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Abstract

ShareStreams (Scalable Hardware Architectures for
Stream Schedulers) is a unified hardware architecture for re-
alizing a range of wire-speed packet scheduling disciplines
for output link scheduling. This paper presents opportu-
nities to exploit parallelism, design issues, tradeoffs and
evaluation of the FPGA hardware architecture for use in
switch network interfaces. The architecture uses proces-
sor resources for queueing & data movement and FPGA
hardware resources for accelerating decisions and prior-
ity updates. The hardware architecture stores state in
Register base blocks, stream service attributes are com-
pared using single-cycle decision blocks arranged in a novel
single-stage recirculating network. The architecture pro-
vides effective mechanisms to trade hardware complexity
for lower execution-time in a predictable manner. The
hardware realized in a Virtex-I and Virtex-II FPGA can
meet the packet-time requirements of 10Gbps links for 256
stream queues with window-constrained scheduling disci-
plines. The hardware can schedule 1536 stream queues with
priority-class/fair-queueing scheduling disciplines using 16
service-classes to meet 10Gbps packet-times.

1 Introduction

Availability of 10GEA (10Gbps Gigabit Ethernet Al-
liance hardware)[1] and Infiniband-10 Gbps[4] NICs &
switches is bringing unprecedented link bandwidth to clus-
ters and long-haul networks. QoS hardware architectures,
with packet scheduling disciplines at their core must track
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the steady growth in wire-speeds to achieve high link uti-
lization and scale. Workloads running on clusters are in-
creasingly a mix of web server traffic, real-time media
streams, transaction-processing and scientific workloads.
FCFS (First-come-First-Serve) schedulers will easily allow
bandwidth-hog streams to flow through and starve other
streams, while fair-share schedulers[18] cannot handle real-
time media streams with deadlines. On the other hand, so-
phisticated window-constrained scheduling disciplines run-
ning at wire-speeds can meet the diverse QoS requirements
of a mix of best-effort and real-time streams.

There has been a significant amount of research in
the development of packet scheduling disciplines. Re-
sults from [17] and [8] show that achievable packet-
times with simple (Deficit Round Robin[8]) and sophisti-
cated scheduling disciplines (Dynamic Window-constrained
Scheduling (DWCS)[17]) on processors is of the order of
35 � s to 50 � s. Scheduling disciplines must complete a
decision within a packet-time to meet the link require-
ments ( ����	�

������������������������� ����!�"�#�����$�%!&�'�(�()'���*�'!�" ) of 1 Gbps links (12 � s) and
10Gbps links (1.2 � s) for Ethernet frames. Also forward-
ing minimum-size packets at line-speeds is a requirement
for router line-cards to avoid susceptibility to Denial-of-
Service attacks. While previous work has focused on band-
width, delay and jitter bounds of various algorithms, this
paper evaluates opportunities to overlap activities and ex-
ploit parallelism in packet scheduling disciplines for wire-
speed performance and bound guarantees on FPGA-based
architectures. Scheduling disciplines order streams based
on stream service attributes and inherently possess a signif-
icant amount of bit-level parallelism. A FPGA hardware
architecture can exploit this parallelism at the level of a de-
cision (pairwise stream ordering) and across all streams for
concurrent state maintenance. A tightly-coupled Processor-
FPGA systems-on-a-chip (as seen in currently available
Triscend A7[5] and Xilinx Virtex II pro [6] families) or
standalone FPGA array is a prudent choice to uncover and



exploit this parallelism. A plethora of multimedia applica-
tions, systems and protocol software can run on the proces-
sor while decisions and stream selection are accelerated by
the FPGA array. The processor-FPGA systems-on-a-chip
is most suitable for end-systems and low-end host-based
routers. On the other hand, a stand-alone FPGA array work-
ing in tandem with other chipsets can select streams de-
posited by a switch fabric in a switch network interface or
line-card. FPGA arrays provide a suitable architecture im-
plementation substrate with clock rates up to 400MHz and
gate densities up to 10 million gates, supporting low dy-
namic reconfiguration overheads. The flexibility of software
at hardware speeds, available with FPGAs, allows a certain
architecture to evolve with the constantly changing land-
scape of network standards and protocols. A scheduling dis-
cipline architecture realized with FPGAs can be customized
to evolve with the application, on a dynamic run-time or per-
invocation basis. This promotes interoperability and cus-
tomized operation of scheduling disciplines based on traffic-
types, producer-consumer pairs and cluster topologies.
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Figure 1. ShareStreams System Architecture:
Processor-attached Configuration

This paper describes ShareStreams - a FPGA-based
hardware architecture to support a wide range of scheduling
disciplines. The ShareStreams architecture allows hardware
complexity or area to be traded for lower execution-time
in a predictable manner. The focus of this paper is the
design issues and tradeoffs in the development of a uni-
fied hardware architecture for window-constrained and
priority-class/fair-queueing (called service-tag) scheduling
disciplines[10, 16, 9], suitable for use in switch line-cards
with output link scheduling. The ShareStreams architecture
uncovers and exploits parallelism at the level of a decision
and can overlap successive decision-cycles by predication,
even for window-constrained scheduling disciplines. The
architecture stores state in Register Base blocks, orders

streams using single-cycle Decision blocks arranged in
a recirculating network to conserve area and improve
throughput. Published architectures [15, 7, 11] can sup-
port service-tag disciplines, but not window-constrained
scheduling discipline operation. We evaluate the tradeoffs
required to achieve high scalability and throughput by
pipelining the architecture using a Xilinx Virtex II chip [6].
Our architecture can meet the packet-time requirements of
10Gbps links even if scaled to hundreds of stream queues.
The design issues and tradeoffs discussed in this paper will
apply to a whole range of packet scheduling architectures
being developed. This paper describes scaling & pipelining
issues in the development of a scalable, high throughput
architecture for use in switch network interfaces. Results
are provided with Virtex-II and scheduling for a mix of
real-time streams & fair-share streams.

2 Packet Schedulers: Complexity & Perfor-
mance

The fundamental idea in packet scheduling is to pick
a stream from a given set of streams and schedule the
head-packet from the eligible stream for transmission.
The scheduling discipline must make this decision based
on stream service constraints, expressed as descrip-
tors/attributes, which could be integer-valued weights
by which bandwidth of the output link is to be divided
or deadlines at which packets in each stream may need
service so that the service requirements of each stream
(bandwidth, delay or jitter) are satisfied to the best extent
possible. The stream attributes of relevance to a certain
scheduling discipline by which streams are ordered may
be multi-valued (deadlines, loss-ratios, arrival-times) or
single-valued (stream weights, start-tags, finish-tags) and
may be abstracted for convenience as stream priorities. For
comparing multiple service attributes from two streams
simultaneously, usually a hierarchy of rules is necessary
and an example is in [16] for the case of DWCS (Dynamic
Window-constrained Scheduling)[16]. For the purposes of
this paper, we call comparing stream attributes from two
different streams as a decision and a decision cycle for
winner-selection involves (1) ordering all streams based on
rules and (2) updating their priorities after all the streams
are ordered. A decision-cycle yields one winner and the
rest are loser streams. The scheduling discipline must
also ensure that the scheduling decision is completed in a
packet-time ( �'�
	�

����������� �$��������� � �#��!�"� � � �$� ! ��� �()'���*�'!�" ) to ensure maximum
link utilization. The range of packet scheduling disciplines
can be classified as priority-class, fair-share and window-
constrained. This paper describes a unified architecture for
priority-class, fair-share and window-constrained schedul-
ing disciplines. For priority-class & fair-share scheduling



disciplines, the packet priority or service-tag of an inserted
packet does not change after being queued, and packets
are served in service-tag order. In window-constrained
scheduling disciplines, the priorities of enqueued streams
is updated every decision cycle for packets in streams that
miss deadlines and streams are ordered based on scheduler
rules described by us in [16, 13] and shown in Table 1.
Priority-class and fair-share scheduling disciplines are

Pairwise Ordering for Streams

Earliest-Deadline First
Equal Deadlines, order lowest window-constraint first
Equal deadlines and zero window-constraints,
order highest window-denominator first
Equal deadlines and equal non-zero window-constraints,
order lowest window-numerator first
All other cases: first-come-first-serve

Table 1. Example Scheduler Decision Rules

collectively called service-tag schedulers for the purposes
of this paper. Note that priority assignment and winner
selection are the two basic operations common across all
scheduling disciplines. Window-constrained scheduling
disciplines combine the operation of priority-assignment
and priority-update into one cycle, for new packets on
arrival (assignment) and packets waiting to be scheduled
that miss deadlines (priority update). Window-constrained
scheduling disciplines can be regarded as a general case
of scheduling discipline operation with multiple degrees
of freedom - packet and stream-level priority variation. A
key insight from this is that priority-class and fair-queueing
scheduling disciplines can be realized by bypassing packet-
priority updates. This points to the possibility of a unified
architecture across a range of packet scheduling disciplines.
We show in [12] that window-constrained and service-tag
scheduling disciplines exhibit

���������
	��
complexity when

mapped to the ShareStreams architecture described in this
paper for N stream queues.
Implementation Complexity The implementation com-
plexity of scheduling disciplines is dependent on state
storage for service attributes, number of service attributes
that are needed for ordering, priority update needs of the
scheduling discipline and winner selection rate required to
maintain high link utilization.
Concurrency A significant amount of parallelism exists
in scheduling discipline operation. Priority assignment
and update operations can proceed in parallel across all
streams. Pairwise-ordering between any two streams, can
proceed in parallel across pairs of streams. Individual
conditions for pairwise ordering (a single decision) can
be evaluated concurrently. The throughput of a schedul-
ing discipline is limited by the overlap between priority

assignment and winner selection. For priority-class and
fair-queueing scheduling disciplines, priority assignment
and winner selection can proceed completely in parallel.
For window-constrained scheduling disciplines, priority
assignment/update and winner selection are inherently
serialized. We show how this may be overlapped for
the case of window-constrained scheduling disciplines in
Section 5.
Performance Limits of Processor-resident Schedulers
A packet-time of a 64-byte Ethernet frame on a 10Gbps
(1Gbps) link is 
������ ( 
�������� ), while that of a 1500-byte
frame is 1.2 � s ( ��� � s). Detailed performance studies on Sun
Ultrasparc 300MHz processors, completed in [17] show
that the scheduler latency can be as high as ��
�� � s for
window-constrained scheduling disciplines. Results in [8]
on a 233MHz Pentium show packet processing overhead
using the Deficit Round Robin scheduling discipline of
����
�� s run in the NetBSD kernel. A relaxed implemen-
tation of DWCS [19] required lazy priority-updates to
achieve 1 Gbps throughput with 1K packets using the Intel
IXP 1200 network processor in simulation. Each stream
required equal share of the bandwidth. Note that lazy prior-
ity updates will not help satisfy unequal bandwidth sharing
requirements. Software realizations are unable to uncover
stream-level parallelism across all streams and bit-oriented
concurrency in pair-wise ordering decisions, leading to
poor performance. Processor-resident packet scheduling
disciplines cannot meet the packet-time requirements of
10Gbps links.

3 Related Work

A number of hardware structures have been proposed to
implement traditional priority queues. In traditional priority
queueing systems, a packet arrives and is given a priority
or a service tag (start/finish number) based on the state of
each of the backlogged queues or a round number / vir-
tual time-stamp representing the run-time progression of
scheduling. [11], [15], [7], all propose interesting prior-
ity queueing structures and provide ASIC implementations.
None of these architectures can be used to provide a unified
architecture for priority-class, fair-queueing and window-
constrained schedulers. First, a heap, a systolic queue or
a shift-register chain implementation will require replica-
tion of the Decision block in every element, requiring such
blocks for every packet. There are

	
streams and � pack-

ets across all streams. The recirculating shuffle in this paper,
conserves area by using only the lowermost-level of a tree
(requires � � blocks only). Note that Decision blocks in the
window-constrained architecture of this paper require multi-
ple service attributes to be compared simultaneously and are
not simple comparators. Second, the priorities of streams
that miss deadlines and the winning stream are updated ev-



ery decision-cycle. This will require resorting the heap, sys-
tolic queue and shift-register chain (formed from each ar-
riving packet) every decision-cycle and on packet-arrival. A
simple binary tree simply wastes area, and requires

����� � ��	��
levels of the tree. Instead, a recirculating shuffle, used in
our unified architecture conserves area, and scales better by
using only ( � � ) decision blocks in a single-stage recirculat-
ing shuffle. A single-stage recirculating shuffle network can
be used with priority-class based scheduling disciplines and
also with fair-queueing scheduling disciplines as N packets
with service-tags can be ordered in

����� � 	 cycles, using sim-
ple comparators to compare service-tags. An extra priority
update cycle is not needed.

4 The ShareStreams System Architecture

The ShareStreams architecture is realized in two separate
forms to meet the requirements of two distinct classes of ap-
plications. The processor-attached configuration for servers
& host-based routers and the switch line-card configuration
for high-end switches and routers.
Processor-attached Configuration The software architec-
ture queue manager (QM) maintains per-stream queues usu-
ally created on a stream processor (see Figure 1). The
stream processor is a processing element seen in processor-
FPGA architectures like Triscend A7[5] and Virtex II-Pro
[6]. The FPGA array is a tightly-coupled functional unit
or a separate array configured and programmed by the pro-
cessor across an interconnect. This allows a plethora of
existing multimedia applications, protocol stacks and sys-
tems software to be run on the processing element. These
applications can benefit from hardware acceleration of de-
cisions and stream selection on the attached FPGA array
by using systems software running on the processing el-
ement. System software issues, detailed interaction with
scheduling hardware and related trade-offs is described in
[13]. Our per-stream queues are circular buffers with sepa-
rate read and write pointers for concurrent access, without
any synchronization needs. This allows a producer to pop-
ulate the per-stream queues, while the Transmission Engine
(TE) may concurrently transfer scheduled frames to the net-
work. The processor interacts with the FPGA array for three
main operations - (i) transfer scheduler attributes, (ii) trans-
fer packet arrival-times and (iii) read winner stream IDs.
Only 16-bit packet arrival-time offsets or 32-bit service-tags
are transferred and also only 5-bit stream IDs are read across
the interconnect. A single copy of packets is maintained in
packet-store on the Stream processor. Buffering for arrival-
times (processor to FPGA) and stream IDs (FPGA to pro-
cessor) is possible on the processor and SRAM/Block RAM
memory on the FPGA array. SRAM/Block RAM memory
on the FPGA array buffers packet arrival-times in a per-
stream fashion.
Switch Line-card Configuration A line-card realization of

the architecture is shown in Figure 2. Dual-ported SRAM
allows packets arriving from the switch fabric to be placed
in per-stream SRAM queues. Their arrival times can be read
by the SRAM interface concurrently. Winner Stream IDs
are written into the SRAM partition by the SRAM inter-
face, which are provided by the Scheduler control unit. The
decision and stream ordering hardware provides scheduled
streams IDs to the scheduler control unit.
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5 ShareStreams Hardware Architecture

This Section describes the FPGA hardware implementa-
tion of the scheduler hardware architecture on Xilinx Virtex
I & II FPGAs. To demonstrate the versatility of our architec-
ture, we implement both a dynamic priority packet schedul-
ing algorithm - DWCS[16] and also a service-tag scheduling
discipline with variable number of priority-levels.



Single-Stage Recirculating Shuffle-Exchange Network
As described in Section 4 per-stream service attributes are
stored in Register Base blocks, Decision Blocks allow pair-
wise comparison of two streams, using multiple stream ser-
vice attributes. Recirculating the stream service attributes
allows pairwise ordering of all streams in

����� � ��	 � � � cy-
cles for N stream Register Base blocks, using a single-stage
recirculating shuffle-exchange network. The winner is ob-
tained after

����� � ��	�� cycles. A sorted list of streams is ob-
tained after

����� � ��	�� � � cycles and the winner ID is cir-
culated to every Register Base block so that per-stream up-
dates can be applied based on whether a stream is a winner
or a loser. The network requires N Register Base blocks,
( � � � Decision blocks and

����� � ��	�� cycles of the recirculat-
ing shuffle-exchange network for determination of a winner
stream. The architectural arrangement is shown in Figure 3.
When this arrangement is used for service-tag ie. priority-
class or fair-queueing scheduling disciplines, an extra PRI-
ORITY UPDATE cycle is not needed. In this case, two
succeeding decision cycles can start without an intervening
PRIORITY UPDATE cycle.
Scheduling Timeline The Scheduling timeline is presented
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in Figure 4 for a window-constrained implementation with
four streams. During the LOAD cycle, the Register Base
blocks are loaded with stream service attributes using the
load enable signal driven from the Control & Steering Unit.
After the LOAD cycle, the SCHEDULE state and PRIOR-
ITY UPDATE cycle can begin and will alternate to generate
winner stream IDs. During the I cycle of the SCHEDULE
state, the Control unit provides signals for the muxes (see
Figure 3) and this allows the stream service attributes to be
applied for comparison to the Decision blocks. This will
yield winners and losers. The winners and losers from each
comparison ie. outputs of the Decision blocks are recircu-
lated during the II cycle of the SCHEDULE state. This al-
lows the winners to be pitched against the winners and the
losers to be pitched against the losers, yielding a sorted list

of streams after 2 cycles (for a four steam implementation).
The winner Stream ID is circulated to the Register Base
blocks during the PRIORITY UPDATE cycle, along with a
PRIORITY UPDATE signal and a new packet arrival time
for the winning stream and streams that may have dropped
a packet. For service-tag scheduling disciplines, the PRI-
ORITY UPDATE cycle is not needed. Loading Register
Base blocks with service-tags for successive decision cy-
cles can overlap with winner selection. Control Unit and
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Register Base Blocks The Control Unit sequences the re-
circulating shuffle-exchange network shown in Figure 3 by
providing appropriate control signals (to muxes and other
steering components) to sequence the scheduling timeline.
The control unit loads scheduler stream service attributes
into Register Base blocks during the LOAD cycle, packet
arrival-times during each decision cycle and forwards win-
ner stream IDs to memory (with timestamps) for transmis-
sion every decision cycle. Another important function of
the control unit is to maintain a time base and provide this
to each Register Base block, for comparison with stream
deadline service attributes. This is to determine if a stream
has missed or has met it’s deadline during each decision cy-
cle. The Register Base blocks store Stream service attribute
values - individual packet arrival times (16 bit), request peri-
ods (16-bit), stream IDs (5-bit), loss-tolerance numerator (8-
bit) and loss-tolerance denominator (8-bit), deadlines (16-
bit), violation state registers (1-bit), counters (16-bit) and
drop packet state storage flag (1-bit). A key element of a
Register Base block is a priority update operation which
in the case of a dynamic priority window-constrained algo-
rithm occurs every scheduler decision cycle. For the case of
DWCS (see [16]), simple increments/decrements to dead-
lines and loss-tolerances (numerator and denominator) are
applied if the stream is a winner (the Register Base block
compares it’s ID with the winner stream ID circulated by
the Control unit) and similarly, increments/decrements to
deadlines and loss-tolerances are applied to loser Register
blocks that miss a deadline (a block loses a decision cy-
cle, if the circulated winner Stream ID is different from



it’s Stream ID). Figure 5 shows the logic operations needed
during a PRIORITY UPDATE. A Register Base block is
called a stream-slot if stream-state for a set of streams is
time-multiplexed by pipelining. Register Base blocks for
service-tag realizations of the hardware architecture in Fig-
ure 3, simply store service-tags and Stream IDs in registers.
Decision Block A Decision Block is a key element of the
hardware architecture. Figure 6 shows the logic architecture
of a Decision block implementing scheduler rules in Table 1
for a window-constrained scheduling discipline. A Decision
block is provided two sets of inputs, usually stream service
attributes, representing two streams whose service attributes
must be ordered to determine the stream with the higher
“priority” (“priority-ordering” must be pre-established us-
ing a single service attribute or a combination of service at-
tributes). Scheduler rules in Table 1 might suggest sequen-
tial evaluation that might require multiple cycles for com-
pletion by pipelining a comparator chain. This is because
of the apparent dependencies in the sequential arrangement
of rules. Instead decision blocks in Figure 6, evaluate rules
concurrently, by firing independent operations (value-bus)
and selecting the appropriate operation based on the satis-
fying condition (predicate-bus). This is possible because
sequential rules are arranged in predicate-logic form. This
allows the multiple service attribute compare to be evalu-
ated in just one cycle. One important “compare” operation
in the concurrent evaluation of rules, compares two frac-
tions expressed as numerator and denominator ( � �� � and � �� �
). We use a 8-bit multiplier for comparison ( ��� ��� � ==
� � �	� � ) as fast-carry chains and RPM macros are available
with the Xilinx Virtex I chip and actual silicon block mul-
tipliers are generously scattered across the chip in Virtex II
architectures. This allows fraction compares for all possi-
ble values of numerators and denominators instead of lim-
ited range provided by chordic math approaches. The Deci-
sion block for DWCS organizes the rules in simple predicate
logic form along a value-bus and predicate-bus. All the val-
ues along the value-bus are evaluated concurrently, but only
one is selected by outputs along the predicate bus. This al-
lows all the rules to be evaluated in just a single-cycle.

A Decision block for a service-tag scheduling discipline
will need only a simple comparator to order streams. The
complexity of the comparator is a function of the priority-
field or service-tag length.

Scalability: Choices and Tradeoffs The notions of scala-
bility in this paper are two-fold - Horizontal and Vertical.
To Horizontally scale the architecture in Figure 3 from 8 to
16, the number of Register Base blocks are increased from
8 to 16, the number of Decision blocks from 4 to 8 with ad-
ditional wiring and muxes for control. A winner is available
every

����� � ��
 or four cycles with this scaling. For Vertical
scaling, the Register Base blocks are tiled and the Decision
block network is fixed. Execution proceeds in rounds of 4
Register Base blocks each with a final ‘inter-play’ round
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to determine the winner across all rounds. Decision-time
is logarithmic for each round but an accrued sum over all
rounds. This scaling arrangement saves Decision Block net-
work area, by pipelining stream state through a network of
reduced size. The tradeoff here is between increased Deci-
sion time for reduced Decision Block network area. This
might be acceptable for larger granularity packets or slower
links, where a small FPGA array is available for decision ac-
celeration. Figure 3 routes both winners and losers to yield a
sorted list of streams at the end of

����� � 	 cycles, termed the
Base Architecture (BA). Another approach to improve clock
scaling and reduce decision time is to route only winners
(the winner-only (WR) routing architectural variant). Each
Decision block will only output the winner stream, each cy-
cle. So for an 8 stream implementation in Figure 3, all four
Decision blocks are used in the first cycle, 1 and 3 in the
second cycle and Decision Block 1 in the final cycle. This
reduces the physical interconnect requirements, and yields
a winner stream which can be recirculated to update prior-
ities. [13] discusses benefits of using the complete sorted
list of streams to schedule EDF streams in an efficient block
manner. We evaluate clock scaling benefits of the WR ar-
chitecture with Virtex II in Section 6.
Pipelining ShareStreams: Choices and Tradeoffs The
hardware architecture shown in Figure 3 for window-
constrained scheduling disciplines, orders streams and up-
dates priorities in the succeeding cycle based on whether a
stream has won or lost a given decision cycle. By trading
increased logic area for reduced decision-time, Compute-
Ahead Register Base blocks, shown in Figure 5, precom-
pute state for a stream being both a winner or a loser stream.
When the winner is selected after a SCHEDULE cycle, ap-
propriate state is selected and used during the next deci-
sion cycle without an intervening PRIORITY UPDATE cy-
cle (shown in Figure 4). Pipelining at the level of a de-
cision, allowed by Compute-Ahead Register Base blocks



are evaluated in Section 6 (overlaps priority updates and
stream ordering by predication). Further pipelining at the
level of a given set of streams requiring scheduling sup-
port, can be achieved by thinking of Figure 3’s Register
Base blocks as Stream-slots. Such a pipelining scheme
can be used for window-constrained as well as service-tag
scheduling disciplines. Execution proceeds in rounds, with
stream state saved and restored from low-latency SRAM
memory. After the PRIORITY UPDATE, an extra cycle is
consumed to load Register Base blocks, with stream state
restored from memory. This is similar to Vertical-scaling
without any tiled Register Base blocks. Stream state is time-
multiplexed on the hardware by pipelining without using
extra Register Base blocks. This can allow many streams
(greater than Register Base block count) to be temporally
pipelined through a 32-stream slot design, again by trading
increased decision-time for reduced state and decision block
logic area. Pipelining at the level of a set of streams is pos-
sible and is evaluated in Section 6.
Scheduler Hardware Prototype The hardware compo-
nents were synthesized from VHDL. Time-critical compo-
nents use hand-crafted logic by wiring Xilinx corelib com-
ponents and custom-defined logic components to reduce
critical path delay. The Synplify Pro 7.1 tool was used
for logic synthesis, the Xilinx backend tools version 4.1
for physical synthesis and bitstream generation. We run
the hardware on a Celoxica Virtex I/1000 PCI card which
can clock a design up to 100MHz and is equipped with a
32bit/33MHz PCI controller & 8M SRAM accessible from
the host and the FPGA[2]. The prototype allows demon-
stration and verification of scheduling a mix of fair-share,
EDF and static-priority streams and is described with ex-
periments in [16, 12].

6 Performance Evaluation

This section evaluates the FPGA hardware implementa-
tion of the architecture for window-constrained and service-
tag scheduling disciplines. This section presents scaling re-
sults, performance comparisons and scheduling issues for a
mix of real-time and fair-share streams.

6.1 Window-constrained Architecture

Area-Clock Rate Characteristics This section evaluates
the window-constrained base architecture (BA) along with
architectural variants discussed in Section 5 - the “Winner-
only Routing” (WR) modification, Compute-Ahead (CA)
Register base blocks and the impact of temporally pipelin-
ing stream state. Our design has been targeted to both Virtex
I [6] and Virtex II [6] architectures. Decision blocks are ef-
ficiently mapped to Virtex II as they use the on-chip silicon
block multipliers. Multiplier mappings on Virtex I use logic
tree chains and can aggravate net delay.

This section determines Virtex chip area and decision
time (calculated from achievable clock rate). The evaluation
in this section does not include the memory/interconnect
interface of the design with SRAM memory or any other
shared-switched interconnect. Each data-point evaluates the
design with Register Base blocks, Decision blocks, control-
steering logic block and the recirculating shuffle network.
Area-Decision time Scaling with the Virtex I chip

Figure 7 shows area and clock rate achievable with the
Base architecture (BA) and the “winner-only” routed (WR)
architecture. From Figure 3, the architecture grows linearly
in terms of area and logarithmically in terms of decision
time. A hardware implementation must attempt to maintain
clock rate, with growth from 4 to 32 stream-slots, without
any decay, to meet the logarithmic decision time growth.
The BA and WR architectures show a linear increase in area
from 4 to 32 stream-slots (stream-slots are Register Base
blocks of Figure 3). The BA architecture uses slightly more
area because of extra wires needed to route loser stream at-
tributes. The WR architecture maintains the clock rate from
4 to 32 stream-slots because of lowered physical intercon-
nect requirements (routes only winners). The BA architec-
ture experiences more logic “spread” because of the need
to route winners and losers and shows higher clock rate de-
preciation than the WR architecture. Our Area/Clock rate
results for the BA architecture for Virtex I are from [14].

Figure 7. Area-Clock Rate Characteristics (Virtex I)

Area-Decision time Scaling with the Virtex II chip For
the results of this paper, we show enhanced performance by
mapping to Virtex II. Mapping decision blocks to silicon
block multipliers of the Virtex II chip shows a dramatic im-
provement in clock rate. The hardware architecture on the
Virtex II chip uses the block multipliers instead of logic tree
chains needed in Virtex I. For both the BA and WR architec-
tures in Figure 8, the clock rate is more than double that of
each stream-slot datapoint of Figure 7. Again the WR archi-



Figure 8. Area-Clock Rate Characteristics (Virtex II)

Figure 9. ComputeAhead Register Blocks (BA-
based) Results (Virtex II)

tecture preserves the clock rate in a more efficient manner
than the BA architecture, because of lowered physical inter-
connect routing requirements, when growing from 4 to 32
stream-slots. The linear area growth and marginally higher
area requirements of the BA architecture (than the WR ar-
chitecture) of Figure 8 are also consistent with Figure 7. Our
Virtex I & II implementations can easily meet the packet-
time requirements of all frame sizes (64-byte and 1500-
byte) on gigabit links, and 1500-byte frames on 10Gbps
links. Four stream queues can be serviced at 10Gbps line-
rates for 64-byte Ethernet frames with window-constrained
scheduling disciplines.
Area-Decision time Scaling with Compute-Ahead Regis-
ter Blocks Compute-Ahead Register blocks are described in
Section 5 and evaluated in Figure 9. Compute-ahead Reg-
ister Base blocks, overlap priority-update with winner se-

Figure 10. Decision-times with Pipelined Stream
state (Virtex II)

lection by pre-computing new service constraints before the
actual winner is available. This allows better decision time
as the cycle for priority update is completely removed from
the decision time of the packet. This means that a new win-
ner decision cycle can be started after 2, 3, 4, 5 cycles for
4, 8, 16, 32 streams instead of (2+1), (3+1), (4+1), (5+1)
cycles. This allows the scheduler to be structured for higher
throughput. Figure 9 shows the area and clock rate scaling
of this architecture. The increased area requirements of this
architecture depreciate the clock rate more than the equiv-
alent datapoint in Figure 8 because of logic spread. Each
datapoint corresponding to a stream count is still greater
than the data-point in Figure 7 for Virtex I. This allows
the Compute-Ahead architecture to meet the packet-time re-
quirements of 10Gbps links because of fewer cycles needed
per decision.
Impact of Pipelining Stream-state on Decision-times The
choices and tradeoffs in pipelining the architecture of this
paper are discussed in Section 5. Figure 10 shows possi-
ble decision times when pipelining stream state through the
hardware architecture. If only 32 streams require scheduling
support, each one can be mapped to one of the 32 stream-
slots and no pipelining is needed. This is equivalent to the
32 stream-slot data-point of Figure 7 and Figure 8. For
scheduling more than 32 streams on a 32 stream-slot archi-
tecture, stream-state can be pipelined through the architec-
ture. An extra cycle is needed at the end of each decision
cycle to save stream state in SRAM memory from Reg-
ister Base blocks and restore stream state for the next set
of streams requiring ordering. Up to 256 streams can be
temporally pipelined through a 32 stream-slot design (with
a one cycle service attribute load), if packet-time require-
ments for 10Gbps links are to be met. Up to 1024 streams
can be pipelined through a 32 stream-slot design, if packet-



times for 1 Gbps and 2.5 Gbps links are to be met. If a
128 stream-slot design were synthesized for Virtex-II (using
a bigger part than the Virtex II 2000 used in Figure 8) and
clocked at 50MHz, 1024 streams could be pipelined through
a 128 stream-slot design to meet 10Gbps packet-times.

6.2 Service-Tag Architecture: Fair-queueing &
Priority-class

Figure 11. Service-Tag Area-Delay Characteristics
(Virtex II)

Figure 12. Service-Tag Decision-times with
Pipelined Stream State (Virtex II)

Figure 11 reveals the area-delay characteristics of the
architecture of Figure 3 for service-tag scheduling disci-
plines, like priority-class and fair-queueing. Each Regis-
ter Base block or stream-slot stores service-tags and stream

IDs in registers. The Decision blocks use simple compara-
tors arranged in a recirculating shuffle-exchange network.
A priority update cycle is not needed. Only winners are
routed from the outputs of Decision blocks. Each data-
point evaluates the design with Register Base blocks, De-
cision blocks, control-steering logic block and the recircu-
lating shuffle network. The service-tag computation engine
is not included, as we seek comparisons with the window-
constrained architecture. Note that service-tag computation
may be completed on the Stream processor in software or
directly in hardware, depending on temporal bounds needed
by an implementation. Observations regarding linear area
growth and logarithmic decision-time growth are similar to
the window-constrained architecture of Figure 8. Figure 11
plots area-delay bars for 4 different priority-field lengths.
The 32 stream-slot architecture at 4-bit priority-levels routes
9-bit wide wires in the recirculating network. Additional
5-bits are used for addressing 32-stream slots. Similarly,
for 16-bit priority-levels, 21 bits are routed and the 32-bit
design uses 37 bits for routing and ordering Register Base
blocks. The area needs of the 32-stream slot architecture
for 16-bit priority-field length are twice that of the 4-bit
priority-field length design and approximately half that of
the 32-bit design. Given that simple comparators are used
for comparison along with registers for storing priority-
fields, each additional bit in the priority-field requires an ad-
ditional wire to be routed. This causes linear growth in area
when priority-field lengths are scaled. An important conclu-
sion is that priority-field lengths for service-tag schedulers
are a fundamental determinant of hardware complexity in
FPGA Virtex II architectures. For 32 stream slots and a 53
bit field length in the service-tag architecture, the achievable
clock rate of 41 MHz is close to the achievable clock-rate of
the window-constrained architecture of Figure 8. The rele-
vant datapoint in Figure 8 is for 32 stream-slots with winner-
routing, that yields a 37.97 MHz clock-rate. This is ex-
pected because the window-constrained architecture routes
stream service descriptors of 53-bit length. Also, the De-
cision blocks use silicon multipliers and components that
run at rated silicon speed, like comparators in the service-
tag decision blocks. This also points to the efficiency of the
window-constrained Decision block implementation.

Figure 12 uses a 512 stream-slot design with winner-
routing for pipelining stream-state, using a technique sim-
ilar to the discussion for Figure 10. 1536 stream queues
can be supported, while meeting the line-rates of 10Gbps
links with 1500-byte Ethernet frames at 16 priority-levels.
32 stream queues can be supported at 16 priority-levels for
64-byte Ethernet frames at 10Gbps meeting 50 ns packet-
times. Evaluation Conclusion If Decision block compo-
nents for scheduling discipline realizations use silicon com-
ponents available on-chip and can be clocked at rated sil-
icon speed, the hardware complexity or area of the archi-
tecture implementation in hardware is directly related to the



length of the priority-field or service-classes needed. 40-
byte ACK packets can be supported in a configuration with
16 queues and 16 service-classes for 10Gbps output links.
Larger queue sizes can be supported by reducing service
classes and aggregating flows.
Performance Comparison
Wire-speed Hardware Architectures [15] gives a compre-
hensive evaluation of wire-speed hardware architectures for
155 Mbps ATM links for priority-class/fair-share schedul-
ing disciplines synthesized for a ��� ��� CMOS process. The
paper provides descriptions of shift-register chains and sys-
tolic queues, suitable for mapping service-tag scheduling
disciplines, but not window-constrained scheduling disci-
plines. The binary tree architecture in [15] can be used
to map a range of packet scheduling disciplines. For 32
stream queues, the binary tree can complete 13 million de-
queue operations per second for 16 priority-levels. For
64 stream queues and 16 priority-levels, around 9 million
dequeue operations can be supported. Scaling beyond 64
stream queues is not supported. The hardware architecture
described in this paper can complete 21 million dequeue
operations per second for 32 stream queues at 16 priority-
levels. For 128 stream queues at 16 priority-levels, 9.4
million dequeue operations per second can be supported.
The architecture described in this paper scales to sched-
ule 1536 stream queues for 1500-byte packets at 10Gbps.
10Gbps Switch Linecards A number of industry products
support 10Gbps line-cards, including line-cards for Cisco’s
GSR 12000 router [3]. The line-card is capable of wire-
speed QoS using deficit round-robin (DRR) and Random
Early Detect (RED) policies. The line-card supports 8
queues per port. The architecture described in this paper can
support 1536 stream queues for 1500-byte packet streams
at 10Gbps, and 32 stream queues at 10Gbps for 64-byte
packet streams. If more sophisticated window-constrained
scheduling is desired for a mix of real-time and fair-share
streams, 256 stream queues can be supported at 10Gbps for
1500-byte packets and 4 stream queues at 10Gbps for 64-
byte packets. The ShareStreams architecture described in
this paper can provide per-flow queueing, with 16 service-
classes and 1536 packet queues at 10Gbps for 1500-byte
packets. 64-byte packets can be supported at 10Gbps for 32
stream queues with 16 service-classes.

7 Conclusion

FPGA hardware packet schedulers can exploit bit-
oriented concurrency in scheduler rules for single-cycle
stream pairwise ordering and concurrent state update. This
paper develops and evaluates a unified architecture for map-
ping both window-constrained and service-tag scheduling
disciplines on FPGA hardware architectures. The architec-
ture allows area or hardware complexity to be traded for
lower execution-time in a predictable manner.
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