynchronous message-passing between guest sandboxes, and
(3) integrate IC, IVI and ADAS services in DriveOS to show the feasibility of our approach.

We compare an implementation of DriveOS, which is actively being developed for a production-
grade electric car, with an alternative Linux system that is currently used in the automotive industry.
Using a hardware-in-the-loop (HIL) CARLA driving simulation [17], and real car dataset collected
from Laguna Seca raceway in California, we show that an optimized Linux supporting real-time
tasks is unable to achieve the end-to-end delay and throughput guarantees provided by DriveOS,
when tasks process and exchange data with a CAN bus network. At the same time, DriveOS provides
the added security and isolation between software components of different criticality levels.

The next section provides motivation for our approach, which is followed in Section 3 by a
description of the DriveOS design. Section 4 outlines the implementation of the DriveOS partitioning
hypervisor, used to support secure and predictable separation of different application and kernel
components. The inter-sandbox communication framework is then explained in Section 5, followed
by a description of the DriveOS applications in Section 6. A system evaluation is presented in
Section 7. Related work is discussed in Section 8, with conclusions and future work in Section 9.

2 MOTIVATION

Modern vehicles support 10s to 100s of millions of lines of code [8]. To counter the growing
complexity, chipmakers such as Intel, and analytics firms like McKinsey have called for a centralized
vehicle management system to reimagine modern cars from a hardware-driven mechanical machine
to a software-driven electronic device [9, 28].

Taking inspiration from AUTOSAR’s requirements about future car operating systems [3],
we envision a centralized system built on a low-cost, standardized industrial PC [47]. PC-class
hardware provides multiple high-performance processing cores, gigabytes of memory, hardware
virtualization, potential integration with time-triggered Ethernet or Time-Sensitive Networking
(TSN) [12, 32], and support for hardware accelerators for use in machine learning. In comparison,
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ECUs typically feature small flash memories and megahertz-speed microcontrollers, with limited
processing capabilities for next-generation automobiles.

A centralized PC-class platform needs a suitable operating system. OSes such as Linux and
Android are insufficient on their own to provide the necessary spatial separation of highly-critical
services, with high consequences of failure, from those of low-criticality. Similarly, these OSes
lack the real-time capabilities necessary to meet timing-critical service guarantees. For this reason,
DriveOS proposes to securely co-host an RTOS with a legacy system such as Linux using a par-
titioning hypervisor. First-class shared memory channels between co-hosted guest OSes provide
real-time, low-latency, high bandwidth, and secure inter-sandbox communication. This enables a
mutually beneficial symbiosis between the RTOS and each legacy system: legacy systems inherit
real-time capabilities without modification, while the RTOS gains access to pre-existing libraries,
device drivers, and services.

Standards such as ISO 26262-3 [29] define multiple automotive software integrity levels (ASIL-A
to D). Our approach enables services of different criticality, or integrity, levels to be assigned to
different sandboxed guests. These sandboxes are spatially and temporally isolated as envisioned
by partitioning systems for future vehicles [35]. Because of the relatively small RTOS codebase,
DriveOS is amenable to formal verification to ensure functional and timing correctness [26, 41].

The potential single point of failure of a single hardware platform is addressed by introducing
backup hardware, albeit with fewer replicas than ECUs found in current vehicles. Memory bit
errors are addressed by replicating software functions using techniques such as Triple-Modular
Redundancy [42], or N-versioning [4]. Hypervisor-based fault tolerance ensures one sandboxed
guest is able to recover from failure [6]. These techniques serve to validate our approach, but are
not the main focus of this paper.

3 DRIVEOS DESIGN

DriveOS uses Linux as the basis for next-generation IC, IVI applications and ADAS user-interface
control, with real-time features handled by our Quest OS. For example, an ADAS torque vectoring
and traction control service configured for use on wet, dry, or snow-covered roads, must manage
updates to wheel torques within specific time bounds to prevent the vehicle skidding out of control.
While we want real-time control to be handled by suitably predictable real-time services, the
interface to configure ADAS settings will be exposed to Linux. DriveOS hosts both Linux and Quest
on a single machine, supporting communication between both guest OSes via secure shared memory
channels. Thus, Linux is empowered with real-time capabilities afforded by Quest, and Quest is
empowered with improved user-interactivity capabilities (including graphics and touchscreen
control) provided by Yocto Linux. We now describe the design of our system in further detail,
beginning with the partitioning hypervisor.

3.1 DriveOS Partitioning Hypervisor

Figure 2 shows a diagram of the DriveOS partitioning hypervisor, configured for a vehicle man-
agement system. DriveOS is implemented for the x86 architecture and statically partitions the
hardware resources of a physical platform amongst each guest OS. This resource assignment makes
use of hardware-assisted virtualization techniques to isolate guest operating systems in distinct
sandboxes.

At boot-time, DriveOS begins by executing Quest as though it were a standalone system. Quest
contains the hypervisor logic to partition hardware resources among separate guest sandboxes,
according to a boot-time configuration. One instance of Quest is replicated in non-overlapping
physical memory for each guest sandbox, and then each guest is launched. Depending on the
DriveOS configuration, one instance of Quest will act as a bootloader for Linux or Android, which

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 82. Publication date: September 2021.



Towards an Integrated Vehicle Management System in DriveOS 82:5

becomes the active OS in the corresponding sandbox. For a system with at least two sandboxes, it
is then possible to have Quest running in a guest domain that is isolated from another running an
OS such as Linux. As Quest contains the hypervisor, or virtual machine monitor (VMM) code, to
bootstrap a series of guests, each sandbox subsequently contains “root mode” (ring -1) hypervisor
code. This is a heightened privilege level address space over traditional kernel protection domains
that run at “ring 0” on x86 systems. Similarly, each guest actively runs in “non-root mode” but is
granted direct access to hardware resources that it can access without invoking the VMM.

Each guest’s VMM code is only needed to execute a minimal set of privileged machine instructions
that cause VMExits (from guest to hypervisor control-flow), and to establish new inter-sandbox
shared memory channels between guests. The number of guest sandboxes and the mapping of
hardware resources (CPU cores, physical memory ranges, and subsets of I/O devices) to guests is
established by static system configuration information. As resources are partitioned rather than
shared as in traditional hypervisors such as Xen [5], there is no duplication of potentially conflicting
resource management policies between a guest OS and hypervisor. The lack of runtime resource
management functionality in the DriveOS hypervisor means that ring -1 code has a text size of less
than 4KB.

Each guest kernel in DriveOS operates in (non-root) ring 0. With the exception of Quest, all
other guest OSes are paravirtualized to operate correctly within their virtualized domains. We have
paravirtualized Yocto Linux, Ubuntu, and Android for DriveOS with less than 150 lines of code
changes in the Linux kernel. These changes are mostly to handle direct memory access (DMA)
requests, where guest and machine physical memory addresses differ, and the processor does not
provide 10 address translation capabilities (e.g., IOMMU support such as VT-d on certain Intel x86
processors). For the purpose of this work, we use only the Yocto Linux distribution for guests that
complement Quest.

In this paper, DriveOS hosts Quest and Linux on two separate cores in a DX1100 machine [11].
USB, USB-CAN and serial ports are exclusively allocated to Quest, and the remaining I/O devices
are allocated to Linux. For Linux to receive information via USB, it must communicate with
Quest through an explicit shared memory channel. Details of the inter-sandbox communication
mechanism are provided in Section 5.

3.2 Real-time Task as a Service

DriveOS temporally and spatially isolates Quest and Linux in the same physical machine. This
means a guest kernel is unable to interfere with the runtime progress or memory state of another
guest. Quest schedules its tasks with its own real-time scheduling policy, independent of the co-
existent Linux guest. In DriveOS design, Quest provides real-time task services to other sandboxes
via inter-sandbox communication channels. Applications in other sandboxes subscribe to a real-time
service via a specific channel. For example, a feed-forward PI controller for a car’s adaptive cruise
control is implemented in DriveOS as a real-time service in Quest. Linux-based ADAS functions
use the real-time PI controller service via a synchronous shared-memory channel.

A real-time service task has the following properties: maximum runtime (C), frequency of
execution (or period T), and a number of communication channels. Quest schedules the real-time
tasks with the rate-monotonic scheduling (RMS) algorithm [40]. The service task is given at least C
time-units in every T time-units.

In addition, critical I/O tasks are also implemented in Quest as real-time service tasks. For
different classes of I/O devices and I/O-waiting threads, unique C and T values are computed at
runtime to handle interrupts at the correct priority. This is covered further in Section 4.1. Other
sandboxes use this type of critical I/O device-handling task to implement a real-time virtual device
interface. For example, DriveOS has a real-time CAN Gateway Service to handle USB-CAN devices
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in a fast and predictable way. In the future, we plan to consolidate dozens of car ECUs into real-time
services in multiple Quest sandboxes and make them available to applications in other sandboxes.

3.3 Advantages of the DriveOS Design

The DriveOS architecture brings unique advantages in vehicle management, which are crucial to
building a secure, predictable and extensible automotive system.

3.3.1 Real-time Task and I/O Services for Linux. In spite of being a non real-time OS, Linux
is able to leverage the real-time capabilities of Quest to interface with the timing critical components
of a vehicle. I/O data is exchanged with Linux applications without the need to use traditional
socket-based interfaces such as Ethernet. Moreover, SCHED_DEADLINE scheduling of Linux enables
data exchanges with Quest to perform in a sufficiently predictable way. This approach removes
interference from device interrupts that are managed in real-time by Quest.

3.3.2 Isolated I/O for Sensitive Devices. The USB-CAN interface is timing and safety-critical
in automotive systems. The injection of a malicious packet onto the CAN bus has potentially
devastating effects [33], dictating the need for secure access to this network. Although malicious
packet insertions must be prevented, the vehicle management system must still be able to read
from and write to this bus network to receive data and control the components of a vehicle such as
the HVAC unit, and engine controller.

The isolated sandboxes in DriveOS prevent unauthorized access to critical I/O devices by guests
such as Linux. In our vehicle management system, the USB-CAN device is assigned to Quest and is
inaccessible to Linux. CAN data is accessible to Linux only via secure shared memory channels
from Quest. Quest additionally filters requests to ensure any malfunction or vulnerability in Linux
will be contained within its sandbox.

3.3.3 Flexibility in Automotive Software Development. If Linux is used to interface di-
rectly with an automotive system’s critical functionality, it ideally needs to be independently
maintained by automotive manufacturers. However, these manufacturers may not have the exper-
tise to develop and maintain a large and complex codebase like Linux.

It is potentially easier for automotive engineers to develop and maintain a simpler codebase such
as Quest, which provides timing and safety-critical services to a vehicle. Quest is able to consolidate
the real-time functional requirements traditionally managed by separate ECUs within different
process address spaces. We have also started the development of a set of toolbox functions for
Matlab that is heavily used by the automotive industry, to produce target code for Quest. These
functions not only gain the benefits of a real-time OS but are guaranteed isolation from a Linux
address space, which is potentially open to third-party, less secure software. Thus, it is beneficial
for manufacturers to develop in a separate OS in which they have the flexibility to apply their own
safety and security policies. The only Linux development that is needed is the inclusion of a Linux
kernel module to facilitate inter-sandbox communication to and from Quest.

4 DRIVEOS IMPLEMENTATION

As stated earlier, DriveOS uses Quest to bootstrap a series of sandboxed guests. Once the first
instance of Quest is loaded into memory, it replicates itself for each sandbox that is specified in a
static configuration. Hypervisor code extensions to standalone Quest enable each OS replica to be
launched into non-root mode, using a VMLAUNCH machine instruction. Depending on the system
configuration, a guest may continue to run Quest or may choose to bootstrap an alternate system
such as Linux.
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Each sandbox replicates the VMM logic to establish separate guest domains, but as previously
observed this code is only required at runtime to handle instructions that cause VMExits and to
establish secure communication channels between guests. Secure communication channels require
mappings of guest to machine physical memory using extended page tables (EPTs). Although a
VMM’s text segment that stores instructions fits within a 4KB page of memory, additional data
space is needed for EPTs. For example, assuming a 4GB address space for a single guest requires
24KB memory for the corresponding EPT. DriveOS currently uses Intel VT-x technology to allow a
sandbox monitor to create one of more virtual machine control structures (VMCSs) per sandbox.
One VMCS is created for each CPU core assigned to the sandbox, and stores guest and host state
information, virtual machine execution, exit and entry control information, as well as the causes
of VMExits. VMLAUNCH instructions refer to the active VMCS for the corresponding processor
and initialize the corresponding guest state. If the guest is to replace Quest with another OS,
configuration parameters required for paravirtualization are sent to the respective kernel at boot
time.

Memory Partitioning. In the configuration parameters of DriveOS, a tuple containing the base
and limit of host physical memory (HPM) must be specified for every sandbox. Each sandbox
monitor relocates its guest in HPM according to the specified base address. EPT entries grant guests
exclusive access to specific memory regions, while safeguarding the monitor logic. VMMs also
manage the guest physical to host physical memory mapping of shared memory regions for the
inter-sandbox communication, as described in Section 5.

Device Partitioning. Device partitioning is accomplished by interposing on ACPI configuration
and PCI bus enumeration, thereby ensuring VMExits into a guest’s corresponding VMM to check
whether the device is blacklisted or not. Each guest’s monitor will block their guest’s access to a
device or IRQ if they are not assigned to that guest. Identity-mapped MMIO regions are used by
guest kernels to manage their assigned I/O devices.

The Yocto Linux kernel has been paravirtualized to compensate for the HPM base offset when
a physical address is needed for DMA-enabled devices. This avoids implementing VMM drivers
to support IOMMU technologies, such as Intel’s VT-d, for those devices. As the code size of each
VMM is minimized, this helps enforce heightened security and simplifies formal verification.

Physical Address Extension. Physical address extensions (PAE) are also supported in Yocto Linux
guests of DriveOS. Although DriveOS’s VMM code is 32-bit, PAE allows Linux to occupy more
RAM (currently a 52-bit address space), which is beneficial for its memory-consuming interactive
and machine learning applications. 64-bit guest support is intended in future implementations but
this incurs additional overheads due to increased levels of address translation when resolving guest
virtual to host physical addresses.

AVX Extensions for OpenGL Applications. DriveOS attempts to eliminate as many invocations of
the hypervisor as possible. However, a graphics-accelerated OpenGL Instrument Cluster application
uses advanced vector extensions (AVX) instructions which cause a VMExit into the monitor. We
update the VMCS execution control bitmap to avoid exiting into the monitor, whenever an allowed
guest uses such hardware features.

4.1 Real-time I/O in Quest

In Quest, every real-time task has a budget, C, determined by its worst-case execution time, and
a period, T. Quest implements a static priority rate-monotonic scheduling (RMS) algorithm with
a sporadic server, to guarantee a task or software thread receives at least C amount of execution
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time every T. Using the RMS policy, Quest assigns the highest priority level to the task with the
smallest period.

Quest ensures that temporal guarantees of real-time tasks are not violated by interrupts from I/O
devices. Quest handles an I/O interrupt with a schedulable thread at its proper priority level [15, 64].
In general, device interrupts are generated on behalf of tasks issuing I/O requests. Thus, an interrupt
must be handled at the same priority level as the waiting task.

Each interrupt handler is divided into two parts: a top- and bottom-half. In Quest, the top-half
handler simply acknowledges an interrupt, and determines which task is waiting for the I/O device.
Quest then schedules the bottom-half handler as a separate thread at the same priority level as
the waiting task. As RMS determines a task’s priority by its period, T, the bottom-half handler
(BH) thread is assigned the same period as the task it serves. As with the Quest RTOS [15], the
budget of the BH thread is derived from the I/O device class and the waiting task’s period. Each
device class has a utilization percentage value, which is multiplied by the waiting task’s period, to
derive the budget of the BH thread. For example, the utilization percentage of USB-CAN devices in
DriveOS is 10%. If a task with a period of 1 ms waits for a USB-CAN read, then the USB-CAN BH
will receive 0.1 ms budget in every 1 ms to read messages from the device. All I/O handling occurs
in the context of the BH thread, not in the I/O-waiting task’s context. This ensures BH processing
is time-budgeted separately from task execution.

5 INTER-SANDBOX COMMUNICATION

A key component of DriveOS is the secure and predictable communication between different guest
domains. Address spaces in two different guests use the shmcomm inter-sandbox communication
mechanism to interact with each other. Inter-sandbox channels are used to create communicating
task pipelines [45, 49]. Figure 3 shows the shmcomm control- and data-flow in DriveOS.

A kernel (shmcomm) module mediates requests to map and unmap shmcomm communication
channels in an 8MB region shared between the guests. A kernel module within each guest sends
requests to the shmcomm manager in its local VMM to configure the channels. The shmcomm
manager does not expose the host physical addresses (HPAs) of shmcomm channels to a guest.
Instead, it establishes EPT mappings of guest physical addresses (GPAs) to HPAs, for the memory
pages used for communication channels. The manager uses a secure Info Page to store all the
metadata information of the channels in DriveOS. The Info Page is not mapped to any guest kernels
but is instead accessed via a lock held by the VMMs of each sandbox.

Each VMM shmcomm manager resides in ring -1 in DriveOS, and requires less than 500 lines
of code, thereby keeping the trusted codebase of the most privileged protection domain small. In
addition, the shmcomm manager handles four specific hypercalls to service requests from guest
kernels: (1) creating a channel, (2) connecting a channel, (3) getting channel metadata, and (4)
destroying a channel. User-level (ring 3) address spaces cannot directly interact with the VMM,
unless granted permission by guest kernels.

Once a channel is created by the shmcomm manager, applications in different sandboxes commu-
nicate without invoking system calls or VMExits. Applications use a POSIX I/O-like API provided
by libshmcomm, to read from and write to these channels for asynchronous and synchronous
communication. The channel communication protocols are entirely implemented in userspace. It is
possible to extend the library with new communication protocols without modifying the kernel
modules or the VMM code. Figure 4 shows the APIs provided by 1ibshmcomm.

5.1 shmcomm Operations

5.1.1 Creating and Connecting a Channel. Channels are created and connected for sending and
receiving messages using shmcomm_open_send and shmcomm_open_receive functions, respectively.
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int shmcomm_open_send (unsigned int vshm_key, unsigned int flags,
marshall_func_t marshall_function, size_t packet_size, int buffer_len);

int shmcomm_open_receive (unsigned int vshm_key, unsigned int flags,
unmarshall_func_t unmarshall_function, size_t packet_size, int buffer_len);

int shmcomm_write (int fd, void* buf, size_t nbytes);

int shmcomm_read (int fd, voidx buf, size_t nbytes);
unsigned int get_vshm_key (int fd);
channel_transfer_type_t get_channel_transfer_type (int fd);

int shmcomm_destroy (int fd);

int shmcomm_close (int fd);

Fig. 4. The libshmcomm Library APIs

A unique channel key, vshm_key, is used to create a channel between separate guest address spaces.
The flags argument supports the creation of a new channel (SHMCOMM_ CREATE_CH) or connection
to an existing channel (SHMCOMM_CONNECT_CH). The channel type, which is either synchronous
(SHMCOMM_SYNC_CH) or asynchronous (SHMCOMM_ASYNC_CH), is also specified in flags.

The shmcomm protocol supports marshalling and unmarshalling before sending and after
receiving messages, using specific callback functions. Data marshalling is provided as a convenience
because CAN messages often need to be encoded and decoded (e.g., using DBC files). Finally, the
size of each message (or packet) and the length of the shared memory buffer are needed to create a
channel. All this information, except the marshalling callbacks, are sent to the shmcomm manager
via a system call to the guest kernel and a hypercall to the VMM. The shmcomm manager stores the
channel information in the secure Info Page. Connecting to an existing channel does not need any
specific information such as packet_size or buffer_len, as shmcomm supplies this information
to the applications from its Info Page. The shmcomm kernel module in a guest sandbox sends a GPA
to the shmcomm manager, which is mapped to a private channel HPA. Both shmcomm_open_send
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and shmcomm_open_receive return an integer file descriptor that is used to further interact with
the channel.

5.1.2 Closing and Destroying a Channel. Closing a channel with shmcomm_close frees the
userspace data-structures for the channel. shmcomm_destroy frees the channel memory from the
shared memory region and also removes the channel entry from the Info Page. shmcomm_destroy
implicitly closes a channel.

5.1.3 Querying Channel Metadata. A channel’s vshm_key and type of data-transfer (synchro-
nous or asynchronous) are queried using get_vshm_ key and get_channel_transfer_type,
respectively. An address space could query channel metadata before exchanging messages with a
channel.

5.1.4 Reading from and Writing to a Channel. Reading from and writing to a channel occur
entirely in guest userspace without any system call or VMExit overheads. The channel memory is
mapped to userspace in the local (guest process) page table by the shmcomm kernel modules in
Linux and Quest. This reduces communication overheads in DriveOS once channels are established.
The shmcomm interface uses a FIFO ring buffer for synchronous communication and Simpson’s
four-slot algorithm [55] for wait-free asynchronous message passing. The latter is useful when loss
tolerant data transfers between guests are acceptable, as long as the most recent data is exchanged
(e.g., for sensor data).

5.2 Real-time Virtual Device 1/0 for Linux

Communication pipelines created with our 1ibshmcomm library extend real-time I/O in Quest to
address spaces in Linux. This enables Linux tasks to perform time-bounded functions such as
obstacle detection and avoidance (useful for ADAS), using real-time sensor data processing and
actuation tasks in Quest. Our communication APIs have bindings for C, C++, Java and Python in
Linux and Android. DriveOS grants permission for IC and IVI tasks in C++, and OpenPilot ADAS
tasks in C++ and Python, to interact with USB-CAN I/O services in Quest.

5.3 Example

Program 1 shows the C code of a sender in Quest that creates a synchronous shmcomm channel
to send messages of struct packet type. The channel’s ID is 101 and ring buffer length is 10.
Program 2 shows the receiver-side code in Linux, which connects to channel ID=101 and reads
from the channel into local variable p_rec.

Program 1. Sender in Quest Program 2. Receiver in Linux
struct packet {int X; int Y}; struct packet {int X; int Y};
int write_fd = shmcomm_open_send(101, int read_fd = shmcomm_open_receive(101,
SHMCOMM_CREATE_CH | SHMCOMM_SYNC_CH, NULL, SHMCOMM_CONNECT_CH, NULL,
sizeof(struct packet), 10); sizeof (struct packet), 10);
struct packet p_snd = {.X = 10, .Y = 20}; struct packet p_rec;
shmcomm_write(write_fd, &p_snd, shmcomm_read(read_fd, &p_rec,
sizeof(struct packet)); sizeof (struct packet));
shmcomm_close (write_fd); shmcomm_close(read_fd);
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6 DRIVEOS APPLICATIONS

In this section, we describe the integration of three applications in DriveOS: Instrument Cluster,
In-vehicle Infotainment and Advanced Driver Assistance. We also explain how these applications
utilize the Real-time Task as a Service model in DriveOS, to guarantee end-to-end throughput and
delay requirements for data processing. Since these applications are tested in our hardware-in-the-
loop (HIL) simulation infrastructure, we first explain the HIL simulation setup to help describe
the integration procedure. The HIL setup is also used in Section 7 to evaluate DriveOS against
standalone Linux.

6.1 Hardware-in-the-loop Simulation Infrastructure

DriveOS is prototyped and tested on a Cincoze DX1100 machine [11], featuring an Intel Coffee
Lake i7-8700T processor. This is a low-power industrial PC-class machine that is being used in an
electric vehicle under development by our partner company. It has ample processing capacity to
support many traditional ECU functions as software threads. Multiple I/O interfaces are capable of
interfacing with different USB-CAN networks, and three display ports serve different user interfaces.
Table 1 lists the machine features.

Table 1. DX1100 Specifications

Processor Intel Coffee Lake i7-8700T (< 2.4GHz)

RAM 32 GB

eMMC Storage 64 GB

Display and Ul HDMI, DVI and DisplayPort

CAN Connector 8 USB3.x ports

Serial I/O 4 RS-232 Serial ports

Network 2 GbE Ethernet ports (x2) and mPCle-USB Bluetooth
Power 24V, 5A

Dimension 242 mm X 174 mm X 77 mm

Figure 5 shows the HIL setup and data-flow via our car’s computing hardware. A Kvaser USBcan
Pro 5x HS industrial USB-CAN adapter [34] is attached to the DX1100. The CAN-Hi and CAN-Lo
signals from the adapter are suitably terminated with 120Q resistive loads. These signals feed into a
USBcan Light 2x HS USB-CAN adapter attached to an Ubuntu 16.04 Linux machine, which runs the
CARLA [17] driving simulator. The simulator feeds a CAN bus data trace of our partner company’s
electric car to test onboard IC and IVI application services. To test the ADAS services, the CARLA
simulator is updated via OpenPilot running in DriveOS. Before we deploy our system fully on the
road, it is necessary to rigorously test and study time-critical metrics using a HIL simulation.

6.2 Instrument Cluster (IC) and In-vehicle Infotainment (1VI)

The IC and IVI are third-party Qt applications being developed by a partner company, with sample
screenshots shown in Figure 1. The IC and IVI rely on sophisticated Ul libraries such as Qt, that are
only supported for a selected few OSes. Therefore, it is not feasible to implement these applications
in an RTOS like Quest, even though they have some critical timing requirements. DriveOS refactors
these applications, so that timing-critical components are ported to Quest and the remaining parts
run in Linux.

For IC and IVI, sending and receiving CAN messages needs to be fast and predictable. Slow and
unpredictable CAN messaging would mean inaccurate and discrepant data in IC and IVI. DriveOS
therefore features a CAN Gateway real-time service in Quest that delivers CAN packets to the IC
and IVI applications via shmcomm channels. An Infotainment CAN Mapper is split between Quest
(IMS) and Linux (IML) to exchange data (see Figure 5). In Linux, FIFO pipes are used to deliver
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Fig. 5. Hardware-in-the-loop Simulation Infrastructure for DriveOS

messages between IC, IVI and Infotainment CAN Mapper threads. More details about the CAN
Gateway real-time service task are explained later in this section.

6.3 OpenPilot Advanced Driver Assistance Systems (ADAS)

DriveOS also incorporates an open-source ADAS, OpenPilot [13], which is used daily in thousands
of cars on the road. OpenPilot is originally developed for Ubuntu and Android. It supports Adaptive
Cruise Control, Automated Lane Centering, Forward Collision and Lane Departure Warning.
OpenPilot receives radar, gyro and other sensor data via CAN. Live images are collected via local
cameras, while simulated CARLA images are received over an Ethernet link managed by Linux.
OpenPilot then generates throttle, brake and steering control adjustments based on a Longitudinal
PI Controller, and machine-learning (ML)-based Object Detection and Path Planning algorithms. It
uses Tensorflow for ML algorithms, and Qt for a Ul display as shown in Figure 1.

After OpenPilot decides an intended path by processing an image stream with the Object
Detection and Path Planning algorithms, its Longitudinal Feed-forward PI Controller is responsible
for generating the final throttle and brake control values. Such a longitudinal controller is central
to an automotive system’s safety, and is susceptible to timing violations. In general, the automotive
industry expects an end-to-end (sensing-processing-actuation) delay in the order of 1@ms for such
controllers [52].

OpenPilot currently runs the longitudinal controller as a SCHED_FIFO task and maintains a 10ms
rate via the Linux clock_gettime APIL Current OpenPilot implementations run on a dedicated
Linux machine where no other applications are allowed to run, and all tasks are hand-tuned to meet
their timing requirements. As the automotive industry moves towards an integrated and extensible
vehicle management solution, arbitrary third-party applications in Linux have the potential to
interfere with the timing requirements of a controller such as the one in OpenPilot [1]. Our
experiments in Section 7 reveal this issue.

In an effort to port OpenPilot to DriveOS, the Longitudinal Controller is implemented in a Quest
sandbox as a real-time service task. In addition, the CAN Gateway real-time service task is also
utilized by OpenPilot for radar data inputs and brake, throttle and steering outputs. The rest of the
OpenPilot module relies on Tensorflow, which is only available on systems such as Linux, Windows,
and Mac OS, and on Qt which is also limited to a few OSes. As porting this part of OpenPilot to an
RTOS would require a significant effort, it is instead deployed unchanged in the paravirtualized
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Yocto Linux sandbox of DriveOS. These modules receive a stream of simulated CARLA images
over Ethernet directly in Linux. Interactions between the Longitudinal Controller and the rest of
the ADAS software are facilitated by inter-sandbox shmcomm channels. Thus, the DriveOS design
enables a cross-sandbox implementation of OpenPilot with real-time components running in an
RTOS and legacy, library-dependent components running in Linux.

6.4 Real-time Service Tasks
The above three DriveOS applications use two real-time service tasks, explained below. These tasks
are based on the Real-time Task as a Service model explained in Section 3.2. Table 2 shows all the
shmcomm channels between the real-time service tasks in Quest and applications in Linux.

Table 2. Shared Memory Channels in DriveOS
Data-flow (tasks) [ Data-flow (sandboxes) [ Type [ Buffer size

ID [ Description

1 | IC, IVI Sensor Reading IMS — IML Quest — Linux Sync | 10
2 | HVAC (IVI) Control Actuation IML — IMS Linux — Quest Sync | 10
3 | CARLA Sensor Reading AMS — AML Quest — Linux Async | -

4 | CARLA Vehicle Control Actuation AML — AMS Linux — Quest Sync | 10
5 | LongController Control Command AML — LongControl. | Linux — Quest Sync | 10
6 | LongController Control Data AML — LongControl. | Linux — Quest Sync | 10
7 | LongController Update Input AML — LongControl. | Linux — Quest Sync | 10
8 | LongController Update Output LongControl. » AML | Quest — Linux Sync | 10

6.4.1 CAN Gateway Service. A CAN Gateway Service in Quest mediates real-time CAN messages
for Linux applications, enabling a real-time virtual CAN device interface. We start describing this
service from the right-hand side of Figure 5. A Linux application in DriveOS interfaces with a car
CAN bus network using a CAN mapper process in Linux. Every CAN mapper process has one
thread each for reading and writing CAN messages via shmcomm read and write channels. Each
CAN mapper thread in the Linux sandbox interacts with a counterpart in the Quest sandbox via a
specific shmcomm channel.

The CAN mapper threads in Quest (IMS and AMS in Figure 5) are part of the CAN Gateway
Service. Program 3 shows how the CAN mapper threads (CAN Readers and Writers) are spawned in
the Quest sandbox for NUM_CAN number of CAN Channels. Acting as a CAN concentrator, the CAN
Gateway Service reads CAN messages from different CAN Channels of the Kvaser USBcan Pro 5x
HS. We use a real-time USB xHCI (3.0) bus scheduling algorithm [23] in the interrupt bottom-half
handler in Quest for fast and predictable CAN I/O. The Gateway then forwards CAN messages
to appropriate shmcomm channels. Program 4 shows the C code of a CAN reader thread that
reads CAN messages from a CAN Channel and forwards to Linux via a shmcomm channel. Upon
receiving messages from a shmcomm channel, the CAN mapper threads in Linux (IML and AML in
Figure 5) forward them to appropriate applications based on CAN message IDs. Similarly, Linux
applications write to CAN channels in the reverse direction. A CAN writer thread in the CAN
Gateway is shown in Program 5.

We have two CAN mappers in the Gateway service for Infotainment (IC and IVI) and ADAS.
Figure 5 has color-coded CAN and shmcomm channels to show the CAN data-flow for Infotainment
(violet) and ADAS (blue).

The IC and IVI use the synchronous shmcomm channel 1 to read sensor inputs such as speed,
engine control type (all-wheel-drive or rear-wheel-drive), temperature inside a car, distance traveled,
and so forth. The IVI application sends HVAC control commands via another synchronous shmcomm
channel 2 to CAN channel 1. The IC is a read-only application and does not send any CAN messages.

OpenPilot uses the asynchronous shmcomm channel 3 to read the most recent CARLA simulator
sensor readings (vehicle speed and angle) and car cruise button status (1 = initialize cruise control,
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Program 3. Spawning CAN Reader and Writer Threads in the CAN Gateway Service in Quest

#define NUM_CAN 2
#define CAN2LINUX_VSHM_KEYQ 101
#define LINUX2CAN_VSHM_KEYQ 201

int can2linux_channel[NUM_CAN], linux2can_channel[NUM_CAN];

// Structure to pass arguments to the Reader and Writer Threads

typedef struct gate_th_args {
int can_ch; int can2linux_fd; int linux2can_fd; int can_open_flags; int can_freq;
int can_hnd; int budget_us; int period_us;

} gate_th_args_t;

gate_th_args_tx thr_args = malloc(sizeof (gate_th_args_t) * NUM_CAN);

// Structure to represent a CAN message

typedef struct can_packet {
uint32_t id; int32_t can_msg_id; unsigned char can_msg[8]; unsigned int can_dlc;
unsigned long can_timestamp;

} can_packet_t;

pthread_t can2linux_th[NUM_CAN], linux2can_th[NUM_CAN];

for (i = @; i < NUM_CAN; i++) {
// Set the arguments for a CAN Reader Thread
thr_args[i].can_ch = i;
thr_args[i].can_open_flags = canOPEN_EXCLUSIVE;
thr_args[i].can_freq = canBITRATE_500K;
thr_args[i].can2linux_fd = can2linux_channel[i];
thr_args[i].budget_us = 100;
thr_args[i].period_us = 2000;

// Set up a shmcomm channel from Quest to Linux for a CAN Reader Thread

int shm_key = CAN2LINUX_VSHM_KEYQ + i;

can2linux_channel[i] = shmcomm_open_send(shm_key, SHMCOMM_CREATE_CH | SHMCOMM_SYNC_CH, NULL,
sizeof (can_packet_t), 10);

// Spawn a CAN Reader Thread to read data from CAN Channel i and send to Linux via
// the above shmcomm channel
pthread_create(&can2linux_th[i], NULL, can2linux_task, &thr_args[il);

// Set the arguments for a CAN Writer Thread, by only changing the shmcomm channel and
// keeping everything else same from the Reader Thread
thr_args[i].linux2can_fd = linux2can_channell[i];

// Set up a shmcomm channel from Linux to Quest for a CAN Writer Thread

shm_key = LINUX2CAN_VSHM_KEY® + i;

linux2can_channel[i] = shmcomm_open_receive(shm_key, SHMCOMM_CREATE_CH | SHMCOMM_SYNC_CH,
NULL, sizeof(can_packet_t), 10);

// Spawn a CAN Writer Thread to write data from Linux to CAN Channel i
pthread_create(&linux2can_th[i], NULL, linux2can_task, &thr_args[il);

2 = increase acceleration, 3 = decrease acceleration, 4 = cancel cruise control). OpenPilot computes
throttle and brake values by a longitudinal PI controller and applies to CARLA via synchronous
shmcomm channel 4 and USB-CAN.

6.4.2 ADAS Longitudinal Controller Service. As stated in Section 6.3, OpenPilot uses a feed-
forward PI longitudinal controller for adaptive cruise control. The refactored implementation of
OpenPilot in DriveOS runs the controller in Quest as a synchronous real-time service task. It has a
50 ps budget and 1 ms period, which is the same as in the stock OpenPilot.

For test purposes, CARLA simulator sensor data is delivered to the Longitudinal Controller from
the CAN Gateway service via ADAS CAN Mapper threads in Quest and Linux. Section 7.2 explains
the ADAS Controller pipeline in details. The ADAS Mapper thread in Linux (AML) is responsible for
filtering sensor data and feeding it to the Longitudinal Controller in Quest via shmcomm channels
(ID 5, 6, 7). AML also receives throttle, brake and other control values from the controller, and
sends CAN Control commands to CARLA via shmcomm channel 4. The Linux-side implementation
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Program 5. CAN Writer Thread in CAN Gateway

void* can2linux_task (void* thread_args) {
gate_th_argsx args = (gate_th_argsx*)
thread_args;

// Create a sporadic server in Quest
// corresponding to thread
struct sched_param s_params = {

.type = MAIN_VCPU, .C =args->budget_us,
) .T = args->period_us
int new_vcpu = vcpu_create(&s_params);
vepu_bind_task(new_vcpu);

// Open a CAN Channel

args->can_hnd = canOpenChannel (
args—->can_ch, args->can_open_flags);

canStatus can_stat = canSetBusParams (
args->can_hnd, args->can_freq, 0, 0, 0,

can_sfat z canBusOn(args->can_hnd);

can_packet_t msg;

unsigned int can_flag, can_dlc;
unsigned long can_time; long can_id;
unsigned char can_msg[CAN_MAX_DLEN];

while(1) {
// Read from CAN Channel
can_stat = canRead (args->can_ch,
&can_id, &can_msg, &can_dlc,
&can_flag, &can_time);

//Send to Linux via shmcomm channel

msg.id = ++cnt;

msg.can_msg_id = can_id;

msg.can_dlc = can_dlc;

msg.can_timestamp = can_time;

memcpy (msg.can_msg, &can_msg, 8);

while(shmcomm_write(args->can2linux_fd,
&msg, sizeof(can_packet_t)) <= 0);

void* linux2can_task (void* thread_args){
gate_th_args* args = (gate_th_argsx)
thread_args;

struct sched_param s_params = {
.type = MAIN_VCPU, .C =args->budget_us,
.T = args->period_us
b
int new_vcpu = vcpu_create(&s_params);
vepu_bind_task(new_vcpu);

args->can_hnd = canOpenChannel (
args->can_ch, args->can_open_flags);

canStatus can_stat = canSetBusParams (
args->can_hnd, args->can_freq, 0, 0, 0,
0, 0);

can_stat = canBusOn(args->can_hnd);

can_packet_t msg;

unsigned int can_flag, can_dlc;
unsigned long can_time; long can_id;
unsigned char can_msg[CAN_MAX_DLEN];

while(1){
// Read from shmcomm channel
while(shmcomm_read(args->1inux2can_fd,
&msg, sizeof(can_packet_t)) <=0);

// Check if this is a valid message

// and write to the CAN Channel

canWrite(args->can_ch, msg.can_msg_id,
msg.can_msg, msg.can_dlc,
msg.can_timestamp);

of OpenPilot uses its own cereal publisher-subscriber messaging framework to obtain controller
values from AML, which are used for vehicle path and control planning.

Our DriveOS Longitudinal Controller depends on the control commands that it receives via
the shmcomm channel ID 5. It supports three control commands: (1) INIT for initializing the
Longitudinal Controller values such as the proportional, integral, and feed-forward constants, (2)
RESET to reinitialize the PIloop, and (3) UPDATE to compute the controller throttle and brake output
by the PI loop. The controller command data for INIT and RESET is sent via shmcomm channel 6.
Both channels 5 and 6 are synchronous channels because missing a control command is forbidden.
The UPDATE data is separately exchanged via shmcomm channels 7 and 8.

7 EVALUATION

Linux is commonly used in infotainment systems by popular automotive companies such as
BMW [39] and Toyota [16], and as the basis of Ubuntu and Android distributions used with the Open-
Pilot ADAS software [13]. DriveOS is therefore compared against a standalone PREEMPT_RT [51]
patched Yocto Linux for use in integrated vehicle management systems.

In the standalone Yocto Linux vehicle management system, software threads and interrupts are
not assigned to any specific cores. For comparison, an optimized version of the same standalone
Yocto Linux is tested. This version pins xHCI interrupts to Core 0, resulting in USB bottom-half
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processing taking place on the same core, while all other threads execute on Core 1. In summary,
experiments test both an unoptimized and domain-optimized standalone Linux against DriveOS.
In our experiments, DriveOS uses two cores although the system is capable of activating more
- one is dedicated to Quest and the other is given to a paravirtualized Yocto Linux with the
PREEMPT_RT patch enabled. DriveOS and the standalone Linux versions are both tested in the
HIL simulation infrastructure described in Section 6.1, using a real car dataset collected from the
Laguna Seca raceway in California (for IC and IVI) and CARLA (for ADAS). For fair comparisons
with DriveOS, all standalone Linux systems run on a DX1100 and implement the equivalent CAN
Gateway, Infotainment, OpenPilot ADAS, IC and IVI logic as shown for DriveOS in Figure 5.
7.1 Application Parameters
Table 3 shows the real-time task budgets and periods for the Quest real-time USB-CAN interface
(USB xHCI Bottom-half handler and mhydra USB-CAN driver), CAN Gateway and longitudinal
controller real-time service task. Linux-side timing critical tasks are run with the SCHED_DEADLINE
scheduling policy. We also run non-timing-critical background tasks in Linux that log data in the
eMMC storage and periodically send data over the network, as is common in modern cars [58].
Next, we describe our experimental results. All experiments were run and averaged over five times.

Table 3. Real-time Task Budgets and Periods

ID Task Budget | Period Table 4. Delay Between Consecutive
(ms) (ms) CAN Messages (CAN Channel 1)
Quest
A USB Bottom-half Handler (BH) 0.10 1 [ System | Average Delay ]
B mhydr‘ a_rx 0.20 ! Raw CAN Frame-based
C Infotainment read mapper 0.10 2 Source (Hardware) | 2.85 ms
D Infotainment write mapper 0.10 2 Linux 3.73 ms
E ADAS read mapper 0.10 2 Optimized Linux 3.43 ms
F ADAS write mapper 0.10 2 DriveOS 2.86 ms
G Longitudinal Controller 0.05 1 CAN ID-based
H mhydra_tx 0.20 ! Source (Hardware) | 82.5 ms
Linux Linux 98.97 ms
I Infotainment read mapper 0.10 1 Optimized Linux 94.38 ms
] Infotainment write mapper 0.10 1 DriveOS 83.25 ms
K ADAS read mapper 0.10 1
L ADAS write mapper 0.10 1

7.2 Latency Measurements

We measure two types of latency values: end-to-end delay and delay between consecutive messages.
Maximum end-to-end delay gives us an upper bound on the round-trip-time of a sensor input and
a corresponding actuator output. Such end-to-end latency is critical for ADAS services, which need
to apply throttle and brake changes within a certain time for safety. Hence, we measure latency on
the ADAS controller pipeline, while IC and IVI process CAN messages.

The task pipeline in the ADAS controller is as follows (with task IDs from Table 3 shown in
parentheses): USB BH (A) — mhydra_rx (B) — ADAS read mapper (Quest) (E) — ADAS read
mapper (Linux) (K) — OpenPilot Longitudinal Controller (G) — ADAS write mapper
(Linux) (L) — ADAS write mapper (Quest) (F) — mhydra_tx (H) — USB BH (A). The theoretical
worst-case end-to-end delay in a pipeline is the summation of the periods of all the tasks [24],
assuming input data is available only at the beginning of a period of the pipeline’s source task.
Therefore, the theoretical end-to-end delay bound for the controller pipeline is: (T(A) + T(B) +
TE)+T(K)+T(G)+T(L)+T(F)+TH)+TA)=(1+1+2+14+1+1+2+1+1)=11ms.
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This theoretical end-to-end delay bound is in the ballpark of what is expected in a working
automotive system (~10ms) [52]. Empirical results show that DriveOS performs much better than

both the expected and theoretical worst-case delays.
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Fig. 6. Controller Pipeline End-to-end Delay

Figure 6a (log scale) shows the average, minimum and maximum end-to-end delays of the
controller pipeline in standalone Linux, optimized Linux and DriveOS. Figure 6b shows the corre-
sponding cumulative distribution function (CDF) of the delays. The experiments are run with 20
non-critical background threads occupying almost 60% CPU utilization in Linux. Such background
processes are representative of third-party applications (e.g., Spotify, Maps, and Data Backup). In
our experiments, these tasks send data over an Ethernet network via TCP socket connections,
and copy backup logs to storage. The device interrupts generated by these background tasks are
intended to reveal potential interference on timing critical tasks.

In Figures 6a and 6b, the theoretical worst-case (11ms) and industry expected (10ms) delays are
respectively shown with a dashed and solid line. Although Linux performs on average within
bounds, the maximum delay is well above what is allowed. In Figure 6b, the CDF of delays shows that
more than 15% of the end-to-end latencies are greater than 10ms in both standalone Linux versions.
This could lead to an unsafe implementation of ADAS services and make the system unfavorable
to regulatory authorities. DriveOS performs well within industry standards and theoretical bounds
for average, minimum, and maximum end-to-end delays for a safe implementation of ADAS.

The median latencies in every 10 CAN frames in Figure 7 further reveals the unpredictable and
inconsistent latency in Linux. It also shows that DriveOS has a very low end-to-end delay variation.
Even though Linux does not have the additional CAN mapper threads of Quest, it performs badly
because it lacks a timing-predictable interrupt handling mechanism. Optimized Linux improves
the delay slightly because xHCI interrupts are pinned to Core 0. However, Linux’s bottom-half
processing of other interrupts on Core 1 is still able to interfere with the execution of more
important SCHED_DEADLINE threads on that core. Quest correctly matches the scheduling priority
of the I/O bottom-half handler with the thread waiting on I/O. Additionally, DriveOS refactors the

longitudinal controller logic of OpenPilot to Quest, which provides temporal isolation between

tasks and interrupts for time-critical tasks. Consequently, DriveOS achieves f—zt the maximum

end-to-end delay observed in Linux.
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In another set of experiments, we measure the delay between consecutive CAN frames in CAN
Channel 1. Table 4 shows two types of average delay over 5000 CAN frames: (1) delay between
consecutive arbitrary CAN frames and, (2) delay between consecutive frames of the same CAN
ID. The source row shows the delay at the CAN message generator on the Ubuntu 16.04 simulator
machine. The delay at source is representative of the delay observed at the sensor and actuator
hardware. We see that DriveOS receives messages with a similar average delay. However, both
versions of standalone Linux receive raw CAN messages delayed by 20-30%. Similar behavior was
observed for CAN ID-based delays. This shows that DriveOS introduces negligible latency overhead
on top of a CAN hardware source for a real car’s CAN dataset, especially in comparison to Linux
used in the automotive industry. Therefore, ECU hardware could be safely and predictably replaced
by real-time software service tasks in DriveOS, where sensor readings and actuator outputs are
communicated via CAN messages.

7.3 Throughput Measurements

In this experiment, we test the throughput from CAN Channel 1 to the IC and IVI applications.
We measure the throughput at the end of IML in Figure 5 before forwarding the data to IC and
IVL Higher throughput means that IC and IVI tasks show more accurate and informative data on
the car displays. Figure 8 shows average CAN frames per second in a period of 3 minutes, with
increasing number of non-timing-critical processes in Linux. These background processes log CAN
frames and make copies of data for safety. In a deployed system multiple third-party applications
would actually be running as background threads.

Although Linux performs similar to DriveOS in the absence of any background threads, its
performance drops as the number of such threads increases. These non-critical threads increase
the number of device interrupts in Linux, and Linux fails for the same reasons stated in the earlier
subsection. Optimized Linux performs a little better because xHCI interrupts are delivered to Core
0. However, DriveOS performs consistently better, and independently of the background threads
because Quest’s USB-CAN I/O handling is not disrupted by the background threads in the Linux
sandbox. Furthermore, DriveOS’s better performance is especially significant because it has a longer
pipeline, traversing through a virtualized Quest sandbox and shmcomm shared-memory channels,
that are absent in Linux. This shows the benefits that DriveOS’s I/O handling and inter-sandbox
communication mechanism provide.

Table 5 shows the average throughput and standard deviation of IC and IVI CAN message reading
(at IML in Figure 5), and OpenPilot CAN message writing (at AML in Figure 5). DriveOS achieves
higher throughput and better predictability with lower standard deviations. Table 5 also shows
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the throughput data for our version of OpenPilot in Linux, which communicates to CARLA via
Ethernet. Although the throughput is worse than DriveOS’s performance with CAN, it is similar to
standalone Linux’s USB-CAN throughput. This shows that a timing-sensitive implementation of
Ethernet could be an alternative to a CAN bus network in future automotive systems.

7.3.1 Scaling Time-Critical Processes. In the next set of experiments, we test the scalability of
critical processes, which are representative of ECU functions implemented as software services.
These processes read from and write to the CAN interface (C = 20us, T = 20ms). Increasing
the number of such processes should not affect the Infotainment, ADAS and other car services.
Figure 9 shows the throughput of infotainment services while running 0-15 time-critical processes
in the system. The throughput stays the same in DriveOS against increasing number of critical
processes, as they are run as real-time services in Quest. In spite of running time-critical processes
as SCHED_DEADLINE tasks, the drop in infotainment throughput shows that Linux does not scale
against time-critical tasks that access the USB-CAN (“CAN I/O”, yellow line), and disk and Ethernet
devices (“Other I/O”, green line). Hence, it is not a favorable choice for future ECU consolidation.
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Fig. 9. Throughput against Time-critical Processes Fig. 10. Cost of shmcomm Operations in Quest

7.4 Startup Times

The system and application startup times are important factors for the end-users of a vehicle
management system. The next set of experiments investigate whether the paravirtualization of
Yocto Linux in DriveOS has any significant effect on either Linux or the applications’ startup times.

The average over five cold boots is noted, where the system is initially powered down. The
DriveOS paravirtualized Yocto Linux takes 18.89 seconds to boot and start the Linux shell at the
serial port. In comparison, a standalone Linux takes 17.56 seconds to boot. The extra time to boot
the paravirtualized Linux is the time Quest takes to boot itself before executing the boot logic of
Linux. The IC and IVI application takes 674ms to start in DriveOS, whereas it is 632ms in standalone
Linux. The almost negligible additional time in starting the IC and IVI in DriveOS is because of the
overhead of establishing the inter-sandbox shmcomm channels. This is studied in the next section.
In subsequent work, DriveOS uses ACPI power management techniques to suspend to, and resume
from, RAM. A suspended system is shown to consume minimal power but is able to resume critical
services in several hundred milliseconds. The details of how this works are out of the scope of this

paper.
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Table 6. Average Cost of shmcomm Channel Operations

System Userspace (us) | Kernel VMM (ps)
(ps)
create
Table 5. Throughput with 20 Background Processes | Quest 12 69 5405
Linux 30 287
System Average Standard
(frame/sec) Deviation connect
' IC and IVI (CAN Channel 1) %:;S; jg jé - 5407
Linux 1378.6 769.5
Optimized Linux 15583 632.5 destroy
DriveOS 1938.4 29.36 Quest 6.5 140 5398
OpenPilot (CAN Channel 3) Linux 68 391
Optimized Linux | 17.45 0.91 close
(Ethernet) Quest 6.5 ]
Optimized ~ Linux | 17.56 1.40 Linux 6.8
(CAN) read
DriveOS 19.94 0.25 Quest 0.01
Linux 0.01 )
write
Quest 0.03
Linux 0.03 j

7.5 Inter-sandbox Communication Overhead

For all shmcomm operations, we have measured the cost at three system levels in DriveOS: (1)
Guest OS userspace (ring 3 in x86), (2) Guest OS kernel (ring 0) and, (3) VMM/hypervisor (ring -1).
Userspace and kernel level measurements are performed separately for Quest and Linux. VMM
measurements are common for both Quest and Linux. Table 6 shows the average cost of channel
operations at different system levels in Quest and in Linux. Creating, connecting and destroying a
channel comes with a higher cost because we need to make an expensive hypercall (VMExit) to the
VMM for these operations. The major time is thus spent in the VMM. Figure 10 shows the cost of
channel operations in Quest on a log scale. It reveals how most time is spent in the VMM logic for
these operations. In addition, the Linux kernel incurs more overhead in channel operations than
Quest. For example, creating a channel takes 287ps in Linux, whereas it is 69us in the Quest kernel.

Once shared memory channels are established, the costs of reading, writing and closing a
channel are negligible, because the channel memory is already mapped to the userspace application.
With careful time-budgeting of channel endpoints, the DriveOS inter-sandbox communication
mechanism achieves fast and predictable runtime reads and writes.

7.6 Discussion

The experiments serve to show that DriveOS built as a centralized system using a partitioning
hypervisor to separate real-time and legacy components is able to meet the requirements of an
automotive system. While providing spatial isolation between tasks of different criticalities, it
ensures legacy services in Linux work together with real-time components to meet end-to-end
latency bounds and achieve higher throughput. The intent of these experiments is not to claim that
DriveOS is a better partitioning hypervisor than another, but that using such a hypervisor in the
context of an integrated and extensible vehicle management system is a plausible approach for
future system design.
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8 RELATED WORK
8.1 Vehicle Operating Systems

A number of automakers are now developing OSes for their vehicles. Tesla uses its own version of
Linux [60] for its display devices. Toyota’s Entune [16] for multimedia and telematics is based on
Automotive Grade Linux (AGL) [61]. BMW’s driving and infotainment system OS?7 is built on Yocto
Linux [39]. Volvo’s Polestar has adopted a bare-metal Android Automotive OS [25]. An IVI system
has also been implemented on a paravirtualized Android [56]. GENIVI [22] and other alliances
between automotive companies are also developing AUTOSAR [3] and AGL-compliant OSes for
modern vehicles. While Linux and Android provide a rich set of features, they lack real-time
capabilities needed for critical tasks in modern vehicle management systems. DriveOS executes
time-critical tasks in a real-time system domain, while ensuring complementary Linux services are
sufficiently predictable for use in automotive applications such as IC, IVI and ADAS.

QNX is a real-time microkernel [27] used by Ford’s SYNC infotainment system [20] and NVIDIA
DRIVE OS [48]. The microkernel handles inter-process communication (IPC), process scheduling
and interrupts. In comparison, DriveOS delegates process scheduling and interrupt handling to
individual sandboxes. Only the shmcomm module in DriveOS manages the IPC between applications
in different sandboxes. QNX has since become proprietary, in contrast to DriveOS’s openly available
design and implementation.

8.2 Partitioning Hypervisors

Quest-V [62] is a separation kernel that statically partitions hardware resources among multiple
guest sandboxes. Each sandbox is responsible for task scheduling and device handling without the
involvement of the Quest-V hypervisor. The Quest RTOS [15] bootstraps Quest-V and initializes
other sandboxes. Other partitioning hypervisors like Jailhouse [50] and ACRN [36] rely on Linux
to bootstrap the system. Bao adopts a clean-slate partitioning hypervisor implementation for
ARM and RISC-V architectures, without relying on Linux [43]. Using Linux to bootstrap guests
in Jailhouse and ACRN increases the security attack surface of the partitioning hypervisor. In
addition, ACRN’s Linux-based service OS manages the hardware resources for other safety-critical
sandboxes, unlike Quest-V’s policy of directly assigning devices to guest sandboxes. PikeOS [30]
and Muen [7] separation kernels also do not support independent interrupt handling by the guest
sandboxes.

Inspired by Quest-V, DriveOS is bootstrapped by the relatively small Quest system, with less
than 4KB of its codebase remaining within the hypervisor (ring -1) privilege level. This eases the
path to verification and certification by regulatory authorities. As the hypervisor occupies the most
privileged protection domain, and it is not required for runtime resource management decisions
by its guests, it is removed for regular control-flow operations. This heightens the security of the
system.

Although Quest-V supports communication between sandboxes [37], it uses Inter-processor
Interrupts for such communications. This reduces the available CPU utilization of the guest sandbox
as an interrupt handling thread needs to be dedicated to communication requests. In contrast,
DriveOS entirely relies on EPT hardware virtualization in x86 for predictable inter-sandbox commu-
nication, similar to what is done in Boomerang [24]. Unlike Quest-V, Jailhouse and ACRN, DriveOS
shows the utility of a partitioning hypervisor in the context of a vehicle management system, where
most carmakers are using flavors of Linux. DriveOS demonstrates the benefits of integrating a
real-time virtual CAN interface in Linux for automotive systems.
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8.3 Vehicular Software Infrastructure

Recent years have seen numerous efforts to support autonomous driving. Autoware is a self-driving
infrastructure for NVIDIA PX2, which provides machine learning frameworks for object detection,
and path planning [31]. Apollo is another such infrastructure project by Baidu [2]. OpenPilot
is an open-source adaptive cruise controller [13], challenging Tesla’s Autopilot and FSD (Full
Self-Driving) [59]. These projects heavily rely on flavors of Linux and are complementary to
DriveOS. DriveOS is capable of incorporating third-party applications such as Cerence [10]; it
already integrates the IC and IVI applications of our partner software company, as well as OpenPilot.

In addition, DriveOS adopts a Real-time Task as a Service model, allowing ECU functions to
run as software tasks in Quest. In the future, DriveOS is expected to benefit from many recent
open-source ECU projects on Arduino and STM32 boards [21, 38, 53, 57], as they are integrated as
real-time services in a consolidated centralized system.

9 CONCLUSIONS AND FUTURE WORK

This paper presents DriveOS, an integrated vehicle management system. To the best of our knowl-
edge, it is the first open study® of a vehicle management system that is being used for a production-
grade electric car. DriveOS uses a real-time separation kernel to host an in-house RTOS, Quest, and
Yocto Linux as guest sandboxes. As proof of concept, a fast and predictable CAN gateway and a
longitudinal controller are implemented as real-time services. These services support three vehicle
management applications in Linux, namely IC, IVI and OpenPilot ADAS. A secure, predictable and
low-overhead shmcomm module facilitates the shared memory communication between real-time
services in Quest and applications in Linux.

DriveOS provides a real-time virtual CAN interface to Linux applications, via low-latency shared
memory communication channels and predictable device I/O in Quest. Timing- and safety-critical
tasks and devices are securely isolated from Linux. DriveOS enables application developers to
use convenient libraries and APIs provided by Linux, while automotive developers focus on code
deployment in a smaller, lighter-weight real-time environment such as Quest.

DriveOS is tested using timing-based metrics against a standalone Linux that is currently found in
many infotainment systems in the automotive industry. Experiments show that the maximum end-
to-end delay for a USB-CAN-dependent controller loop is 12 times more in Linux than in DriveOS.
DriveOS also achieves 24% more throughput for a vehicle’s CAN messages than a standalone Linux.

Future work will use Quest’s real-time USB framework to integrate camera devices as part of
an enriched autonomous vehicle framework. Additional real-time virtual device interfaces will be
provided via shmcomm to allow Linux and Android to implement new ADAS services. We also
aim to migrate more ECU functions to DriveOS, to support real-time torque vectoring and battery
management.
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