
Vol.:(0123456789)

Real-Time Systems
https://doi.org/10.1007/s11241-023-09399-w

1 3

FlyOS: rethinking integrated modular avionics
for autonomous multicopters

Anam Farrukh1 · Richard West1

Accepted: 26 April 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
Autonomous multicopters often feature federated architectures, which incur rela-
tively high communication costs between separate hardware components. These
costs limit the ability to react quickly to new mission objectives. Additionally, feder-
ated architectures are not easily upgraded without introducing new hardware that
impacts size, weight, power and cost constraints. In turn, such constraints restrict the
use of redundant hardware to handle faults. In response to these challenges, we pro-
pose FlyOS, an Integrated Modular Avionics approach to consolidate mixed-critical-
ity flight functions in software on heterogeneous multicore aerial platforms. FlyOS
is based on a separation kernel that statically partitions resources among virtualized
sandboxed OSes. We present a dual-sandbox prototype configuration, where tim-
ing- and safety-critical flight control tasks execute in a real-time OS alongside mis-
sion-critical vision-based navigation tasks in a Linux sandbox. Low latency shared
memory communication allows flight commands and data to be relayed in real-time
between sandboxes. A hypervisor-based fault-tolerance mechanism is also deployed
to ensure failover flight control in case of critical function or timing failures. We
validate FlyOS’s performance and showcase its benefits when compared against tra-
ditional architectures in terms of predictable, extensible and efficient flight control.

Keywords Integrated modular avionics · ARINC-653 · Multicore · UAVs ·
Partitioning hypervisor · Autonomous mission · Real-time flight management · Fault
tolerance

 * Richard West
 richwest@bu.edu

 Anam Farrukh
 afarrukh@bu.edu

1 Department of Computer Science, Boston University, Boston, MA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-023-09399-w&domain=pdf

 Real-Time Systems

1 3

1 Introduction

Multicopters have traditionally adopted a federated architecture (Gu et al. 2018;
Mejias et al. 2021), which isolates and distributes flight management functions
of different criticalities across separate hardware components (Intel; Qualcomm
2017). Relatively powerful multicore CPUs are managed by a general purpose
operating system (GPOS) such as Linux, and execute low time-sensitivity mission
tasks. At the same time, an embedded microcontroller, or digital signal processor
(DSP), processes the critical low-level flight control stack, often referred to as
the autopilot. Connected locally via a slow serial (UART) interface, the loosely-
coupled framework suffers from high latency and limited bandwidth communi-
cation when transferring commands between the two subsystems. This severely
restricts the throughput and responsiveness of autonomous mission tasks, leading
to coarse-grained drone control.

To ensure fault-tolerance against critical functional failures, the combined
hardware and software stack of the low-level flight controller requires redun-
dancy, which quickly becomes prohibitive given the limited size, weight, power
and cost (SWaP-C) requirements of small-scale (< 10kg) UAVs (Boniol and
Wiels 2014). Additionally, constantly evolving autopilot features and functional-
ity updates often render the resource constrained controller architecture obsolete,
adding to hardware replacement and maintenance costs over time.

In this work, we present an integrated flight management system called FlyOS,
which contrasts with the traditional federated approach that uses multiple separate
hardware components. FlyOS takes inspiration from Integrated Modular Avion-
ics (IMA) (Watkins 2006; Watkins and Walter 2007) and ARINC-653 (Avionics
Application Software Standard Interface) (ARINC Std. 653P1-5 2019; Prisaznuk
2008) partitioning standard for avionic functions. These design guidelines envi-
sion consolidation of mixed-criticality flight functions on a centralized hardware
platform, while ensuring temporal and spatial isolation of critical software com-
ponents from execution-time interference.

FlyOS employs a separation kernel (Rushby 1981) to map two or more guest
operating systems to virtualized sandbox domains or partitions. For the purposes
of this paper, we use the terms guest OSes, sandboxes and partitions interchange-
ably in the context of FlyOS. Separation kernels (Green Hills Software Inc 2010;
Leiner et al. 2007; Li et al. 2014a; Lynx Software Technologies; McDermott et al.
2012; West et al. 2016) allow guests to co-exist on a common hardware platform
as isolated regimes, which communicate only through explicit and secure chan-
nels. Virtualization technologies, featured by modern heterogeneous platforms,
are used to statically partition hardware resources (processing cores, memory and
I/O devices) and software components between separate execution environments
of the guests. The individual system partitions operate together as a tightly cou-
pled distributed system-on-a-chip. Explicitly defined shared memory communi-
cation channels set up low-latency and high bandwidth control and data paths
between sandboxes. Isolation between guest domains allow for safe, secure and
predictable consolidation of functional avionic components.

1 3

Real-Time Systems

FlyOS enables software redundancy to meet SWAP-C constraints of small-scale
UAVs. The system aims to overcome the inherent limitation of shared resource
architectures to fault containment (Rushby 1999) by providing strict temporal and
spatial partitioning between guests. FlyOS’s approach to integration therefore pro-
tects against fault propagation across guest boundaries, avoiding system-wide failure
and corruption.

For our prototype implementation, shown in Fig. 1, we map the distributed com-
panion architecture of traditional multicopter systems entirely in software using a
dual-sandbox approach. Timing and safety-critical flight control modules are imple-
mented as latency-sensitive threads in a lightweight real-time OS (Quest (Danish
et al. 2011)), alongside mission control tasks in Yocto Linux. FlyOS’s separation
kernel works on the principle of partitioning hypervisors (Cesarano et al. 2022;
Li et al. 2014a; Martins et al. 2020; Ramsauer et al. 2017; Technology 2014; West
et al. 2016) whereby each guest directly manages its own set of allocated resources
without any run-time intervention of the most trusted compute base (TCB) of the
hypervisor. It differs in its partitioning scheme compared to the state-of-the-art
ARINC-653 extended architectures, which predominantly employ consolidating
hypervisors (Craveiro et al. 2009; VanderLeest 2010). These systems rely on the
hypervisor for time and space multiplexing as well as the overall management of
shared platform resources on behalf of the hosted guests. Hypervisor-based shared
resource management potentially adds undue overheads (Hwang et al. 2013), which
impact predictability and determinism of critical flight control.

Fig. 1 FlyOS dual-sandbox configuration: Linux + Quest. ∗For the purposes of this work, we identify
ring -1 to be the root mode software layer, which sits between the hardware and non-root guest

 Real-Time Systems

1 3

Within FlyOS, we refactor a performance-critical flight controller to execute with
real-time guarantees on Quest. A camera-based vision detection and tracking sub-
system is implemented in a Linux sandbox as part of our mission control functional-
ity (e.g., to represent a search and rescue objective). Additionally, we showcase our
hypervisor-based fault-recovery subsystem for fail-safe flight control in the presence
of critical function failures.

Contributions: In this paper, we: 1. lay down the foundation for next-generation
flight architectures designed around the principle of integrated modular avionics
for multicopters, 2. motivate FlyOS’s design choices by drawing parallels with the
required services of the core/host software as specified by the ARINC-653 avion-
ics standard, 3. describe FlyOS’s separation kernel in the context of a dual-sandbox
implementation co-hosting Linux with Quest, 4. implement a timing- and safety-
critical flight stack with a low-level attitude (3D orientation) controller by retrofit-
ting a well-known autopilot as a real-time avionic application, 5. introduce high-
level mission-critical autonomous navigation control, and 6. implement online
health-management and fault-tolerance for time-bounded activation of failover flight
control.

We evaluate FlyOS’s performance with real-world experiments on a quadcopter.
We also compare inter-sandbox communication overheads against a typical compan-
ion-board architecture of a popular drone system, manufactured by Intel®. FlyOS
opens opportunities for reusable application implementations, system-wide optimi-
zations, re-configurability and improved resource usage, while reducing size, weight
and power requirements of the underlying hardware.

Layout: The following section describes the FlyOS model. We motivate our
design goals followed by a brief discussion on ARINC-653 objectives. We then pre-
sent an overview of the system framework and take a deep dive into the avionic
functions and capabilities currently supported by our prototype. Sect. 3 presents an
extensive evaluation of flight performance with hardware-in-the-loop experiments.
Sect. 4 introduces our readers to additional benefits afforded by FlyOS’s approach
to IMA. In particular, we highlight the flexibility and adaptability characteristics by
describing the design of a multicore adaptive flight controller. The proposed design
is extended from our prior work on smartflight (Farrukh and West 2020), which
handles environmental factors such as wind disturbances. Related work is described
in Sect. 5, while conclusions and future work are discussed in Sect. 6.

2 FlyOS: a flight management framework

2.1 Motivation

FlyOS is designed around a characteristic set of goals for functional safety, tim-
ing predictability and efficiency of flight control for multi-rotor UAVs. As such,
this work targets timing- and safety-criticality (Radio Technical Commission for
Aeronautics (RTCA) Std 2011a) dimensions of the mixed-criticality architec-
ture design-space for drone autopilots. We define safety-criticality as a measure
of functional importance of a software component to the overall flight control

1 3

Real-Time Systems

operation. Timing criticality on the other hand is concerned with guaranteeing
real-time flight control responses within prescribed temporal bounds.

Orthogonal to this work, we define a third dimension of security-critical-
ity (Radio Technical Commission for Aeronautics (RTCA) Std 2014, 2018) for
tasks and system components. This directly concerns policies related to the pres-
ervation of information integrity and confidentiality. An implementation and
evaluation of such policies is beyond the scope of this paper. However, we note
that FlyOS’s isolation by design architecture lends itself to support security capa-
bilities such as gateway (guard) services at communication interfaces between
different sandboxed domains. This allows runtime checks to be enforced within
FlyOS’s inter- and intra-sandbox communication stacks that mitigate threats from
malicious attacks crossing sandbox boundaries. Carefully designed OS-kernel
and hypervisor-based security policies (Klein et al. 2018; Steinberg and Kauer
2010; Wang and Jiang 2010) allow FlyOS to monitor and validate flow of infor-
mation between sandboxes such as flight mission commands.

Additionally, FlyOS features a thin and simple hypervisor on a per guest basis.
Hypervisor redundancy inherently enables fault detection and recovery for the
most privileged layer of the system. It also heightens security by reducing the
attack surface of each hypervisor instance (Missimer et al. 2014). FlyOS’s dis-
tributed virtualization architecture leverages compute redundancy within multi-
core systems to replicate complete system stacks. It therefore enables security by
design.

Notwithstanding, in this paper, we focus our architectural objectives on the fol-
lowing principles of design:

1. Isolation Software consolidation based on the IMA concept and ARINC-653
standard requires temporal and spatial isolation between avionic functions that
are critical for correct flight operation from other less-critical and non-essential
services. FlyOS employs a novel partitioning approach in this context to allocate
hardware resources of a centralized platform to virtualized system-level partitions.
The goal is to deploy separate guest system environments for locally-hosted tasks
of different criticalities. Details of our design are presented in Sect. 2.3.

2. Extensibility Low-criticality sandboxes support re-configurable and adaptable
autonomous mission applications, which increases application portability and
reduces redeployment costs. Similarly one or more real-time safety-critical sand-
boxes allow dynamic hot-plugging of flight controllers that are tuned to different
flight characteristics, e.g., for high maneuverability versus greater stability or
environment adaptability.

 FlyOS envisions multiple independent sandboxed system partitions to be hosted
on the same hardware platform. Static partitioning allows each sandbox to be
allocated a configurable set of resources based on application demand. Each guest
partition, in turn, hosts a multitude of avionic functions of equivalent levels of
criticality. This enables guests and their applications to be certified independent
of the other guests in the system and in accordance with their associated design
assurance level as defined by the certification authorities (Radio Technical Com-
mission for Aeronautics (RTCA) Std 2011a).

 Real-Time Systems

1 3

3. Enhanced functionality FlyOS targets hardware platforms with multiple cores,
advanced sensors, high-speed networks, buses, and device interfaces (e.g., Cam-
era Serial Interface), which are often unavailable in simpler autopilot platforms.
FlyOS leverages the capabilities of multicore platforms with hardware virtual-
ization support to build sophisticated flight management software that would
otherwise require separate hardware components, increasing the size, weight,
power and cost overheads.

4. Fault tolerance FlyOS’s sandboxed design, by virtue of partitioning, inherits fault-
containment capabilities that are inherent to federated or hardware-distributed
architectures. Likewise, FlyOS operates on the principle of separation of con-
cerns. The hypervisor layer has a minimal memory foot-print and resides at the
most privileged protection domain, replicated across each sandbox. The hyper-
visor (a.k.a., virtual machine monitor (VMM)) implements a run-time health-
monitoring subsystem within its trusted compute base. Together with redundant
VMMs, functional and timing related faults may be handled across the entire
guest stack, from the application to sandboxed partition, down to the hypervisor.

 FlyOS’s integrated and modular nature therefore opens new opportunities to
incorporate system-wide software redundancy. However, FlyOS does not address
hardware fault redundancy due to SWaP-C restrictions.

We now briefly dive into the specifics of the ARINC-653 partitioning standard as it
largely applies to the general avionics domain since its inception in 1996. As men-
tioned previously, FlyOS draws its design inspiration from the ARINC partitioning
standard. The upcoming section thus constructs parallels and identifies design dif-
ferences between the core operating environments provided by FlyOS and ARINC-
653. We aim to delineate the design goals of an IMA-based flight management sys-
tem when applied to small-scale multicopters.

2.2 ARINC‑653: a discussion

ARINC-653 is the de-facto partitioning standard, enforced by the regulatory bodies
such as the FAA (Federal Aviation Authority) (FAA) and EASA (European Avia-
tion Safety Agency) (FAA and EASA), within the commercial avionics domain for
manned aircraft. Compliance with the standard is required to achieve airworthiness
of IMA-based flight architectures.

Temporal and spatial isolation of system resources is one of the key requirements
of IMA for predictable and safe flight behavior. Such isolation is necessary when
consolidating mixed-criticality flight functions on a common compute platform.
ARINC-653P1 (ARINC Std. 653P1-5 2019) defines a set of essential baseline ser-
vices and required behaviors (Fig. 2a) to facilitate system architects in their design
of a robust safety-critical avionic system. Conforming with the ARINC rules enables
multiple avionic applications of varying certification requirements, to execute with-
out interference, using logical containers called partitions.

The ARINC standard defines two main software abstractions for an IMA archi-
tecture: 1. 2. a standard core operating environment as the IMA Host and 3. the

1 3

Real-Time Systems

APEX API interface between avionic applications and the IMA Host. The interface
allows applications to communicate with their execution environment, which pro-
vides a standard set of system services (Spitzer et al. 2015).

Figure 2b illustrates the layered structure and software components of a repre-
sentative, ARINC-653 compliant, IMA system. System components are mapped to
the corresponding list of mandatory services, which are extracted from the technical
standard and summarized in Fig. 2a.

As per the ARINC specification, application partitions are assigned independent
regions of system memory. These regions are protected by hardware mechanisms
such as a Memory Management (or Protection) Unit. Partitions consist of independ-
ent text and data regions within memory and have a well-defined execution context
and configuration attributes. A partition comprises a set of periodic and aperiodic

Objec�ves
. .

Required Features/Characteris�cs
Par��on ini�aliza�on by IMA host so
ware: {RTOS, Hypervisor or Microkernel}
Sta�c configura�on of system resources between par��ons:

Par��on Management . Temporal par��oning of CPU: Predetermined non-preemp�ve cyclic
scheduling (Major & Minor �me frames) . Spa�al par��oning: Memory and I/O devices

. Process is the basic execu�on unit within a par��on
Process Management . At-least one process per par��on managed by the par��on host so
ware . Priority-based preemp�ve process scheduling (periodic or aperiodic policy)

. Interrupt handlers for hardware �mers Time Management . Hard Real-Time guarantees to real-�me applica�on processes

Inter-Par��on
. Unidirec�onal message channels with two types of end ports:

Communica�on
. Sampling/ Non-blocking ports (asynchronous fixed-length messaging)

Intra-Par��on . Inter-process communica�on (IPC) mechanism: Shared memory buffers
Communica�on . Synchroniza�on for shared resources of a par��on: Semaphores and events

. Two part mechanism: . Fault monitoring module within the IMA host Health Monitor . Preemp�ve error handling process of highest priority within a par��on
invoked by the monitoring module

. Queueing/Blocking ports (synchronous variable-length messaging)

(a) (Part-1) Required Services and Goals.

(b) Reference software stack of an ARINC-653 compliant system. (Top-left) Temporal
partitioning schedule in ARINC-653.

Fig. 2 ARINC-653 avionic standard for IMA architectures

 Real-Time Systems

1 3

processes or tasks. To draw an analogy with UNIX-like systems, an ARINC par-
tition refers to a UNIX process while an ARINC process corresponds to a UNIX
thread running inside the process address space.

ARINC partitions execute in a non-preemptive periodic manner, at-least once
every major cycle of the statically defined partition schedule. This is accomplished
by allocating execution time windows, often called minor frames, to each par-
tition within a major time frame. When the minor frame terminates, the partition
is preempted and the next partition in the schedule is selected for execution. The
preempted partition can continue its execution in the next activation slot. An execut-
ing partition is allowed exclusive access to available hardware resources and runtime
services during the duration of its minor time frame. A second level of fixed-priority
preemptive scheduling is applied to the ARINC processes within each partition. The
two-level hierarchical schedule thereby ensures strict temporal partitioning within
the IMA platform.

The IMA host is responsible for partition initialization and configuration as well
as system-wide run-time management. Process management and intra-partition
communication between processes is delegated to software within individual parti-
tions. Communication between partitions is managed by Sampling and Queueing
ports and channels. These provide explicit message transfer semantics for asynchro-
nous and synchronous communication, managed by the IMA host.

Overall, the ARINC standard aims to promote application portability and plat-
form (re-)configurability through a clear demarcation of boundaries between soft-
ware components and explicit definitions of inter- and intra-partition communica-
tion interfaces. Each ARINC abstraction layer within the reference stack of Fig. 2b
renders specific services to the overall avionic system according to the assigned
objective(s).

The APEX API decouples partitioning and multitasking, while exposing a stand-
ard interface for applications to access and interact with the IMA host services. This
is intended to promote widespread adoption of IMA architectures across all avionic
domains, beyond that of commercial aircraft.

Separation Kernels and partitioning hypervisors Depending on the target
avionics domain and system’s requirements, the partitioning environment provided
by the IMA host has historically been implemented within different abstraction lay-
ers of the system: user/application, (micro-)kernel (Buczyński et al. 2022; Delange
2011; VanderLeest 2016), or hypervisor (Han and Jin 2011; Masmano et al. 2011;
VanderLeest 2017).

A hypervisor provides logical isolation between hosted virtual machines (or guest
operating systems (OSes)). Whereas consolidating hypervisors multiplex guests
on a shared physical machine, FlyOS adopts a partitioning hypervisor approach to
implement a separation kernel. This statically divides a pool of machine resources
such as CPU cores, memory regions and I/O devices, between different guest virtual
machines. Distinct resource domains thereby ensure strict isolation between guests.

In accordance with the separation kernel principles, guest partitions there-
fore appear indistinguishable from separate physical machines thus implement-
ing a distributed system-on-a-chip. Contrary to other ARINC compliant separa-
tion kernels (Green Hills Software Inc 2010; Leiner et al. 2007; Lynx Software

1 3

Real-Time Systems

Technologies), FlyOS’s design, inspired from the Quest-V hypervisor (Li et al.
2014a; West et al. 2016), avoids the need for hypervisor-level runtime resource man-
agement on behalf of the guests. This, in turn, minimizes the trusted code base of
the hypervisor, enhancing safety and security. Since guests have direct access to a
subset of the hardware, this greatly improves access latencies and hence enables
real-time predictability for application execution. We measure task latencies for our
prototype multicopter implementation in Sect. 3.

FlyOS guests are connected via explicitly defined synchronous and asynchronous
communication channels for safe and predictable inter-partition communication.
Unlike a federated architecture that connects separate physical machines via com-
munication bus networks (e.g., CAN, Ethernet, TSN and so forth), FlyOS provides
secure shared memory communication between guests on the same host (Sinha and
West 2021). A prototypical architecture enabled by FlyOS is shown in Fig. 3. The
figure also shows a mapping of FlyOS services to ARINC-653 objectives enumer-
ated in Fig. 2a.

FlyOS distributes the task of the IMA host between the hypervisor and guest ker-
nel domains. The virtual machine monitor (VMM) of each guest in Fig. 3, supports
a distilled subset of the core features required by ARINC-653: ∙ (1) spatial parti-
tioning of resources and guest initialization and ∙ (6) fault identification and recov-
ery. Spatial partitioning of processing cores, memory and I/O devices between guest
OSes, essentially achieves partitioning in both time and space. FlyOS therefore com-
pletely voids the need for a partition schedule. Upon system initialization, guest par-
titions are created and subsets of machine physical resources are allocated to each,
based on a static configuration. Once the setup is complete, control is transferred
to the guest kernel. Thereafter, the VMM plays a more passive role in the run-time
management of the guest. This lowers system’s run-time complexity and reduces the
interface requirements between the hypervisor and application tasks to a simplified
hypercall interface (Fig. 3).

Fig. 3 FlyOS’s architectural layout with ARINC-653 services mapped to corresponding software layers

 Real-Time Systems

1 3

Benefits of a partitioning hypervisor FlyOS relies on the share-nothing prin-
ciple and introduces the concept of self-management for guest system partitions.
Without active involvement of the monitor in the critical execution path of each vir-
tual machine, guest OSes becomes solely responsible for managing their assigned
resources according to their respective kernel-level policies. For example, temporal
partitioning of CPU cores is directly determined by the built-in scheduling policies
of the guests. Similarly time and process management responsibilities are dedicated
to individual guest kernels. This greatly reduces resource management overhead per
guest, while improving flight responsiveness and timing predictability of avionic
applications.

An important benefit of FlyOS’s approach is that its partitioning hypervisor
avoids the need for two-level scheduling of traditional ARINC-653 architectures.
Instead FlyOS achieves both temporal and spatial partitioning of CPU, memory and
I/O resources by first partitioning platform resources spatially between guests and
then partitioning the subsets of resources temporally within guests.

Criticality levels FlyOS defines separate criticality classes for mission, timing,
safety and security, to address the design assurance levels (DAL) (Radio Technical
Commission for Aeronautics (RTCA) Std 2011a, b; Spitzer 2006) required by certi-
fication authorities. Each guest is assigned a distinct criticality class or DAL to focus
verification and validation efforts according to their respective requirements. This
allows concurrent development of guest systems and modular upgrades of functions
as well as incremental assurance (VanderLeest and Matthews 2021) to prove airwor-
thiness of the IMA system.

For our dual-partition prototype, we define the RTOS partition as timing- and
safety-critical and Linux as mission-critical (or non-safety critical). Each guest, in
turn, hosts application tasks that directly coincide with the partition’s criticality
class. Applications are either hosted entirely within a partition or span across parti-
tions depending on their task criticality requirements. Each partition and its resident
tasks are then assured at varying levels of rigor for predictability, safety and secu-
rity. Partitions can be configured as symmetric multi-processing (SMP) or asymmet-
ric multi-processing (AMP) guests based on the availability of platform resources.
In accordance with ARINC-653, this enables flexible architectures for guests and
overall system scalability.

Multicore systems The newest revision of ARINC-653 Part-1 (ARINC Std.
653P1-5 2019; LYNX and AFuzion) extends applicability to multicore plat-
forms (European Union Aviation Safety Agency (EASA) 2012; Federal Avia-
tion Administration 2017, 2016; Silva and Tatibana 2014), requiring each ARINC
process to at least have a fixed processor core affinity. This capability is termed
bound multi-processing (BMP). Due to its restrictive nature, BMP falls short when
it comes to CPU utilization and efficient management of multicore IMA platforms.
Part-2 (ARINC Std. 653P2-4 2019) of the standard therefore extends this capabil-
ity to optionally enable symmetric multi-processing. Thus a process can run on any
core as well as change its task-to-core affinity at runtime based on statically defined
configuration tables.

Upon initialization of a standard, ARINC-compliant IMA system, processes
need to be statically assigned core affinities from amongst the allocated cores of

1 3

Real-Time Systems

an ARINC partition (Jo et al. 2019). These assignments optionally change during
normal operation mode based on the extended specification. ARINC partitions are
also portable between different processors. In addition to task and application level
portability (Ye et al. 2016) within an SMP guest, FlyOS extends the load-balanc-
ing capability across guest boundaries. This allows use of run-time process migra-
tion (Li et al. 2014b) between guests within agreed upon criticality domains.

FlyOS allows single- and multicore partitions to execute simultaneously on their
respective subset of core(s). The tightly coupled multi-domain framework ensures
bounded end-to-end worst-case execution times for task pipelines spanning multi-
ple cores or guest OSes. FlyOS mitigates micro-architectural resource conflicts by
implementing cache and memory contention-aware policies. Section 3 presents
quantified empirical evidence of predictable execution of parallel task pipelines
spanning two guest domains in our prototype setup.

FlyOS enforces real-time schedulability of critical task pipelines (West et al.
2012). Notwithstanding, efforts are underway to further investigate possible interfer-
ence channels (Domas 2018; VanderLeest and Thompson 2020) that affect timing
behavior (Andersson et al. 2022; Park et al. 2019).

Predictable I/O Interrupt-based I/O has the potential to compromise temporal
partitioning (VanderLeest 2017) between ARINC partitions, which time-share a
CPU core. Methods such as slack scheduling (Beckert and Ernst 2015; Cronk; Par-
kinson 2018; Parkinson and Kinnan 2015) and credit-based reservations (Beckert
et al. 2017; VanderLeest 2014) have been proposed to achieve deterministic asyn-
chronous event handling for I/O requests. However, research in this domain primar-
ily relies on maintaining a partition schedule that is compliant with ARINC-653.
Contrary to these approaches, FlyOS partitions I/O devices and their correspond-
ing hardware interrupt lines (IRQs) between individual guest OSes. This is achieved
via device blacklisting in the PCI and ACPI configuration space during device
enumeration.

Time critical I/O handling is dedicated to the Quest RTOS. Quest handles I/O
events at the same priority as the requesting task in a time-budgeted manner (Danish
et al. 2011; Missimer et al. 2016). Since device management is performed directly
within each sandbox, interrupts are delivered directly to the sandbox kernel without
monitor intervention. FlyOS therefore avoids monitor traps to handle interrupts. It
also circumvents the need for a split driver model found in systems like Xen (Bar-
ham et al. 2003), which require a specialized guest domain for system-wide interrupt
handling and distribution. FlyOS benefits from the increased performance of multi-
core platforms whilst ensuring safe isolation and accounting of I/O events.

Predictable communication The APEX interface defines partition communica-
tion mechanisms facilitated by the IMA host. These are based on synchronous and
asynchronous message transfers with queuing and sampling ports respectively. In
accordance with the standard, FlyOS defines an equivalent shared-memory commu-
nication library and corresponding shmcomm API (Sinha and West 2021), which
allows both synchronous and asynchronous message-passing semantics between
guest partitions.

Our inter-partition communication mechanism implements low latency and
high bandwidth channels between virtualized guest domains. Channels and their

 Real-Time Systems

1 3

corresponding end points are set up via shmcomm kernel modules within each
guest. Channel creation requests are mediated by the kernel to the corresponding
guest-local VMMs. The VMM uses a hardware virtualization feature of the plat-
form to create memory mappings per channel. Tasks in a remote guest connect to
the channel using system-wide unique channel IDs. Once a channel is created, tasks
in one partition communicate and interact with remote partitions without involve-
ment of the VMM or the kernel. This allows secure and predictable information flow
across guest boundaries.

FlyOS implements blocking and non-blocking communication protocols using
ring buffers and Simpson’s 4-slot mechanism (Simpson 1990), respectively. Simp-
son’s algorithm ensures data integrity during reads and writes for the single, most
recent message data. Ring buffers on the other hand enable historical data to be
maintained for as many slots as the size of the buffer.

Our blocking approach using ring buffers is based on pairwise communication
between a producer and a consumer. Using shared variables that identify the IN
(next slot to place data) and OUT (next slot to consume data) indices of the ring
buffer enables the communication protocol to differentiate between buffer full and
empty states. When the buffer is full, the producer will wait, while when the buffer
is empty the consumer will wait. In our case, we implement a busy waiting mecha-
nism with the knowledge that producers and consumers will be vacated from their
CPUs when they no longer have budgets to continue execution or the guest sched-
uler has selected other tasks. Blocking is avoided, however, by rate-matching the
data producer and consumer tasks.

For intra-partition semantics of queues and buffers as well as shared access to
resources within a single partition, FlyOS relies on the default inter-process com-
munication (IPC) mechanisms and synchronization primitives available within each
respective guest kernel such as pipes, shared memory, mutexes and semaphores.

Fault management As mentioned earlier, FlyOS’s design allows fault manage-
ment across the system stack. A prototype of the hypervisor-based health moni-
toring subsystem for applications is presented in Sect. 2.4.3 along with an outline
of our forthcoming research work for ensuring fault isolation at the partition-level
(or sandbox-level in FlyOS parlance). As opposed to the contemporary hypervisor
based approaches to IMA in the commercial and open-source sectors, FlyOS rep-
licates monitor functionality (Fig. 3) with a distinct monitor module for each sand-
box. The distributed design opens opportunities for 1. increased system availability
in case of faults at the most privilege level of the IMA host, 2. modular redundancy
against Byzantine faults and 3. functional diversity to avoid duplication of exploit-
able weaknesses within a single monitor (Li et al. 2014a; West et al. 2016). The
modular structure of the fault tolerance subsystem thus aligns with the health moni-
toring requirements specified by the ARINC standard.

In summary, FlyOS presents a novel space-time partitioning approach to IMA,
which is on par with the strict isolation requirements of ARINC-653. FlyOS’s archi-
tecture distributes core system services of the IMA host between the VMMs and
individual guest kernels. Each VMM operates at the highest privilege level of the
platform with a minimal TCB. This reduces the cost of assurance of the hypervisor
and allows reusable software modules between guests.

1 3

Real-Time Systems

FlyOS’s design paradigm for multicore IMA leverages robust partitioning mech-
anisms of separation kernels to implement predictable, safe and performance effi-
cient avionic systems. As such, it has the potential to impact the current architectural
landscape of integrated modular avionics for the multicopter domain. A comparison
with state-of-the-art implementations within this domain is provided in Sect. 5. In
the next sections, we showcase our design in detail with a working prototype on a
custom-built quadcopter featuring autonomous flight with real-time temporal char-
acteristics and a robust health monitoring subsystem.

2.3 System prototype

Figure 1 presents our proof-of-concept implementation in a dual-sandbox configura-
tion. The Quest real-time operating system (RTOS) hosts timing- and safety-critical
flight control functionality alongside a legacy Yocto Linux system for high-level
mission control. FlyOS’s separation kernel architecture allows a mutually benefi-
cial symbiotic relationship to be established between the two isolated sandboxes:
the light-weight RTOS gains access to the pre-existing third-party libraries, run-
time frameworks, toolchains, device-drivers and various other legacy services,
while the general-purpose system is empowered with hard real-time flight execution
capabilities.

FlyOS’s execution begins with the Quest RTOS booting up as a standalone
bare-metal system. The bootstrapping process proceeds to activate the hypervisor
monitor logic baked within the core image. On instantiation, the monitor partitions
hardware resources among the two guest domains based on boot-time configuration
parameters. A snapshot instance of the Quest kernel along with the minimal monitor
code base is replicated in a distinct non-overlapping physical memory region for the
Linux guest sandbox. The kernel copy is then replaced with the Yocto Linux binary
image, which is thereafter launched on its pre-assigned bootstrap processor.

Depending on the sandbox configuration, one instance of Quest kernel + VMM
logic acts as a bootloader for each new guest OS. Both kernels are then allowed to
independently proceed with their respective normal boot procedure eventually tran-
sitioning into user-space. This marks the completion of each sandbox’s initialization.

Our implementation targets multicore x86-based embedded flight computers with
hardware-virtualization (VT-x) extensions (Adams and Agesen 2006). For the cur-
rent work, we utilize the quad-core Aero Compute Flight Hardware by Intel® (Intel).
Processing cores and I/O devices of the platform are asymmetrically distributed
between the two sandboxes.

FlyOS allows a configurable number of CPU cores to be partitioned among
guests. For our example implementation, Linux is assigned one physical core. This
greatly simplifies the use of Linux’s sched_deadline scheduling policy, and allows
relatively easy enforcement of service guarantees for mission tasks with the included
preempt-rt patch. In contrast, Quest is configured to work in SMP mode and uses a
round-robin load-balancer to assign real-time flight control tasks between the three
remaining processing cores.

 Real-Time Systems

1 3

Our flight control software runs as a multithreaded application for Quest, taking
advantage of the parallelism supported by this core assignment. Spare CPU capacity
available to the RTOS supports the addition of future timing-critical tasks as well
as non-linear control algorithms (Kamel et al. 2015) and communication protocols
(e.g., DShot (OscarLiang.com)) for more precise control of the copter. To ensure
timing predictability for concurrently executing tasks, techniques are employed that
handle both cache and bus contention (Ye et al. 2016).

In FlyOS, the inertial measurement unit (IMU), motors, electronic speed con-
trollers, and serial debugging ports are exclusively allocated to Quest. In contrast,
Linux is given access to the USB host controller for the camera interface discussed
in Sect. 2.4.2.

Linux and Quest independently manage their assigned resources using their
respective guest scheduling policies in isolated execution environments. The mem-
ory resident monitor code in each kernel is only invoked at run-time, to set up inter-
sandbox communication channels and handle guest preemption timers. Such a timer
is enabled for the most critical Quest sandbox, as part of FlyOS’s hypervisor-level
fault-detection mechanism discussed in Sect. 2.4.3.

2.4 Avionic capabilities

2.4.1 Real‑time flight controller

For the example flight controller implementation, we take inspiration from our
team’s previous work (Cheng et al. 2018; Farrukh and West 2020) on the popular
open-source autopilot: Cleanflight (Cleanflight Autopilot). Cleanflight’s vanilla
flight control features a minimalist software stack targeted towards flight efficiency
and functional robustness, reliability and performance. Control tasks are tightly cou-
pled in a linear closed feedback loop, which employs sensor data processing with
attitude estimation to regulate motor speeds for tracking a target trajectory (Farrukh
and West 2020). Differential angular velocities of the motors generate net rotational
torques to adjust the roll, pitch and yaw attitude about the center-of-gravity of the
multicopter.

Cleanflight’s responsive attitude maneuverability gives it a competitive edge
over other open-source autopilots (Ardupilot Autopilot; Betaflight Autopilot; iNAV
Autopilot; PX4 Autopilot). However, it is specifically tailored to execute as firmware
on resource-constrained microcontrollers. Low-frequency single-core processing
with limited memory restricts Cleanflight’s ability to implement complex controllers
(e.g., model predictive control) or autonomous obstacle avoidance or object tracking
missions.

We empower Cleanflight’s performance-critical flight control loop with autono-
mous functionality by retrofitting the native tasks to execute as real-time user-space
threads within the Quest sandbox (Fig. 1). The main control components are identi-
fied and subsequently classified into flight safety and mission-critical task-brackets
based on their importance to flight control functionality and corresponding conse-
quences on operational failure.

1 3

Real-Time Systems

Table 1 lists each required Cleanflight task, �i , with budget, Ci , and period Ti .
These tasks are redefined with hard deadlines equal to their corresponding periods,
for FlyOS. Sensor (imu) and actuator (motor) tasks are bound to kernel-level threads
that handle real-time I/O. These threads read gyroscope and accelerometer data, and
write pulse-width modulation (PWM) commands to the motors, respectively. Sens-
ing, processing and actuation tasks form pipelines (Cheng et al. 2018; Golchin et al.
2018), along which data flows from inputs to outputs.

Quest uses a variant of rate-monotonic scheduling (RMS) (Liu and Layland
1973) algorithm by defining a virtual CPU (vCPU) abstraction as a schedulable
entity (Danish et al. 2011) on top of a physical CPU (PCPU). Threads and their cor-
responding pipe wrappers are directly mapped to vCPUs, which are then mapped to
PCPUs. This two-level scheduling hierarchy guarantees each task �i to execute for Ci
time units every Ti when runnable (Mercer et al. 1993).

In accordance with RMS, vCPUs are assigned static priorities based on their
time periods: highest priority is given to the smallest time period and vice versa.
Quest executes interrupt service routines in a separate real-time thread context with
a time period inherited from its user-level counterpart. This allows I/O interrupts
to be handled at the correct priority of the task issuing the request thus enabling
real-time management and deterministic accounting of CPU clock cycles for each
device interrupt. The scheduling subsystem therefore guarantees temporal isolation
between flight control threads executing on multiple cores.

Figure 4 shows the distribution of control functionality between Yocto Linux and
Quest in our dual-sandbox setup. Timing and safety-critical control threads are allo-
cated to Quest while mission-critical functionality is mainly ported to Linux. For rx
(Table 1), a setpoint generator (Process-1) in Linux communicates across an asyn-
chronous shared memory pipe buffer with a light-weight thread in the RTOS act-
ing as a receiver gateway. Similarly, a background logger thread (blackbox) receives
flight data (Process-2) in Linux from the corresponding sender-stub in Quest. A
FIFO circular-buffer transfers the time-ordered history of flight logs, which are
saved to permanent file storage in Linux.

Asynchronous pipe buffers are implemented using Simpson’s four-slot algo-
rithm (Rushby 2002; Simpson 1990), which ensures data freshness and integrity.
The control loop needs to keep track of the most recently sampled sensor values and
target trajectory updates. Pipe-buffers therefore allow accurate data-flow and low-
latency attitude control in response to the most up-to-date current and required state
of the drone.

We identify two task pipelines within the main flight control loop: 1. intra-sand-
box Pipe-1: imu → motor and 2. inter-sandbox Pipe-2: rx → motor. Pipe-1 com-
prises 1. imu sampling and processing, 2. sensor fusion based on a complemen-
tary-filter (Madgwick et al. 2011; X-IO Technologies) for attitude estimation, 3. a
pid+mixer that transforms the error between actual and target attitudes into control
signals mixed with throttle, and 4. a motor thread that generates PWM waveforms
for the multicopter’s motors.

Pipe-2 involves the mission task in Linux (Process-1), which computes target
attitude and thrust set-points based on the application’s flight objective. The refer-
ence commands are then sent to the gateway receiver (rx), which forwards the roll,

 Real-Time Systems

1 3

Ta
bl

e
1

 L
ist

 o
f e

ss
en

tia
l fl

ig
ht

 ta
sk

s i
n

Fl
yO

S

Ta
sk

s
B

ud
ge

t (
us

)
Ti

m
e

pe
rio

d
(u

s)
Fr

eq
 (H

z)
C

rit
ic

al
ity

Sa
nd

bo
x

A
ss

ig
nm

en
t

D
es

cr
ip

tio
n

IM
U

 (G
Y

RO
+

A
C

C
)

10
0

10
00

10
00

SA
FE

TY
Q

ue
st

Sa
m

pl
e

se
ns

or
 d

at
a

R
X

20
20

,0
00

50
M

IS
SI

O
N

Li
nu

x
+

 Q
ue

st
Sp

ec
ify

 ta
rg

et
 c

om
m

an
ds

A
TT

IT
U

D
E

20
10

,0
00

10
0

SA
FE

TY
Q

ue
st

C
al

cu
la

te
 c

ur
re

nt
 a

tti
tu

de
 o

f c
op

te
r

PI
D
+

M
IX

ER
10

20
00

50
0

SA
FE

TY
Q

ue
st

A
tti

tu
de

 c
on

tro
lle

r +
 th

ro
ttl

e
m

ix
M

O
TO

R
10

00
25

00
40

0
SA

FE
TY

Q
ue

st
Pr

oc
es

s P
W

M
 c

om
m

an
ds

B
LA

CK
BO

X
20

20
00

50
0

BA
CK

-G
N

D
Li

nu
x
+

 Q
ue

st
Lo

g
fli

gh
t +

 m
is

si
on

 d
at

a

1 3

Real-Time Systems

pitch and yaw targets along the feed-forward path of the loop, shared with Pipe-1
(refer to Fig. 4). FlyOS envisions a criticality-aware distribution of tasks among
guest domains. Task pipelines are thus composed on the basis of each task’s role and
importance in the perception, planning and control of the drone.

2.4.2 Autonomous vision subsystem

We implement vision navigation in Linux for our mission application. Linux sup-
ports a rich collection of USB video-class drivers for interfacing with hardware cam-
eras. Corresponding libraries and APIs provided by Video4Linux (V4L), OpenCV
and CUDA toolkits enable efficient development and testing of autonomous percep-
tion applications using state-of-the-art image capture technology.

For autonomous mission control, we design a simple pattern recognition appli-
cation for face-image detection and tracking that relies on librealsense (Intel) and
OpenCV for capturing and processing camera images. We utilize a USB3.0 Intel
RealSense (R200) (Intel) camera module, which features a 3D imaging system that
is capable of providing color and depth video streams. Figure 5 depicts individual
task components of our vision framework along with the intrinsic characteristics of
the R200 camera. Algorithm 1 details our application loop from image frame cap-
ture to generation and communication of mission control commands (setpoints) to
the flight controller executing in Quest.

Fig. 4 FlyOS’s software-distributed flight-control model with threaded tasks

 Real-Time Systems

1 3

Algorithm 1 Image Detection and Tracking.
Require: Haar-classifier pre-trained XML file containing stage thresholds and filter weights:

haarcascades/haarcascade frontalface alt.xml
Require: < cv :: Rect > faces /*array to store detected face(s)*/
Require: rate {dPitch, dY aw} /*rates of change of command*/
1: async chan = create shared memory (async type)
2: ctx = r200 create context()
3: r200 enable stream(ctx, {color, depth})
4: while true do
5: /* Capture and retrieve image frame */
6: data = get raw frame data() /*for enabled image streams*/
7: frame = to openCV matrix(data) /*frame vector to matrix*/
8: {px0, py0} = { frame.cols

2 , frame.rows
2 } /*frame center*/

9: /* OpenCV: detect face */
10: cv::CascadeClassifier.detectMultiScale(frame,faces,

min=200×200,max=1000×1000)
11: /* Estimate distance offset and generate command */
12: {fxc, fyc} = faces[0].width

2 , faces[0].height
2 /*1st face’s center*/

13: dPitch = rate dPitch×(fyc - py0) /*pitch-up distance*/
14: dYaw = rate dY aw×(fxc - px0) /*yaw-right distance*/
15: /* command in correct format */
16: commandData[Roll,Pitch,Yaw, Throttle] = F({0, dPitch, dYaw, 0}) /*F(command) is

the conversion function specific to the flight controller*/
17: /* Write to shared memory */
18: write shared memory(async chan , commanData)
19: end while

OpenCV supports a ready-to-use face detection algorithm based on the Haar-fea-
ture cascade classifier (Viola and Jones 2001) approach. Known for its speed and
simplicity, it is one of the most popular algorithms still used today for frontal-face
detection with high accuracy and image-scale invariance. We utilize OpenCV’s

Fig. 5 FlyOS’s vision subsystem (Process-1) with the RealSense R200 Camera

1 3

Real-Time Systems

built-in repository of pre-trained parameters for the cascade classifier composed of
22 total stages and a sliding window of 20× 20 pixels (px). An integrated classifier
function (Line 10) detects faces in each frame captured by the color camera at run-
time and returns a bounding rectangle.

We calculate the center coordinates (Line 12) of the face to determine an offset
distance from the frame center in 2D pixel coordinates. These are forwarded to a lin-
ear algorithm, which computes the required direction of movement for the multicop-
ter as well as the target set-points for the pitch and yaw rotational axes to minimize
the offset and track the detected face (Lines 13–14).

Our algorithm enables configuration of rate of change of set-point commands in
each axis of rotation (rate_{dPitch, dYaw}). This allows us to affect the sensitivity
and precision of mission control per unit of error distance, which in turn impacts
responsiveness of flight control to target commands. Data is converted to a compat-
ible RX format (Line 16) for the gateway thread in Quest and sent across shared
memory asynchronous pipe buffer (Line 18). For the Cleanflight autopilot, set-point
values are packaged as SBUS (ROBOTmaker) protocol frames before transfer.

We use the depth stream to de-project the offset distance in pixels into a real-
world displacement of the face-image from the camera center, in meters. This allows
us to convert between different coordinate systems, and log the multicopter’s angu-
lar movement against the ground truth trajectory of the image.

sched_deadline is used to schedule the vision process allowing mission com-
mands to be generated with sufficient predictability. Our design also caters for face
occlusions for a limited time-horizon. We configure a threshold time-out value
before the mission is aborted. This allows configurable tolerance against occasional
occlusions.

We note that this work does not focus on performance comparisons between dif-
ferent real-time image-detection frameworks. Instead the OpenCV implementation
serves as a model example of showcasing the autonomous capability and practical
feasibility of FlyOS’s architecture. Mission tasks in Linux are able to effectively
communicate commands to the flight controller tasks over a low latency inter-sand-
box channel interface. FlyOS therefore ensures predictable autonomous control with
bounded worst-case end-to-end latencies. Section 3 validates FlyOS’s autonomous
tracking capability.

2.4.3 Fault‑tolerance subsystem

FlyOS’s virtualized sandboxed architecture lends itself to support high-confidence
avionic systems. The partitioning hypervisor prevents access to the separate mem-
ory spaces and resources assigned to remote guests. FlyOS’s distributed system-on-
a-chip design attempts to contain faults within separate sandboxes, similar to how
federated architectures isolate faults in separate hardware. Our fault tolerance sub-
system enables:

1. Application fault tolerance for failures within user-space applications: A func-
tional or timing based failure is detrimental to the safe operation of the multi-
copter if it directly affects the real-time and safety-critical behavior of the flight

 Real-Time Systems

1 3

control loop. FlyOS allows flight controller redundancy across different sandboxes
and implements efficient controller hand-off mechanisms. In this work, we focus
on faults within the critical motor task.

 FlyOS uses heartbeats to capture a class of functional and timing failures,
which jeopardize the progress of critical tasks. For example, if the motor task fails
to generate a heartbeat by a certain time, this could jeopardize the control of the
drone. Loss or delay of a heartbeat triggers the activation of a failover controller
to maintain flight.

2. Sandbox (guest) fault tolerance for failures impacting the entire guest OS domain:
Such failures often involve kernel memory corruption or other types of malicious
kernel attacks initiated by external non-certified third-party services. A local copy
of the VMM in each guest sandbox allows for sandbox-level redundancy. The
VMM is able to quarantine a malicious guest and even re-instantiate or duplicate
an entire guest partition with its corresponding application stacks, to replace the
corrupted guest instance. I/O device hand-off between sandboxes with replica-
coordination mechanisms is implementable in FlyOS’s monitor logic. Failover
standbys will be activated while the original sandbox is recovered, thereby pro-
viding an online and effective way to handle such system-level faults. We reserve
further discussion on this topic for future work.

We propose a unified fault-detection mechanism, which operates in the most-
secure mode (root-mode) of the system. The VMM keeps a runtime health-check of
the critical tasks within its respective sandbox through timer-initiated guest preemp-
tions (VM-exits). x86 hardware-assisted virtualization timers called VMX-preemp-
tion timers are leveraged for this purpose. The timer operates at a frequency propor-
tional to the hardware time-stamp counter (TSC) (OSDEV.org 2019) available to
each core of the processor. This detection mechanism has the benefit to be agnostic
to functional, event or timing related failures within the system.

Application task failures that compromise the correctness of real-time flight con-
trol are attributed to factors such as delayed mission commands, incorrect tuning of
the PID controller, motor runaway or stale motor updates. Due to the closed loop
nature of the flight control, it is possible for a fault originating in a single thread to
propagate through the entire application. Fig. 6 enumerates the steps involved in the
workflow from fault-detection to recovery for the dual-sandbox system.

The motor task is instrumented to generate periodic heartbeat messages (Step-1).
A VMX-preemption timer is enabled within the VMM logic of the Quest sandbox.
It counts down during the execution cycles of the guest, in non-root mode, based
on a configured timeout value. This directly controls the fault-detection latency. On
expiration, a low-cost VM-exit (Jiang 2016; Schildermans et al. 2021) is triggered
causing a soft-trap to the hypervisor (Step-2). If the monitor observes a heartbeat
message inconsistency, a system mode change is initiated (Step-3) following a dis-
tributed recovery response (Step-4 and 5). Consequently, the faulting flight con-
troller is marked as compromised (depicted in grey in Fig 6) and all corresponding
threads terminated.

Two proxy real-time tasks are activated, to control the sensor (IMU) and actuator
(motor) devices (Step-5). This retains predictable safety-critical I/O control within

1 3

Real-Time Systems

Quest. The local monitor sends an inter-processor interrupt (IPI) to trigger the
remote recovery pipeline, in parallel, within Linux (Step-4). A kernel module listens
for the IPI and acknowledges receipt with an interrupt-handler routine (Step-4a).

Two userspace task pipelines (Step-4b) are then launched: 1. fast-loop response
(pipe-fast), which pre-arms the backup flight controller (Linux port of vanilla
Cleanflight) to transfer simple hover commands to the virtual device proxy inter-
faces in Quest, and 2. delayed response (pipe-delayed) employing the Linux mis-
sion task to initiate relatively more complex maneuvers such as radio over-ride to
return the multicopter to base or force an emergency-land.

Table 2 shows a preliminary set of latency measurements for each step of the
online recovery within Linux. The timing measurements incorporate processing,
scheduling and transition delays, which may cause the drone to experience motor
downtime. To avoid crashing, we activate a first-response (pipe-fast) recovery,
which complements the delayed response.

To keep execution costs low, we ported vanilla Cleanflight as a backup-control-
ler supporting only the most critical functionality of the fast-loop. Asynchronous

Fig. 6 Flight controller fault tolerance: detection and remote recovery

Table 2 Recovery path latencies for pipe-delayed in Linux

Tasks: Linux (Detection → Recovery) Min Average Max

(Step-4a) IPI RX: Kernel → Userspace(ms) 0.004 0.005 0.007
(Step-4b) IPI RX Userspace → Mission Process (ms) 24 43 81
(Step-4c) Mission Process → Backup-FC: RX (ms) 19 29 35
(Step-4d) Backup-FC: RX → Shared Memory (ms) 0.005 0.075 0.4

 Real-Time Systems

1 3

communication channels between the failover controller and real-time device gate-
way threads ensure timely transfer of commands. Despite sched_deadline schedul-
ing optimizations, the overheads experienced by Linux indicate it is only really suit-
able as a temporary backup until the primary hard real-time controller is restored.

3 Evaluation

We evaluate FlyOS for three different scenarios: 1. Manual radio control with atti-
tude stabilization in the presence of an external disturbance, 2. Autonomous mis-
sion control with face-image detection and tracking, and 3. Failover flight control
to recover from a critical actuator fault. We conduct hardware-in-the-loop (HIL)
experiments and latency-benchmark simulations. Our testbed setup common to all
HIL experiments is presented next.

3.1 Experimental setup

3.1.1 Hardware

Figure 7 shows our custom built S500 (500 mm) quadcopter mounted at the center of
a 3-axis mechanical gyroscope, called the BirdCage (Farrukh and West 2020). The

Fig. 7 BirdCage testbed for real-world experiments. The quadcopter motor configuration is enumerated
at the bottom-right

1 3

Real-Time Systems

three orthogonal gimbal rings (annotated in the diagram) allow the drone to freely
rotate about its roll, pitch and yaw axes thus enabling repeatable attitude adjustments
in a controlled environment. We also mount a flat passive screen (40ε× 30ε) in front
of the drone to project images for vision-based tracking experiments.

The quadcopter’s frame is fitted in an X motor configuration for symmetrical
mass distribution in all three rotation axes. This ensures 100% motor output perfor-
mance (OscarLiang.com 2017) with 4 EMAX 935kV brushless DC motors.

We host FlyOS on Intel’s purpose-built UAV developer kit featuring the Aero
Compute Board and a complementary vision accessory kit (Intel), which includes
the RealSense R200 camera module.

Figure 8 shows a block diagram layout for the hardware modules integrated into
the Aero Compute Board. This board features 4GB RAM, a quad-core Intel Atom
x7-Z8750 processor, a GPIO expander, a 6 degrees-of-freedom BMI160 IMU (for
3-axis gyroscope + accelerometer), and an Altera MAX10 FPGA. The processor
nominally runs at 1.6GHz and supports Intel VT-x virtualization technology. The
FPGA generates PWM motor signals from commands issued by the Atom processor.
A RadioLink R9DS receiver connects to the GPIO expander to receive raw SBUS
commands required for manual radio control. We deploy FlyOS on the Aero Com-
pute Board with the task distribution shown in Fig. 4.

3.1.2 Performance metrics and settings

For the BirdCage experiments, we record attitude variation profiles of the quad-
copter over time in response to an appropriate stimulus. We measure the response
time to achieve a steady-state target attitude with an error-band of ±0.5◦ (shown

Fig. 8 Aero Compute Board with manual radio control setup

 Real-Time Systems

1 3

as horizontal red lines in our plotted results). This allows us to account for data
imprecision and any inherent imperfections in the drone hardware or positioning
of the payload. We additionally compute error statistics for each flight, to quan-
tify the impact on the accuracy of flight control. Results are averaged over at least
3 flights.

We design microbenchmarks to draw conclusions about the worst-case observed
end-to-end (E2E) delays along critical flight control paths. We now present FlyOS’s
performance results for each of the three flight scenarios described above.

3.2 Manual radio control

FlyOS is compared with vanilla Cleanflight (CF) firmware leveraging manual radio
control capability. The mission process in FlyOS’s Linux sandbox reads raw SBUS
radio input from the GPIO connector of the Aero Board and sends processed SBUS
commands to the rx gateway thread in Quest.

3.2.1 Setup

Vanilla Cleanflight is flashed on an spracingf3 (Clifton 2015) flight microcontroller
and installed on the drone. The microcontroller’s GPIO pinout provides a direct
interface to the drone’s motors, as shown in the connection diagram in Fig. 9. Fea-
turing the stm32f3 processor, the hardware controller offers native support for the
original flight software stack. A TX/RX pair is used to arm (activate) the drone, so
that its ready to fly, and transfer throttle and attitude target commands to the auto-
pilot. Cleanflight is configured to run the same subset of critical flight control tasks
as FlyOS (Sect. 2.4). The main loop-time for the fast-loop is set to the maximum
supported frequency of 1000 Hz, which represents the best response time perfor-
mance (Farrukh and West 2020) on the microcontroller platform. PID constants for
both FlyOS and Cleanflight autopilots are tuned to yield stable flight control behav-
ior with minimal response time.

Fig. 9 spracingf3 with manual radio control setup

1 3

Real-Time Systems

3.2.2 Results

For the BirdCage experiment, our steady-state target is set at a horizontal hover
(0◦ ± 0.5◦) in the Roll axis. A transient step-input attitude disturbance is introduced
in the Roll-Right direction by displacing the corresponding axial ring of the Bird-
Cage by 15◦ . The quadcopter is then allowed to stabilize to target hover. Due to the
symmetrical nature of the motor + mixer configuration, Roll axis proves sufficient to
showcase the attitude correction behavior.

Figure 10 shows that FlyOS’s integrated architecture yields the same control
integrity and functional correctness as the vanilla firmware. FlyOS, however exhib-
its a slightly better response time of 10.87 s compared to 11 s of Vanilla-CF despite
running a more complex software stack involving two guest OS domains. Smaller
peak-amplitude oscillations by FlyOS lead to lower mean error values reported in
Table 3. FlyOS’s predictable task execution therefore exhibits higher accuracy of
control with a timely and precise response from the motors. This manifests as lower
magnitude of under- and over-shoots from the hover target.

Table 3 Error statistics of the
flight profiles in Fig. 10

Autopilot Mean Absolute error RMSE

FlyOS 3.85◦ 5.18◦

Vanilla-CF: 1000Hz 4.93◦ 6.53◦

Fig. 10 Roll-Right attitude correction profile

 Real-Time Systems

1 3

E2E control latency is reported in Fig. 11 for the two task pipelines (Pipe-1
and Pipe-2) within FlyOS’s flight control loop (Refer to Fig. 4). Vanilla-CF laten-
cies provide a baseline reference. FlyOS performs 59% and 20% better for Pipe-1
and Pipe-2, respectively, in the worst-case. This ensures low-latency responsive-
ness and expedited recovery from anomalous attitude shifts. FlyOS takes advan-
tage of the higher clock rate and powerful processing capabilities of embedded
multicore platforms to ensure predictable flight behavior. Low E2E pipeline
latencies are crucial for high frequency mission control to track a trajectory target
in real-time.

We note that Vanilla-CF shows a limited variance between maximum and min-
imum latencies for both pipes as opposed to FlyOS. This is a direct consequence
of Vanilla-CF’s fast control loop, which executes non-preemptively at the highest
priority. The fast loop comprises a chain of sub-tasks that sample gyroscope data,
execute PID control and update motor commands in tandem, as part of a single
task. Additionally the best-effort non-real time scheduler does not guarantee task
frequencies or deadlines. Tasks of lower priority exhibit significant deviations
from their assigned execution frequencies and experience heavy activation jit-
ter (Farrukh and West 2020). This is directly influenced by the runtime frequency
of the higher-priority fast-loop.

Contrary to this setup, the FlyOS port of Cleanflight tasks enforces strict dead-
lines and maintains fixed task execution frequencies and corresponding priorities
as configured in Table 1. We also refactor the fast-loop as individual real-time
threads in-order to improve E2E times. The task distribution shown in Fig. 4 was
determined as the ideal task set to achieve lowest worst-case control latencies
from amongst different possible configurations. Since tasks are preemptible and
scheduled by a real-time scheduling policy, FlyOS pays the cost of predictability
with increased variance. However, the E2E delay variance of a feasibly schedu-
lable sequence of FlyOS tasks is always bounded by the sum of all periods (Gol-
chin et al. 2020). No such guarantee is provided for Vanilla-CF’s E2E pipeline
execution.

Fig. 11 E2E latencies for two critical flight control paths within FlyOS. Vanilla-CF provides a reference
for comparison

1 3

Real-Time Systems

3.3 Autonomous mission control

We now demonstrate how FlyOS supports autonomous mission control. Our sample
mission requires the quadcopter to use face detection to locate and track a target
image, which is projected onto a 2D screen (Fig. 7).

3.3.1 Setup

The RealSense R200 camera is mounted at the front of the quadcopter, such that the
image plane1 center is aligned to the middle of the screen. The image plane is set
to a resolution of 640 × 480 pixels, with the middle of the screen having the origin
coordinates, x0 = 0, yo = 0.

The autonomous flight objective is threefold: 1. detect an image of a face of size
10 × 10 pixels (target) on the screen, 2. determine its horizontal or vertical displace-
ment from the origin, and 3. adjust the drone’s pitch or yaw attitude in the direction
of the target, to accurately align the center of the camera plane with the projected
image. In case of a moving target, the aforementioned steps are repeated every time
the target location updates.

We interpret a static image to be equivalent to a step input target signal, whereas
a moving image corresponds to a ramp input signal to the flight controller. The
BirdCage is placed at a fixed distance from the screen (Fig. 7), which we meas-
ure using the native depth stream from the IR-sensors in the Realsense module. We
record updates in the horizontal (x) and vertical (y) displacement of the center of
the image-plane over time in meters, as the drone rotates in the yaw and pitch axis,
respectively. This distance is then converted into an angular rotation in degrees using
trigonometry. A similar technique is used to record the ground truth for the target’s
movement in a pre-programmed trajectory for the duration of each experiment.

3.3.2 Results

Pitch and Yaw attitude adjustment profiles in response to step- and ramp-input stim-
uli are shown in Figs. 12 and 13 respectively. Target image location is restricted to
the positive y-axis of the screen for Pitch-Up experiments and positive x-axis for
Yaw-Right experiments. Corresponding error and response time values are reported
in Table 4. Steady-state alignment and root-mean-square tracking error is measured
for statically positioned and moving targets respectively.

For step-profiles shown in Fig. 12, the drone eventually settles to an accurate
steady-state, aligning with the image center within ±0.5◦ error threshold in both
axes. The response times for pitch and yaw are also within 0.9 s of each other. The
transient control response however, shows higher magnitudes of over- and under-
shoots and sharper corrections in the pitch axis compared to yaw’s smoother and
heavily damped trace. Similarly, ramp profiles in Fig. 13 show that the drone is suc-
cessfully able to track the target with a root-mean-square error of 1.19◦ and 0.5◦ in

1 We refer to image and camera plane interchangeably.

 Real-Time Systems

1 3

pitch and yaw axis respectively. These fall within the boundary of the 10px by 10px
target-image, which translates to the drone’s angular span of ±1.25◦ from the image
center. We again observe that compared to pitch, yaw response exhibits a greater
accuracy of control (lower RMSE) and smaller transient lag leading to a lower aver-
age response time.

Fig. 12 Detecting a static image: step-response in Pitch and Yaw axis

Fig. 13 Tracking a moving image: ramp-response in Pitch and Yaw axis

Table 4 Response time and error statistics for vision experiments

Parameters Static image Moving image

Pitch Yaw Pitch Yaw

Mean Steady-State (S.S) Error (deg) 0.16 0.15 – –
Root Mean Square (RMS) of Total Error (deg) – - 1.19 0.50
Avg. Response Time to reach Target Angle (s) 4.10 3.21 1.26 1.22

1 3

Real-Time Systems

This performance difference results from the hyper-sensitivity of the pitch axis to
changes in airflow dynamics, ground-effect and external environmental forces like
gravity (Liszewski 2021; Sanchez-Cuevas et al. 2017). As the quadcopter pitches
up towards the target, downstream turbulence produced by the front two propellers
interferes with the rotation of the rear propellers. This prop-wash effect is largely
absent in yaw rotations with all four propellers operating in the same horizontal
plane. We also note that the weight of the hardware payload, including the battery, is
predominately distributed along the pitch axis. The resultant center-of-gravity vector
therefore has a direct impact on pitch sensitivity to slight changes in motor thrusts.
We thus observe a less damped transient response, which is possible to improve with
a more finely tuned PID controller. Despite the differences in performance between
the axes, FlyOS exhibits efficient, autonomous detection and tracking behavior for
both static and moving targets, with reasonable accuracy and responsiveness.

FlyOS’s vision detection pipeline spans across Linux and Quest sandboxes. We
measure round-trip latencies of the autonomous pipeline: Image detection & track-
ing mission application (Linux) → rx stub processing (Quest) → pid+mixer (Quest)
→ motor Update (Quest)→ blackbox Logger (Linux). Average and worst-case
end-to-end latencies of the entire workflow and constituent software modules are
reported as stacked bar graphs in Fig. 14. Vision processing in Linux includes frame
retrieval and processing delays, as well as object inference delays. Inter-sandbox
communication delays and sched_deadline scheduling overheads are aggregated
as “System Overheads”. Quest delays involve the execution times of flight control
tasks along Pipe-2. These tasks read and process vision commands sent via shared

Fig. 14 Round-trip times for vision pipeline with constituent task latencies

 Real-Time Systems

1 3

memory, and generate corresponding PWM commands. On average, our vision
application is able to maintain a frame processing rate of ≈ 30 fps (yellow bar). Even
in the rare worst case, the processing rate still results in the drone tracing an accurate
tracking trajectory as seen in the attitude profiles.

Although our application employs a relatively simple object detection algorithm,
it serves as proof-of-concept for FlyOS’s ability to support real-time autonomous
missions.

3.4 Comparison with Intel drone

To further motivate our architectural framework, we compare the communication
overheads of FlyOS and the Intel Ready-to-Fly (Intel-RTF) (Intel; Intel) drone. The
Intel-RTF drone runs the Ardupilot (Ardupilot Autopilot) flight controller hosted on
the Pixhawk (DroneCode) companion microcontroller board.

3.4.1 Setup

The Intel-RTF drone is a pre-assembled quadcopter, which supports programma-
ble UAV applications and mission control. The platform is a dual-board (feder-
ated) solution to flight management. The main compute engine comprises the Aero
Compute Board connected via an HSUART (high-speed universal asynchronous
receiver-transmitter) serial bus to the Pixhawk flight controller hardware. Pixhawk
offers native support for Ardupilot’s flight stack, which ships as a binary with the
Intel-RTF drone. We flashed the Compute Board with the Ubuntu Linux 16.04 oper-
ating system, to develop and host our microbenchmark for measuring communica-
tion latencies.

Communication over the serial link (baud: 57600 bits per second) is managed by
the MAVLink-router (MAVLink Router) soft-service within Linux. MAVLink com-
mands (Ardupilot Autopilot; Dronecode Project) and the corresponding acknowl-
edgment (ACK) messages, packaged in frames of 263 Bytes in size, are transferred
between high-level mission applications in Linux and Ardupilot’s control loop exe-
cuting on the Pixhawk. The control loop logic within the flight stack is split into
two parts (Bregu et al. 2016): critical flight controller tasks (termed the fast-loop)
and non-critical application tasks, including MAVLink message retrieval, process-
ing and ACK generation. Priority is given to the fast-loop, which executes controller
sub-tasks in a sequential manner. Remaining time of the control loop is then distrib-
uted between application tasks that are scheduled in a best-effort preemptive man-
ner. In contrast, all threads within FlyOS’s critical flight control loop, including rx
processing, are managed by a real-time scheduler that guarantees each task’s (�i)
execution time budget (Ci time units) every time period (Ti time units).

We measure the round-trip latencies of the MAVLink communication protocol
using DroneKit’s python API (3D Robotics Inc; 3DR), to send “set-yaw-attitude”
commands to the flight controller and receive corresponding ACK messages. Simi-
larly for FlyOS, we use our vision-detector Yocto Linux application to transfer yaw
commands to the flight controller executing in Quest, using asynchronous shared

1 3

Real-Time Systems

memory communication. For every message sent, an ACK message is received,
timed and logged on the Linux side.

3.4.2 Results

Table 5 presents our results averaged over 2000 transferred messages. As shown, the
MAVLink protocol incurs a significant delay.

We also note that FlyOS’s shared memory inter-sandbox communication
exhibits lower overhead latencies than inter-partition communication based on a
data-distribution service (DDS) network as evaluated by Pérez et al. (2017). The
authors analyze an ARINC-653 compatible DDS communication link between two
MaRTE (OSRTOS) RTOS virtualized partitions, hosted by the XtratuM (Crespo
et al. 2010) hypervisor on a multicore x86 platform. Their results show average
round-trip latencies of 100 s of microseconds for simple data transfers. Such delays
result from the ARINC-653 virtual network service, DDS middleware stack, hyper-
visor-based processing of interrupts and other operating system overheads.

With reduced data transfer costs, FlyOS allows mission tasks the flexibility to
execute at high frequencies, while incurring minimal delays for communicating tar-
get commands to the flight controller. It thus ensures agile and responsive flight con-
trol with enhanced maneuverability.

3.5 Failover flight control

We next study the performance impact of the fault identification and failover subsys-
tem. We measure the latencies of Detection→Recovery pipelines within each guest
OS. An artificial fault is injected within the motor-update (motor) thread, which
sends stale commands to the motors after the flight controller has been operational
under Normal mode for some time. This causes the heartbeat messages sent to the
hypervisor to stall after the fault is encountered, resulting in a Fault-Tolerance sys-
tem mode switch.

We utilize vanilla Cleanflight’s fast-loop operating at 1000 Hz frequency (loop-
time=1 ms) as our ported failover controller.

The VMX-preemption timer for Quest’s bootstrap processor (BSP) core within
the Aero Compute Board is configured to expire periodically at intervals of 2 ms
(500 Hz). This defines our worst-case time bound for fault-detection. Each sand-
box’s corresponding recovery response is tracked in parallel based on the steps enu-
merated in Fig. 6. End-to-end delay statistics are presented in Fig. 15. The meas-
ured worst-case recovery time to reach the hover state in Quest is 0.77 ms. This

Table 5 Communication
overheads in federated & FlyOS
architecture

Communication protocol Min Average Max

Asynchronous Shared Memory (ms) 0.0004 0.00052 0.0091
MAVlink on UART-serial (ms) 4.13 9.99 301.54

 Real-Time Systems

1 3

represents the duration from the system mode change (Step-3 in Fig. 6) to the first
set of valid hover commands sent to the motors (Step-5).

For Linux, the measured worst-case end-to-end recovery time for the longer pipe-
line (pipe-delayed) (Steps:4-4d) is 84ms. This is less than the total sum of the worst-
case constituent step latencies of the pipeline as shown in Table 2. The pipeline thus
activates the emergency landing mode for the backup flight controller within the
practical latency upper bound. Comparatively, the first response pipeline (pipe-fast)
is activated with a maximum delay of 0.41 ms. This latency comprises the combined
delays for Step-4a: 6.5μ s and Step-4d: 0.4 ms, and falls well within the upper bound
latency of 1 ms (1000 Hz) for the fast-loop vanilla controller. PWM hover com-
mands are therefore sent to the shared memory channel with a lower latency than the
pipe-delayed pipeline. The motor proxy task in Quest reads the asynchronous chan-
nel on activation and transfers processed commands from the Linux-side flight con-
troller to the motors. This allows the quadcopter to stabilize until emergency landing
is activated at a later time.

A comparative primary-backup partitioned system built for helicopters by Jeong
and Kim (2013) reports the first response time to be 11 ms using a hardware-in-
the-loop simulation environment. This is at-least 90% slower than FlyOS’s pipe-fast
failover hover response. A primary reason is the temporal multiplexing approach
taken by the authors for scheduling virtualized primary and backup partitions onto
shared hardware resources. FlyOS’s hypervisor allows each sandbox partition to
directly and independently manage its local resources, thus allowing activation of
parallel recovery pipelines. This leads to a more timely first response for a fault that
originates in one or more critical flight control tasks.

Figure 16 shows the real-world attitude response profile of the quadcopter in
the BirdCage. For normal mode operation, the primary flight controller within
Quest tracks a static image along the x-axis of the screen with corresponding
yaw-right rotations. We observe a failover response time of 2.51 s from when the
motor fault is detected to the time when the quadcopter achieves a stable hover
under the control of the backup Cleanflight. This experiment provides a practical

Fig. 15 E2E latencies from fault detection to flight recovery within Quest (left) and Linux (right)

1 3

Real-Time Systems

latency bound to regain stable flight, when the quadcopter is subjected to physi-
cal constraints, considering factors such as the rotational inertia of the motors
and rotor drag. We note that during the dynamic hand-off between the primary
and backup flight controllers, the motors do not exhibit any visible downtime
but only a change in the update frequency of corresponding angular velocities.
This example fault-tolerance subsystem shows FlyOS to be capable of maintain-
ing safe failover flight control.

Our current implementation relies primarily on Linux to be the warm standby
sandbox for failover flight control. In an effort to reduce the response time even
further, we propose using an RTOS sandbox for real-time failover recovery. This
would allow us to overcome the timing shortcomings of Linux, and implement a
real-time safety-critical backup flight controller. Efforts are therefore underway
to extend the dual-sandbox prototype implementation to a more general setting
for supporting two or more RTOS sandboxes. Each sandbox would be qualified
to act as a hot or cold standby to account for different fault scenarios.

In the next section we present different aspects of the FlyOS system as they
relate to application and system level adaptability. In view of the flexible nature
of the FlyOS framework, we also provide a design layout of a unique flight con-
troller that showcases dynamic switching between different levels of process and
partition criticalities.

Fig. 16 Static image detection (Normal Mode) and Fault recovery hover stabilization (Fault-Tolerant
Mode) with fault injection at 8.27 s

 Real-Time Systems

1 3

4 Enhanced avionics: a case for adaptability and flexibility

Parallel flight controllers FlyOS’s sandboxes encapsulate entire virtual
machines. These system-level partitions enable unique and customizable combi-
nations of software + hardware stacks to be statically configured and spawned by
the hypervisor. Parallel partitions enable FlyOS to benefit from different flight
control implementations, each in its own isolated container environment and each
tuned to a specific flight profile or characteristic. Multiple safety-critical control-
ler algorithms can therefore co-exist as application-level logic. The trusted hyper-
visor has the ability to dynamically engage and disengage these pre-configured
controllers depending on the intended flight behavior, environmental conditions
and required mission objectives. We utilized this feature of FlyOS to enable fail-
over control in the presence of timing related faults in the primary Cleanflight
flight controller. Details of our hypervisor-based fault tolerance mechanism were
presented in Sect. 2.4.3.

FlyOS thus enhances the flexibility of the flight management system by ena-
bling low-latency dynamic switch-over capability between flight controllers. This
aligns with ARINC’s multiple module schedules (ARINC Std. 653P2-4 2019)
capability that allows different schedules to be set up for application modules.
The feature facilitates module initialization, recovery from component failure, as
well as interoperability between distinct implementations of the application.

Adaptable task-to-core affinities FlyOS sandboxes are configurable with
single- or multicore CPU partitions. For example, our dual-sandbox working
prototype features a hybrid setup with single-core Linux and SMP Quest featur-
ing three cores. The real-time vCPU scheduler within Quest manages concur-
rent flight control tasks on the available cores of the quad-core aerial platform.
Threads mapped to vCPUs are assigned to separate physical cores (PCPUs) based
on their resource usage demands. Compute-bound tasks such as attitude and
pid+mixer can be assigned to separate physical cores compared to those that are
I/O-bound, such as motor and imu. Alternatively, a mix of compute- and I/O-
bound tasks can be assigned different cores to balance the computational load.

Initial task-to-core assignment decisions are informed by each task’s individ-
ual requirements and resource contention with other tasks. Tasks can be migrated
between cores at runtime depending on the active load-balancing profile of the
system such as per-core power consumption, cache occupancy characteristics or
per-core utilization.

FlyOS supports the construction of task pipelines that read sensory inputs, pro-
cess corresponding data, and ultimately generate actuator output values. The sys-
tem attempts to decouple the execution of tasks within the same pipeline, using
non-blocking or asynchronous inter-task communication abstractions. This allows
tasks to be treated as independently schedulable entities, assigned to individual
vCPUs, which are in turn mapped to PCPUs with available compute capacity to
achieve a feasible schedule.

Adaptive criticality FlyOS adds a new dimension to system flexibility by sup-
porting criticality switching at the application and guest partition granularity. An

1 3

Real-Time Systems

application can modify its runtime behavior by changing the criticality level, and
hence the scheduling priorities, of the constituent tasks based on some trigger
condition or system parameter. Criticality adaptation is also enabled at the parti-
tion level via multiple system modes per guest sandbox.

Multicopter autopilots often need to alter their behavior and reconfigure their
mission objectives when operating in varying environmental conditions (Farrukh
and West 2020). To this end, we present the design of an environmentally-aware
rate-adaptive flight controller application for the SMP Quest sandbox. This type
of controller compensates for transient fluctuations in attitude relative to a target,
caused by external disturbances such as wind.

Our purpose here is twofold. First, we highlight the ease with which avionic
applications that originally target federated architectures can be redesigned with
minimal effort and integrated to the FlyOS platform. We describe the integration of
a dynamic flight controller, called smartflight (Farrukh and West 2020), into FlyOS.
We then introduce two different flight mission modes and extend the task pipeline
model of the critical flight control loop with task and sandbox criticality levels. We
note that FlyOS opens opportunities for re-using applications and corresponding
artifacts within isolated guest domains. FlyOS thereby ensures compatibility with
legacy functions, while allowing application designs to take advantage of the multi-
core IMA architecture.

Secondly, we focus on criticality adaptability for the guest and hosted tasks under
the influence of varying external conditions. This emphasizes the dynamic switch-
over capability between different safety-critical operating states for a sandbox sys-
tem. FlyOS thus has the potential to change the operational behavior of the flight
management system. Dynamically changing design assurance levels of the applica-
tion and its operating environment presents an interesting challenge for certification
of such system-level transformations (Annighoefer et al. 2019).

The design presented in Fig. 17 considers two separate task and sandbox critical-
ity levels (or modes): { lo and hi} . Each task �i , executes with either low (LO) or high
(HI) criticality. Task criticality (Li) provides a measure of functional importance, or
consequence of failure, to the overall flight objective. hi criticality is assigned to
tasks that must operate correctly within hard real-time constraints of their budget, Ci
and period, Ti , to maintain flight. lo criticality tasks, on the other hand, have mini-
mal impact on the target flight behavior.

Similarly, a guest system is characterized with a sandbox criticality level, or
operating mode, Lsb , depending on external factors such as wind. Lsb = LO for Calm
(Normal) conditions, while a mode-switch to Lsb = HI occurs when adverse (e.g.,
Windy or Inclement) conditions occur. A switch is triggered as a direct consequence
of attitude variations beyond a target threshold value in any axis of rotation: roll,
pitch or yaw. Sandbox criticality therefore captures the influence of external distur-
bances on the internal state of the drone.

Two further flight modes, angle and rate, are used within the flight control-
ler sandbox. These directly correspond to: (1) attitude lock, and (2) fast acrobatic
maneuver, missions respectively, and are configured for the set-point genera-
tor process (Fig. 4) within Linux. The angle flight mode stabilizes the copter in

 Real-Time Systems

1 3

a steady-state (horizontal) hover attitude. In contrast, the rate mode enables more
nimble maneuvers such as rolls, flips or in-flight object tracking.

The active flight mode depends on the mission requirements. We note that flight
control relies primarily on the feedback loop (Pipes 2 & 3 in Fig. 17) of the flight
controller, when the angle mode is active. Fusion of gyroscope (gyro Task) and
accelerometer (accel Task) data from the IMU sensor, estimates the current orienta-
tion of the copter to achieve a level steady-state attitude (attitude Task). In contrast,
rate mode leads to precise rotations by reading just the gyroscope sensor and the
mission update commands (Pipes 1 & 2 in Fig. 17) for more finer adjustments to the
copter’s angular velocity. This flight mode is useful in navigating close to a rough
terrain or inside tight building spaces for search and rescue operations.

Collectively, the {flight, sandbox} mode pair dynamically determine task criti-
calities under normal and inclement weather conditions, as illustrated in Fig. 17.
In accordance with smartflight, a task’s active criticality level allows us to directly
associate one of the two rate-adaptation behaviors, rate increase (↑) or rate decrease
(↓) with each task: a hi criticality mode increases task rate, whereas lo criticality
mode decreases the execution rate.

Our rate-adaptation policy is built upon a key insight developed in smartflight
that the response time performance of a flight controller is directly related to the rate
of execution of its control loop tasks. Under Calm conditions, the Quest sandbox and
all the flight control tasks operate in lo mode. An erroneous change in the drone’s
attitude state signals an adverse change in the external environment, which necessi-
tates a finer granularity of control. The sandbox therefore switches to hi mode. This
results in triggering a subset of the most relevant flight control tasks to undergo a lo
→ hi criticality transition based on the currently active flight mode. Consequently,

Fig. 17 Adaptive flight controller design with dynamic task and sandbox criticalities under calm and
inclement environmental conditions. angle and rate flight modes represent configurable mission objec-
tives

1 3

Real-Time Systems

all hi criticality tasks increase their rates of execution while other non-essential lo
criticality tasks reduce their rates to dynamically compensate for the adverse effects
of the environment.

lo mode tasks play a crucial role in protecting against potential system overloads
in the hi sandbox mode, thus ensuring real-time schedulability for the entire task-
set across all the cores. This enables FlyOS to support more feasible tasks sched-
ules with a wider range of execution frequencies for critical flight control tasks. On
return to normal conditions, the sandbox reverts back to lo mode, triggering the
tasks to reset their rates to the original lo mode values. Table 6 summarizes the rela-
tionship between task periods for lo and hi criticality tasks in each sandbox mode.

The flight controller adapts to a changing environment using dynamic criticali-
ties and task frequency adjustments. This ensures predictable low-latency flight con-
trol across different mission objectives and flight modes. Our design allows smart-
flight to run as a multi-vCPU flight controller application across multiple cores of
the Quest sandbox. FlyOS therefore empowers smartflight with additional compute
flexibility, autonomous mission capabilities, and run-time criticality adaptability.

In summary, the FlyOS framework presents an opportunity to extend multicop-
ter flight characteristics with adaptive control capabilities for a centralized IMA
platform.

5 Related work

Multicopter flight management relies primarily on federated architectures for func-
tional segregation. Hardware segregation of flight control stacks from mission appli-
cations is provided by Cube Autopilot’s co-processors (Cube Pilot), Intel’s Ready-
to-Fly (RTF) Drone (Brunner et al. 2019; Intel; Morales et al. 2020), Qualcomm’s
digital signal processors (DSPs) (Ardupilot; Qualcomm 2015, 2021), and various
companion board solutions (Gu et al. 2018; Mejias et al. 2021; UAVOS). In each of
these cases, timing and functional failures are isolated from tasks running on remote
hardware.

Other researchers have focused on the security of mission components used in
a federated flight management architecture. For example, Klein et al. (2018) use
seL4 (VanderLeest 2018) to separate trusted from untrusted software in separate
VMs of a mission computer that is distinct from the flight control hardware.

However, to reduce size, weight, power and cost (SWaP-C), the research com-
munity has recently considered a software-based integrated modular avionics (IMA)

Table 6 Relationship between task time periods (T
i
) and task criticality (L

i
) per sandbox (sb) (L

sb
) criti-

cality mode

Normal ↔ Inclement conditions

T
i

{

L
i
= LO,L

sb
= LO

}

≤T
i

{

L
i
= LO,L

sb
= HI

}

T
i

{

L
i
= LO,L

sb
= LO

}

>T
i

{

L
i
= HI,L

sb
= HI

}

 Real-Time Systems

1 3

approach to flight architectures (Boniol and Wiels 2014; Rushby 1999; Watkins and
Walter 2007). IMA in UAVs takes its inspiration from the commercial aerospace
domain led by Airbus (Ramsey 2007) and Boeing (Jensen 2005; Watkins 2006), to
employ temporal and spatial partitioning techniques in compliance with ARINC-
653 software development standard.

Several mechanisms for an IMA host have emerged that target partitioning at
either the application (Kang et al. 2016), kernel (Arcaro and de Oliveira 2015) or
hypervisor level (VanderLeest and White 2015) of the consolidated flight manage-
ment system (Han and Jin 2014). LynxOS-178 (Leiner et al. 2007) is a small parti-
tioning kernel, which establishes encapsulated domains for applications, and sched-
ules them on shared hardware in dedicated timeslots. Jo et al. (2019) define an OS
abstraction layer (OSAL) for Linux and RTEMS, along with an ARINC-653 core
layer tailored for small civilian UAV applications.

Other kernel-level partitioning approaches include those from commercial ven-
dors such as VxWorks 653 (Ruan and Zhai 2014; Wind River Systems) and Green
Hills’ Integrity-178B (Software). Similarly AUTOBEST (Zuepke et al. 2015) and
ARINC extended Linux (Han and Jin 2012) are some of the example systems
originating from the academic community. These systems extend existing OSes
with ARINC-653 API support. In these approaches, user-level partitions are typi-
cally multiplexed on processing cores, resulting in frequent context switching, and
potentially increased system overheads. Lack of temporal and spatial isolation in the
shared interrupt handling subsystem for I/O devices results in unpredictable worst-
case execution times at the task level. This negatively impacts the timing predict-
ability of flight control, and responsiveness of mission control.

In contrast, research in virtualization technology for general avionics approached
IMA’s partitioning requirement at a deeper system-level by employing consolidating
hypervisors. Examples of such systems are the ARINC-653 Hypervisor (Vander-
Leest 2010), MPSoC by DornerWorks (VanderLeest; VanderLeest and White 2015),
XtratuM (Masmano et al. 2011) and Deos (Bloom and Sherrill 2020), to name just
a few. These hypervisors allows multiple operating systems to run simultaneously
as virtual machines or partitions on shared flight hardware. The hypervisor manages
the entire IMA system and the hardware. As such, the hypervisor must be certified
to the highest level of any of the hosted guests or applications, which may incur high
certification costs.

In order to keep costs low, many of the aforementioned commercial vendors offer
the hypervisor as a separate product to be used in conjunction with their flight certi-
fied RTOSes. These hypervisors are based on multiple independent levels of secu-
rity (MILS) (Alves-Foss et al. 2006) and employ the separation-kernel approach to
partitioning. However, these systems do not support ARINC features but instead
are tailored to meet security requirements. LynxSecure (LYNX Software Technol-
ogies 2015) and VxWorks MILS (Wind River Systems) are two such proprietary
systems, whose implementations are closed source. PikeOS (SYSGO 2015) and
AIR (Craveiro et al. 2009) are two micro-kernels with support for a virtualization
layer responsible for partitioning of resources between hosted guest operating sys-
tems. Partitioning hypervisor based approaches to IMA however, have only been

1 3

Real-Time Systems

deployed either in spacecraft or aircraft applications (Almeida and Prochazka 2009;
Muttillo et al. 2019; Windsor et al. 2011).

State-of-the-art multicopters, on the other hand, employ traditional hypervi-
sors like Xen (VanderLeest 2010), VMware and VirtualBox (Han and Jin 2011).
These offer support to host Linux VMs extended with ARINC-653 standard APIs.
Linux however lacks hard real-time support for I/O interrupt scheduling (Zhang and
West 2006), which is needed for sensing, processing and actuation tasks in a flight
controller.

Pérez and Gutiérrez (2017) and Pérez et al. 2017 integrate DDS (data distribu-
tion service) with ARINC-653’s port-based communication. The authors validate
their approach by implementing RTOS-based publisher-subscriber partitions on the
Xtratum (Crespo et al. 2010) hypervisor. The inter-partition communication is pre-
sented as a general avionic solution applicable to all IMA-based flight management
systems.

Contrary to the current virtualization solutions, FlyOS presents a partitioning
hypervisor approach tailored towards efficient flight control for multicopters. To the
best of our knowledge, FlyOS is the first consolidated avionic system to statically
partition hardware resources between guest sandboxes that remain under the direct
management of their respective OS kernels at run-time. Consequently, the system
incurs minimal operational overheads. FlyOS’s separation kernel thereby achieves
spatial and temporal isolation in the context of Integrated Modular Avionics for mul-
ticopters. Additionally, mixed-criticality avionic services mapped to different sand-
boxes are able to communicate with low latencies using shared memory mapped
into user-level address spaces.

6 Conclusions and future work

This paper presents FlyOS, an integrated modular avionics (IMA) framework for
next-generation multicopter flight management systems. FlyOS employs a partition-
ing hypervisor to statically partition hardware resources among virtualized guest OS
domains or sandboxes. Our prototype implementation hosts a built-in RTOS (Quest)
with a legacy feature-rich Linux system in a dual-sandbox configuration. A real-time
safety-critical flight controller ported to Quest communicates via shared memory
with autonomous mission critical application services in Linux.

FlyOS guarantees temporal and spatial isolation of mixed-criticality avionic tasks
consolidated onto a centralized flight platform. Hardware virtualization support is
used to implement fault isolation, detection and recovery mechanisms for critical
flight controller failures. An empirical evaluation validates the effectiveness of Fly-
OS’s approach for sustaining safe, predictable and efficient autonomous control of a
real-world quadcopter in the presence of critical task failures.

FlyOS’s architecture opens up future possibilities to extend the system with addi-
tional avionic capabilities for an enriched flight solution. We intend to expand our
fault-tolerance subsystem to handle kernel- and sandbox-level failures in a time-
bounded manner, while still maintaining the original flight performance. In addition

 Real-Time Systems

1 3

to redundant failover mechanisms, complete fault-recovery will also be considered.
Using techniques described in Sect. 4, we also aim to evaluate real-time capabilities
for adaptive flight control, and in-flight mission re-configurability. The goal in this
case is to maintain flight stability in varied environmental conditions.

Acknowledgements This work is funded in part by the National Science Foundation (NSF) Grant #
2007707. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the NSF.

References

3D Robotics Inc. DroneKit Python. https:// github. com/ drone kit/ drone kit- python. Accessed Oct 2021
3DR. Connecting to a vehicle. https:// drone kit- python. readt hedocs. io/ en/ latest/ guide/ conne cting_

vehic le. html. Accessed Oct 2021
Adams K, Agesen O (2006) A comparison of software and hardware techniques for x86 virtualization.

ACM SIGOPS Oper Syst Rev 40:2–13
Almeida J, Prochazka M (2009) Safe and secure partitioning with PikeOS: towards integrated modu-

lar avionics in space. In: Noordwijk Ouwehand L (ed) Proceedings of DASIA 2009 data sys-
tems in aerospace, European Space Agency, Netherlands

Alves-Foss J, Harrison WS, Oman P, Taylor C (2006) The MILS architecture for high-assurance
embedded systems. Int J Embed Syst 2:239–247

Andersson B, de Niz D, Klein M (2022) Satisfying real-time requirements of multicore software on
ARINC 653: the issue of undocumented hardware. In: 2022 IEEE/AIAA 41st digital avionics
systems conference (DASC), pp 1–10

Annighoefer B, Halle M, Schweiger A, Reich M, Watkins C, VanderLeest SH, Harwarth S, Deiber P
(2019) Challenges and ways forward for avionics platforms and their development in 2019. In:
2019 IEEE/AIAA 38th digital avionics systems conference (DASC), pp 1–10

Arcaro LF, de Oliveira RS (2015) Lessons learned from the development of an ARINC 653 compati-
ble operating system. In: IEEE 13th international conference on industrial informatics (INDIN),
pp 221–226

Ardupilot: Archived: Qualcomm Snapdragon Flight Kit. https:// ardup ilot. org/ copter/ docs/ common-
qualc omm- snapd ragon- flight- kit. html. Accessed Oct 2021

Ardupilot Autopilot: Ardupilot. https:// ardup ilot. org/
Ardupilot Autopilot: MAVLink basics. https:// ardup ilot. org/ dev/ docs/ mavli nk- basics. html. Accessed

Oct 2021
ARINC Std. 653P1-5 (2019) Avionics application standard software interface, Part 1-Required Ser-

vices. https:// www. sae. org/ stand ards/ conte nt/ arinc 653p1-5
ARINC Std. 653P2-4 (2019) Avionics application software standard interface, Part 2, Extended ser-

vices. https:// aviat ion- ia. sae- itc. com/ stand ards/ arinc 653p2-4- 653p2-4- avion ics- appli cation-
softw are- stand ard- inter face- part-2- exten ded- servi ces

Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A (2003)
Xen and the art of virtualization. In: ACM SIGOPS OSR

Beckert M, Gemlau KB, Ernst R (2017) Exploiting sporadic servers to provide budget scheduling
for ARINC653 based real-time virtualization environments. In: Design, automation & test in
Europe conference & exhibition (DATE)

Beckert M, Ernst R (2015) Designing time partitions for real-time hypervisor with sufficient temporal
independence. In: 2015 52nd ACM/EDAC/IEEE design automation conference (DAC), pp 1–6

Betaflight Autopilot: Betaflight. https:// betafl ight. com/
Bloom G, Sherrill J (2020) Harmonizing ARINC 653 and realtime POSIX for conformance to the

FACE technical standard. In: 2020 IEEE 23rd international symposium on real-time distributed
computing (ISORC), pp 98–105

Boniol F, Wiels V (2014) Towards modular and certified avionics for UAV. J Aerosp Lab 8:1–8

https://github.com/dronekit/dronekit-python
https://dronekit-python.readthedocs.io/en/latest/guide/connecting_vehicle.html
https://dronekit-python.readthedocs.io/en/latest/guide/connecting_vehicle.html
https://ardupilot.org/copter/docs/common-qualcomm-snapdragon-flight-kit.html
https://ardupilot.org/copter/docs/common-qualcomm-snapdragon-flight-kit.html
https://ardupilot.org/
https://ardupilot.org/dev/docs/mavlink-basics.html
https://www.sae.org/standards/content/arinc653p1-5
https://aviation-ia.sae-itc.com/standards/arinc653p2-4-653p2-4-avionics-application-software-standard-interface-part-2-extended-services
https://aviation-ia.sae-itc.com/standards/arinc653p2-4-653p2-4-avionics-application-software-standard-interface-part-2-extended-services
https://betaflight.com/

1 3

Real-Time Systems

Bregu E, Casamassima N, Cantoni D, Mottola L, Whitehouse K (2016) Reactive control of autono-
mous drones. In: 14th annual international conference on mobile systems, applications and ser-
vices (MobiSys’16), pp 207–219

Brunner G, Szebedy B, Tanner S, Wattenhofer R (2019) The urban last mile problem: autonomous
drone delivery to your balcony. In: 2019 international conference on unmanned aircraft systems
(ICUAS), pp 1005–1012

Buczyński H, Cabaj K, Pisarczyk P (2022) Resource partitioning in phoenix-RTOS for critical and non-
critical software for UAV systems. In: 2022 17th conference on computer science and intelligence
systems (FedCSIS), pp 605–609

Spitzer CR, Ferrell U, Ferrel T (2015) Digital avionics handbook, 3rd edn. CRC Press, Taylor & Francis
Group, Boca Raton

Cesarano C, Cotroneo D, De Simone L (2022) Towards assessing isolation properties in partitioning
hypervisors. In: 2022 IEEE international symposium on software reliability engineering work-
shops (ISSREW), pp 193–200

Cheng Z, West R, Einstein C (2018) End-to-end analysis and design of a drone flight controller. In:
Proceedings of the ACM SIGBED international conference on embedded software (EMSOFT),
Torino, Italy

Cleanflight Autopilot: Cleanflight. goo.gl/uCGmr4
Clifton D (2015) spracingf3 flight controller manual (Revision 4). https:// bit. ly/ 2Mx9d RV
Craveiro J, Rufino J, Schoofs T, Windsor J (2009) Flexible operating system integration in partitioned

aerospace systems. In: Actas do INForum - Simposio de Informatica, pp 49–60
Crespo A, Ripoll I, Masmano M (2010) Partitioned embedded architecture based on hypervisor: the Xtra-

tuM approach. In: EDCC. IEEE Computer Society, pp 67–72
Cronk B Slack scheduling brings 100” systems. http:// vita. mil- embed ded. com/ artic les/ slack- resou rce-

utili zation- safety- criti cal- syste ms/
Cube Pilot: The Cube Autopilot. https:// bit. ly/ 3vPxb Lo. Accessed Oct 2021
Danish M, Li Y, West R (2011) Virtual-CPU scheduling in the Quest operating system. In: 17th IEEE

real-time and embedded technology and applications symposium (RTAS), pp 169–179
Delange J (2011) POK, An ARINC653-compliant Operating System Released under the BSD License
Domas C (2018) Hardware backdoors in x86 CPUs. https://i. black hat. com/ us- 18/ Thu- August- 9/ us- 18-

Domas- God- ModeU nlock ed- Hardw are- Backd oors- In- x86- CPUs- wp. pdf
DroneCode: Pixhawk Home. https:// pixha wk. org/. Accessed Oct 2021
Dronecode Project: MAVLink Developer Guide. https:// mavli nk. io/ en/. Accessed Oct 2021
European Union Aviation Safety Agency (EASA) (2012) MULCORS - Use of MULticore proCessORs in

airborne Systems. Research Project EASA.2011/6. https:// tinyu rl. com/ ye286 3vu
FAA: United States Department of Transportation: Federal Aviation Authority. https:// www. faa. gov/.

Accessed July 2022
FAA, EASA: Technical implementation procedures for airworthiness and environmental certification.

https:// www. faa. gov/ aircr aft/ air_ cert/ inter natio nal/ bilat eral_ agree ments/ baa_ basa_ listi ng/ media/
EUTIP_ rev6. pdf. Accessed July 2022

Farrukh A, West R (2020) smARTflight: an environmentally-aware adaptive real-time flight management
system. In: 32nd Euromicro Conference on Real-Time Systems (ECRTS)

Federal Aviation Administration ARD (2017) Technical Center: DOT/FAA/TC-16/51: assurance of mul-
ticore processors in airborne systems. http:// www. tc. faa. gov/ its/ world pac/ techr pt/ tc16- 51. pdf

Federal Aviation Administration CAST (2016) Position paper: multi-core processors. https:// www. faa.
gov/ aircr aft/ air_ cert/ design_ appro vals/ air_ softw are/ cast/ cast_ papers/ media/ cast- 32a. pdf

Golchin A, Cheng Z, West R (2018) Tuned pipes: end-to-end throughput and delay guarantees for USB
devices. In: 39th IEEE real-time systems symposium (RTSS)

Golchin A, Sinha S, West R (2020) Boomerang: real-time I/O meets legacy systems. In: 2020 IEEE real-
time and embedded technology and applications symposium (RTAS). IEEE, pp 390–402

Green Hills Software Inc (2010) INTEGRITY-178B Separation Kernel
Gu Q, Michanowicz DR, Jia C (2018) Developing a modular unmanned aerial vehicle (UAV) platform

for air pollution profiling. Sensors 18:4363
Han S, Jin H-W (2011) Full virtualization based ARINC 653 partitioning. In: 2011 IEEE/AIAA 30th

digital avionics systems conference
Han S, Jin H-W (2012) Kernel-level ARINC 653 partitioning for Linux. In: SAC ’12: Proceedings of the

27th annual ACM symposium on applied computing, pp 1632–1637

https://bit.ly/2Mx9dRV
http://vita.mil-embedded.com/articles/slack-resource-utilization-safety-critical-systems/
http://vita.mil-embedded.com/articles/slack-resource-utilization-safety-critical-systems/
https://bit.ly/3vPxbLo
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-ModeUnlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-ModeUnlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf
https://pixhawk.org/
https://mavlink.io/en/
https://tinyurl.com/ye2863vu
https://www.faa.gov/
https://www.faa.gov/aircraft/air_cert/international/bilateral_agreements/baa_basa_listing/media/EUTIP_rev6.pdf
https://www.faa.gov/aircraft/air_cert/international/bilateral_agreements/baa_basa_listing/media/EUTIP_rev6.pdf
http://www.tc.faa.gov/its/worldpac/techrpt/tc16-51.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32a.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32a.pdf

 Real-Time Systems

1 3

Hwang J, Zeng S, Wu Fy, Wood T (2013) A component-based performance comparison of four hypervi-
sors. In: 2013 IFIP/IEEE international symposium on integrated network management (IM 2013),
pp 269–276

iNAV Autopilot: iNAV. https:// github. com/ iNavF light/ inav/ wiki
Intel: Github documentation wiki for Intel ready to fly drone. https:// github. com/ intel- aero/ meta- intel-

aero/ wiki/ 02- Initi al- setup. Accessed Oct 2021
Intel: Intel Aero Compute Board. https:// ark. intel. com/ conte nt/ www/ us/ en/ ark/ produ cts/ 97178/ intel- aero-

compu te- board. html. Accessed Oct 2021
Intel: Intel Aero Vision Accessory Kit. https:// ark. intel. com/ conte nt/ www/ us/ en/ ark/ produ cts/ 97175/

intel- aero- vision- acces sory- kit. html. Accessed Oct 2021
Intel: Intel RealSense Github. https:// github. com/ Intel RealS ense/ libre alsen se. Accessed Oct 2021
Intel: Overview of Intel Ready to Fly Drone. https:// intel. ly/ 3b8Ww Gz. Accessed Oct 2021
Intel: Support for Intel RealSense Camera. https:// intel. ly/ 3uX0K Ke. Accessed Oct 2021
Jensen D (2005) B787 cockpit: Boeing’s bold move. https:// www. aviat ionto day. com/ 2005/ 11/ 01/ b787-

cockp it- boein gs- bold- move/
Jeong E-H, Kim J-G (2013) S/W fault-tolerant OFP system for UAVs based on partition computing. In:

2013 international conference on electronic engineering and computer science
Jiang Y (2016) [V4,4/4] Utilize the VMX preemption timer for TSC deadline timer. https:// patch work.

kernel. org/ proje ct/ kvm/ patch/ 14658 52801- 6684-5- git- send- email- yunho ng. jiang@ linux. intel.
com/# 19325 443. Accessed Oct 2021

Jo H-C, Park J-K, Jin HW, Yoon H-S, Lee SH (2019) Portable and configurable implementation of
ARINC-653 temporal partitioning for small civilian UAVs. IEEE Access 7:142478–142487

Kamel M, Alexis K, Achtelik M, Siegwart R (2015) Fast nonlinear model predictive control for multi-
copter attitude tracking on SO(3). In: 2015 IEEE conference on control applications (CCA), pp
1160–1166

Kang Q, Yuan C, Wei X, Gao Y, Wang L (2016) A user-level approach for ARINC 653 temporal parti-
tioning in seL4. In: ISSSR, pp 106–110

Klein G, Andronick J, Fernandez M, Kuz I, Murray T, Heiser G (2018) Formally verified software in the
real world. Commun ACM 61(10):68–77

Leiner B, Schlager M, Obermaisser R, Huber B (2007) A comparison of partitioning operating systems
for integrated systems. In: International conference on computer safety, reliability, and security.
Springer, pp 342–355

Li Y, West R, Missimer ES (2014a) A virtualized separation kernel for mixed criticality systems. In:
Hirzel M, Petrank E, Tsafrir D (eds) 10th ACM SIGPLAN/SIGOPS international conference on
virtual execution environments, VEE ’14, pp 201–212

Li Y, West R, Cheng Z, Missimer E (2014b) Predictable communication and migration in the Quest-V
separation kernel. In: 35th IEEE real-time systems symposium (RTSS), Rome, Italy

Liszewski A NASA’s Supercomputers Reveal the Incredible Turbulence Produced By a Drone. https://
gizmo do. com/ nasas- super compu ters- reveal- the- incre dible- turbu lence-p- 17911 79507. Accessed
Oct 2021

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard real-time environ-
ment. J ACM 20:46–61

LYNX, AFuzion: Preview: CAST-32A Significance & Implications. Technical White Pape. https://
www. lynx. com/ embed ded- syste ms- learn ing- center/ cast- 32a- signi fican ce- and- impli catio ns- legacy.
Accessed July 2022

Lynx Software Technologies: LynxSecure Separation Kernel Hypervisor. https:// www. lynx. com/ produ
cts/ lynxs ecure- separ ation- kernel- hyper visor

LYNX Software Technologies (2015) LynxSecure embedded hypervisor and separation kernel. http://
www. lynx. com/ produ cts/ hyper visors/

Martins J, Tavares A, Solieri M, Bertogna M, Pinto S (2020) Bao: a lightweight static partitioning hyper-
visor for modern multi-core embedded systems. In: Workshop on next generation real-time embed-
ded systems (NG-RES 2020), vol 77. OpenAccess Series in Informatics (OASIcs). Schloss Dag-
stuhl-Leibniz-Zentrum fuer Informatik, Wadern, Germany, pp 3–1314

Masmano M, Valiente Y, Balbastre P, Ripoll I, Crespo A (2011) ARINC-653 APEX based on XtratuM.
In: XIV Jornadas de Tiempo

MAVLink Router: MAVLink Router. https:// github. com/ mavli nk- router/ mavli nk- router. Accessed Feb
2023

https://github.com/iNavFlight/inav/wiki
https://github.com/intel-aero/meta-intel-aero/wiki/02-Initial-setup
https://github.com/intel-aero/meta-intel-aero/wiki/02-Initial-setup
https://ark.intel.com/content/www/us/en/ark/products/97178/intel-aero-compute-board.html
https://ark.intel.com/content/www/us/en/ark/products/97178/intel-aero-compute-board.html
https://ark.intel.com/content/www/us/en/ark/products/97175/intel-aero-vision-accessory-kit.html
https://ark.intel.com/content/www/us/en/ark/products/97175/intel-aero-vision-accessory-kit.html
https://github.com/IntelRealSense/librealsense
https://intel.ly/3b8WwGz
https://intel.ly/3uX0KKe
https://www.aviationtoday.com/2005/11/01/b787-cockpit-boeings-bold-move/
https://www.aviationtoday.com/2005/11/01/b787-cockpit-boeings-bold-move/
https://patchwork.kernel.org/project/kvm/patch/1465852801-6684-5-git-send-email-yunhong.jiang%40linux.intel.com/#19325443
https://patchwork.kernel.org/project/kvm/patch/1465852801-6684-5-git-send-email-yunhong.jiang%40linux.intel.com/#19325443
https://patchwork.kernel.org/project/kvm/patch/1465852801-6684-5-git-send-email-yunhong.jiang%40linux.intel.com/#19325443
https://gizmodo.com/nasas-supercomputers-reveal-the-incredible-turbulence-p-1791179507
https://gizmodo.com/nasas-supercomputers-reveal-the-incredible-turbulence-p-1791179507
https://www.lynx.com/embedded-systems-learning-center/cast-32a-significance-and-implications-legacy
https://www.lynx.com/embedded-systems-learning-center/cast-32a-significance-and-implications-legacy
https://www.lynx.com/products/lynxsecure-separation-kernel-hypervisor
https://www.lynx.com/products/lynxsecure-separation-kernel-hypervisor
http://www.lynx.com/products/hypervisors/
http://www.lynx.com/products/hypervisors/
https://github.com/mavlink-router/mavlink-router

1 3

Real-Time Systems

McDermott J, Montrose B, Li M, Kirby J, Kang M (2012) Separation virtual machine monitors. In: Pro-
ceedings of the 28th annual computer security applications conference. ACSAC ’12. Association
for Computing Machinery, Orlando, Florida, USA, pp 419–428

Mejias L, Diguet J-P, Dezan C, Campbell D, Kok J, Coppin G (2021) Embedded computation architec-
tures for autonomy in unmanned aircraft systems (UAS). Sensors 21:1115

Mercer CM, Savage S, Tokuda H (1993) Processor capacity reserves for multimedia operating systems.
In: Technical Report. Carnegie Mellon University, Pittsburgh, USA

Missimer E, Missimer K, West R (2016) Mixed-criticality scheduling with I/O. In: 28th Euromicro Con-
ference on Real-Time Systems (ECRTS)

Missimer E, West R, Li Y (2014) Distributed real-time fault tolerance on a virtualized multi-core sys-
tem. In: 10th annual workshop on operating systems platforms for embedded real-time applications
(OSPERT)

Morales T, Sarabakha A, Kayacan E (2020) Image generation for efficient neural network training in
autonomous drone racing. In: 2020 International joint conference on neural networks (IJCNN), pp
1–8

Muttillo V, Tiberi L, Pomante L, Serri P (2019) Benchmarking analysis and characterization of hypervi-
sors for space multicore systems. J Aerosp Inf Syst 16:500–511

OscarLiang.com: ESC Firmware and Protocols Overview. https:// oscar liang. com/ esc- firmw are- proto
cols/. Accessed July 2017

OscarLiang.com (2017) Custom motor mixing multirotor what calculate uses. https:// www. oscar
liang. com/ custom- motor- output- mix- quadc opter

OSDEV.org (2019) Timer interrupt sources. https:// wiki. osdev. org/ Timer_ Inter rupt_ Sourc es
OSRTOS: MaRTE RTOS. https:// www. osrtos. com/ rtos/ marte/
Prisaznuk PJ (2008) ARINC 653 role in integrated modular avionics (IMA). In: IEEE/AIAA 27th digital

avionics systems conference, pp 1–511510
Park S, Song D, Jang H, Kwon M-Y, Lee S-H, Kim H-K, Kim H (2019) Interference analysis of multicore

shared resources with a commercial avionics RTOS. In: 2019 IEEE/AIAA 38th digital avionics
systems conference (DASC), pp 1–10

Parkinson P (2018) Safety-critical software development for integrated modular avionics. https:// events.
windr iver. com/ wrcd01/ wrcm/ 2015/ 02/ Safety- Criti cal- Softw are- Devel opment- for- Integ rated-
Modul ar- Avion ics- White- Paper-1. pdf

Parkinson P, Kinnan L (2015) Safety-critical software development for integrated modular avionics.
Embed Syst Eng 11:40–41

Pérez H, Gutiérrez JJ (2017) Handling heterogeneous partitioned systems through ARINC-653 and DDS.
Comput Stand Interfaces 50:258–268

Pérez H, Gutiérrez JJ, Peiró S, Crespo A (2017) Distributed architecture for developing mixed-criticality
systems in multi-core platforms. J Syst Softw 123:145–159

PX4 Autopilot: PX4 [Home]. http:// px4. io/
Qualcomm (2015) First public demo of snapdragon flight robotics dev platform in one of world’s small-

est 4K drones. https:// www. qualc omm. com/ news/ onq/ 2015/ 09/ 10/ first- public- demo- snapd ragon-
flight- robot ics- dev- platf orm- one- worlds- small est- 4k. Accessed Oct 2021

Qualcomm (2017) Qualcomm snapdragon flight kit. https:// www. intri nsyc. com/ verti cal- devel opment-
platf orms/ qualc omm- snapd ragon- flight/

Qualcomm (2021) Journey to mars: how our collaboration with jet propulsion laboratory fostered innova-
tion. https:// www. qualc omm. com/ news/ onq/ 2021/ 03/ 17/ journ ey- mars- how- our- colla borat ion- jet-
propu lsion- labor atory- foste red- innov ation

Radio Technical Commission for Aeronautics (RTCA) Std (2011a) DO-178C/ED-12C software consid-
erations in airborne systems and equipment certification

Radio Technical Commission for Aeronautics (RTCA) Std (2011b) RTCA DO-248C/EUROCAE ED-
94C supporting information for DO-178C and DO-278A

Radio Technical Commission for Aeronautics (RTCA) Std (2014) DO-326A airworthiness security pro-
cess specification

Radio Technical Commission for Aeronautics (RTCA) Std (2018) DO-356A airworthiness security meth-
ods and considerations

Ramsauer R, Kiszka J, Lohmann D, Mauerer W (2017) Look mum, no VM exits! (Almost). http:// arxiv.
org/ abs/ 1705. 06932

Ramsey JW (2007) Integrated modular avionics: less is more. https:// www. aviat ionto day. com/ 2007/ 02/
01/ integ rated- modul ar- avion ics- less- is- more/

https://oscarliang.com/esc-firmware-protocols/
https://oscarliang.com/esc-firmware-protocols/
https://www.oscarliang.com/custom-motor-output-mix-quadcopter
https://www.oscarliang.com/custom-motor-output-mix-quadcopter
https://wiki.osdev.org/Timer_Interrupt_Sources
https://www.osrtos.com/rtos/marte/
https://events.windriver.com/wrcd01/wrcm/2015/02/Safety-Critical-Software-Development-for-Integrated-Modular-Avionics-White-Paper-1.pdf
https://events.windriver.com/wrcd01/wrcm/2015/02/Safety-Critical-Software-Development-for-Integrated-Modular-Avionics-White-Paper-1.pdf
https://events.windriver.com/wrcd01/wrcm/2015/02/Safety-Critical-Software-Development-for-Integrated-Modular-Avionics-White-Paper-1.pdf
http://px4.io/
https://www.qualcomm.com/news/onq/2015/09/10/first-public-demo-snapdragon-flight-robotics-dev-platform-one-worlds-smallest-4k
https://www.qualcomm.com/news/onq/2015/09/10/first-public-demo-snapdragon-flight-robotics-dev-platform-one-worlds-smallest-4k
https://www.intrinsyc.com/vertical-development-platforms/qualcomm-snapdragon-flight/
https://www.intrinsyc.com/vertical-development-platforms/qualcomm-snapdragon-flight/
https://www.qualcomm.com/news/onq/2021/03/17/journey-mars-how-our-collaboration-jet-propulsion-laboratory-fostered-innovation
https://www.qualcomm.com/news/onq/2021/03/17/journey-mars-how-our-collaboration-jet-propulsion-laboratory-fostered-innovation
http://arxiv.org/abs/1705.06932
http://arxiv.org/abs/1705.06932
https://www.aviationtoday.com/2007/02/01/integrated-modular-avionics-less-is-more/
https://www.aviationtoday.com/2007/02/01/integrated-modular-avionics-less-is-more/

 Real-Time Systems

1 3

ROBOTmaker: Real-Time Graphical Representation S.BUS Protocol. http:// www. robot maker. eu/
ROBOT maker/ quadc opter- 3d- proxi mity- sensi ng/ sbus- graph ical- repre senta tion

Ruan W, Zhai Z (2014) Kernel-level design to support partitioning and hierarchical real-time scheduling
of ARINC 653 for VxWorks. In: 2014 IEEE 12th international conference on dependable, auto-
nomic and secure computing, pp 388–393

Rushby J (1999) Partitioning for avionics architectures: requirements, mechanisms and assurance. In:
NASA Contractor Report CR-1999-209347, NASA Langley Research Center

Rushby J (2002) Model checking Simpson’s four-slot fully asynchronous communication mechanism. In:
Computer science laboratory–SRI International, Tech. Rep. Issued

Rushby JM (1981) Design and verification of secure systems. In: 8th ACM symposium on operating sys-
tems principles, pp 12–21

Technology SC (2014) Jailhouse Partitioning Hypervisor. https:// github. com/ sieme ns/ jailh ouse
Han S, Jin H-W (2014) Resource partitioning for integrated modular avionics: comparative study of

implementation alternatives. Softw. Pract. Exper. 44(12):1441–1466
Madgwick SOH, Harrison AJL, Vaidyanathan R (2011) Estimation of IMU and MARG orientation

using a gradient descent algorithm. In: International conference on rehabilitation robotics (IEEE-
ICORR), pp 1–7

Sanchez-Cuevas P, Heredia G, Ollero A (2017) Characterization of the aerodynamic ground effect and its
influence in multirotor control. Int J Aerosp Eng 2017

Schildermans S, Aerts K, Shan J, Ding X (2021) Paratick: reducing timer overhead in virtual machines.
In: 50th international conference on parallel processing (ICPP). Association for Computing
Machinery (ACM), pp 1–10

Silva C, Tatibana C (2014) MultIMA- multi-core in integrated modular avionics. In: DAta systems in
aerospace (DASIA)

Simpson HR (1990) Four-slot fully asynchronous communication mechanism. IEEE Comput Digit Techn
137:17–30

Sinha S, West R (2021) Towards an integrated vehicle management system in DriveOS. ACM Trans
Embed Comput Syst 20:1–24 (Association for Computing Machinery (ACM))

Software GH. INTEGRITY-178 tuMP RTOS: safety-critical & security-critical RTOS. https:// www. ghs.
com/ produ cts/ safety_ criti cal/ integ rity_ 178_ tump. html. Accessed Feb 2023

Spitzer CR (2006) RTCA DO-297/EUROCAE ED-124 integrated modular avionics (IMA) design guid-
ance and certification considerations

Steinberg U, Kauer B (2010) NOVA: a microhypervisor-based secure virtualization architecture. In: Pro-
ceedings of the 5th European conference on computer systems (Eurosys). Association for Comput-
ing Machinery (ACM), pp 209–222

SYSGO (2015) SYSGO PikeOS hypervisor. http:// www. sysgo. com/ produ cts/ pikeos- rtos- and- 1462v irtua
lizat ion- conce pt

UAVOS: Automatic Control System for UAV with a Takeoff Weight of 100 kg up to 4000 kg. https://
www. uavos. com/ produ cts/ autop ilots/ ap10-1- autom atic- contr ol- system- for- uav/. Accessed Oct
2021

VanderLeest SH Benefits and Implications of an ARINC 653 Hypervisor. https:// dorne rworks. com/ about/
white papers/ arinc- 653- benefi ts- impli catio ns/

VanderLeest SH (2010) ARINC 653 hypervisor. In: 29th Digital avionics systems conference, pp
5–215220

VanderLeest SH (2014) Taming interrupts: deterministic interrupts in an ARINC 653 environment. In:
33rd Digital avionics systems conference (DASC). IEEE/AIAA

VanderLeest SH (2016) The open source, formally-proven seL4 microkernel: considerations for use in
avionics. In: IEEE/AIAA 35th Digital avionics systems conference (DASC)

VanderLeest SH (2017) Designing a future airborne capability environment (FACE) hypervisor for safety
and security. In: IEEE/AIAA 36th Digital avionics systems conference (DASC)

VanderLeest SH, White D (2015) MPSoC hypervisor: the safe & secure future of avionics. In: IEEE/
AIAA 34th Digital avionics systems conference (DASC)

VanderLeest SH (2018) Is formal proof of seL4 sufficient for avionics security? IEEE Aerosp Electron
Syst Mag 33(2):16–21

VanderLeest SH, Matthews DC (2021) Incremental assurance of multicore integrated modular avionics
(IMA). In: 2021 IEEE/AIAA 40th Digital avionics systems conference (DASC), pp 1–9

http://www.robotmaker.eu/ROBOTmaker/quadcopter-3d-proximity-sensing/sbus-graphical-representation
http://www.robotmaker.eu/ROBOTmaker/quadcopter-3d-proximity-sensing/sbus-graphical-representation
https://github.com/siemens/jailhouse
https://www.ghs.com/products/safety_critical/integrity_178_tump.html
https://www.ghs.com/products/safety_critical/integrity_178_tump.html
http://www.sysgo.com/products/pikeos-rtos-and-1462virtualization-concept
http://www.sysgo.com/products/pikeos-rtos-and-1462virtualization-concept
https://www.uavos.com/products/autopilots/ap10-1-automatic-control-system-for-uav/
https://www.uavos.com/products/autopilots/ap10-1-automatic-control-system-for-uav/
https://dornerworks.com/about/whitepapers/arinc-653-benefits-implications/
https://dornerworks.com/about/whitepapers/arinc-653-benefits-implications/

1 3

Real-Time Systems

VanderLeest SH, Thompson SR (2020) Measuring the impact of interference channels on multicore avi-
onics. In: 2020 AIAA/IEEE 39th Digital avionics systems conference (DASC), pp 1–8

Viola P, Jones MJ (2001) Rapid object detection using a boosted cascade of simple features. In: IEEE
computer society conference on computer vision and pattern recognition

Wang Z, Jiang X (2010) HyperSafe: a lightweight approach to provide lifetime hypervisor control-flow
integrity. In: 2010 IEEE symposium on security and privacy, pp 380–395

Watkins CB (2006) Integrated modular avionics: managing the allocation of shared intersystem resources.
In: 25th digital avionics systems conference, pp 1–12

Watkins CB, Walter R (2007) Transitioning from federated avionics architectures to integrated modular
avionics. In: 2007 IEEE/AIAA 26th Digital avionics systems conference, pp 2–112110

West R, Li Y, Missimer E (2012) Time management in the Quest-V RTOS. In: 8th Annual workshop on
operating systems platforms for embedded real-time applications (OSPERT)

West R, Li Y, Missimer E, Danish M (2016) A virtualized separation kernel for mixed-criticality systems.
In: ACM transactions on computer systems. Association for Computing Machinery (ACM), New
York, NY, USA, vol 34, pp 8–1841

Wind River Systems I VxWorks 653 Multi-core Edition Product Overview. https:// www. windr iver. com/
resou rce/ vxwor ks- 653- produ ct- overv iew. Accessed Feb 2023

Wind River Systems I. Wind River Introduces VxWorks MILS Platform Conformant to Separation Ker-
nel Protection Profile. https:// www. windr iver. com/ news/ press/ news- 11742. Accessed Feb 2023

Windsor J, Eckstein K, Mendham P, Pareaud T (2011) Time and space partitioning security components
for spacecraft flight software. In: 2011 IEEE/AIAA 30th Digital avionics systems conference

X-IO technologies: open source IMU and AHRS algorithms. https://x- io. co. uk/ open- source- imu- and-
ahrs- algor ithms/

Ye Y, West R, Zhang J, Cheng Z (2016) MARACAS: a real-time multicore VCPU scheduling framework.
In: 37th IEEE real-time systems symposium (RTSS)

Zhang Y, West R (2006) Process-aware interrupt scheduling and accounting. In: 27th IEEE real-time
systems symposium (RTSS)

Zuepke A, Bommert M, Lohmann D (2015) AUTOBEST: a united AUTOSAR-OS and ARINC 653 Ker-
nel. In: 21st IEEE real-time and embedded technology and applications symposium, pp 133–144

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Anam Farrukh received the Master of Science (M.S.) in electri-
cal engineering from Lahore University of Management Sciences
(LUMS), Lahore, Pakistan in 2014. She is currently pursuing the
Ph.D degree in computer science at Boston University under the
supervision of Prof. R. West. She designs and develops software
architectures for adaptable and autonomous vehicle management
systems in the avionics and automotive domains. Her research aims
to address the safety, predictability, and efficiency challenges of
these modern-day cyber-physical systems. Her goal is to empower
the next-generation of consolidated vehicle software with criticality
awareness, time-aware power management and low-latency fault-
tolerant capabilities. She believes that temporal and functional cor-
rectness are key to safe operation of all modern software-defined
vehicles.

https://www.windriver.com/resource/vxworks-653-product-overview
https://www.windriver.com/resource/vxworks-653-product-overview
https://www.windriver.com/news/press/news-11742
https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/

 Real-Time Systems

1 3

Richard West is a Professor in the Computer Science Department
at Boston University. He holds a PhD and MS in Computer Science
from the Georgia Institute of Technology, USA, and an MEng in
Microelectronics and Software Engineering from the University of
Newcastle-upon-Tyne, UK. He is also the Chief Software Architect
at Drako Motors, a company developing electric cars and state-of-
the-art vehicle management systems. His research works focuses on
real-time and embedded operating systems, addressing issues con-
cerning safety and predictability. He has studied real-time schedul-
ing and resource management, cache-aware performance of multi-
core processors, and machine virtualization, among other topics. He
is currently leading the development of the Quest RTOS for multi-
core processors. Its sister system, Quest-V, is a partitioning hypervi-
sor, which provides efficient, predictable and safe execution of
guests. Quest-V is used in the Drako Motors DriveOS production
vehicle management system.

	FlyOS: rethinking integrated modular avionics for autonomous multicopters
	Abstract
	1 Introduction
	2 FlyOS: a flight management framework
	2.1 Motivation
	2.2 ARINC-653: a discussion
	2.3 System prototype
	2.4 Avionic capabilities
	2.4.1 Real-time flight controller
	2.4.2 Autonomous vision subsystem
	2.4.3 Fault-tolerance subsystem

	3 Evaluation
	3.1 Experimental setup
	3.1.1 Hardware
	3.1.2 Performance metrics and settings

	3.2 Manual radio control
	3.2.1 Setup
	3.2.2 Results

	3.3 Autonomous mission control
	3.3.1 Setup
	3.3.2 Results

	3.4 Comparison with Intel drone
	3.4.1 Setup
	3.4.2 Results

	3.5 Failover flight control

	4 Enhanced avionics: a case for adaptability and flexibility
	5 Related work
	6 Conclusions and future work
	Acknowledgements
	References

