
Distributed Real-Time Fault Tolerance on a Virtualized Multi-Core System

Eric Missimer, Ye Li and Richard West

Computer Science Department
Boston University
Boston, MA 02215

Email: {missimer,liye,richwest}@cs.bu.edu

Chip-level multiprocessors (CMPs) are increasingly
being used in real-time and embedded systems, due
in part to their power, performance and cost benefits.
New opportunities exist to build fault-tolerant, safety-
critical systems that leverage the redundancy of separate
cores on these processing platforms. In this work, we
describe a new chip-level distributed real-time system,
called Quest-V.

Quest-V uses hardware virtualization to partition
machine resources (processor cores, memory, and I/O
devices) amongst separate sandboxes. Here, a sandbox
is similar to a traditional (guest) virtual machine but,
for the most part, it operates independently of an
underlying hypervisor (a.k.a., virtual machine monitor,
or VMM). In Quest-V, each sandbox is bootstrapped by
a corresponding monitor that grants access to specific
physical resources. For the most part, resources are
statically partitioned amongst sandboxes, so a monitor
is not needed to schedule the execution of separate
guests on available cores, as is done in traditional
hypervisors. A trusted monitor is only needed when
shared memory communication channels are established
between sandboxes, or fault recovery procedures need
to be performed.

Quest-V is intended for use in systems where faults
can occur either because of software errors, or partial
hardware failures caused by factors such as radiation. If
a fault occurs in a safety-critical system, it is essential
that all critical services remain operational, or available.
Quest-V attempts to maintain high availability by per-
forming real-time, on-line fault detection and recovery.
It does this using a consensus protocol to capture
the states of replicated processes running in separate
sandboxes. Any processes not part of the consensus are
deemed to have malfunctioned and are restored to the
states of other functional replicas. Recovered processes
are rolled forward to the most recent checkpointed state
of replica processes that are deemed to be working
correctly.

Applications requiring high availability use a special
sync system call, to periodically checkpoint their state
and invoke the consensus protocol. When a sync call
occurs, the user space memory of each application

instance is hashed on a per-page basis and the resulting
hashes are placed into memory shared between the local
sandbox and an arbitrator sandbox. A hash is only
collected if the page is modified since the last sync
call. The arbitrator collects the hashes and performs the
consensus. It then sends responses to each sandbox,
indicating whether or not the corresponding replica
process can proceed past its checkpoint. If a replica
passes the checkpoint it can free any copied pages it was
keeping for remote recovery. If it fails at a checkpoint
the arbitrator signals that it needs to recover.

Part of the recovery process involves making a vir-
tual machine call to enter into a sandbox monitor. While
in the monitor, pages from a correct process instance in
a remote sandbox are copied to the recovering replica.
Upon return from the monitor, the virtual machine state
is changed so that it is in the sync system call, which
in turn restores control back to the recovered process.

As long as each replicated process does not receive
input that would vary across instances of execution,
such as calling a read time-stamp counter function,
the memory state across all well-behaving instances
should be the same. This approach relies on copying
and hashing memory pages but a faulty operating system
cannot bring down the entire system, as only monitor
code can modify memory in another sandbox.

The Quest-V fault tolerance approach is intended for
safety-critical applications in areas such as avionics, au-
tomotive systems, robotics, healthcare and manufactur-
ing. We are currently developing an autonomous vehicle
system, called RacerX, which uses real-time sensor data
inputs to influence path planning and motion control.
Other applications include the safe, predictable, and
fault-tolerant management of unmanned aerial vehicles
(UAVs) and robots deployed in space.

We will demonstrate Quest-V using live examples
of autonomous vehicle control, for both simulated and
real-world scenarios. Demonstrations will include using
Quest-V to manage the AI engine of a TORCS 1

simulated vehicle system. We will show that a vehicle
avoids collisions with its surroundings even when faults
are injected into the AI engine.

1TORCS is “The Open Racing Car Simulator”.



Fig. 1: Example Quest-V Architecture Overview

Fig. 2: Quest-V with Linux Front-End


