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Abstract
Autonomous multicopters often feature federated architectures, which incur rela-
tively high communication costs between separate hardware components. These 
costs limit the ability to react quickly to new mission objectives. Additionally, feder-
ated architectures are not easily upgraded without introducing new hardware that 
impacts size, weight, power and cost constraints. In turn, such constraints restrict the 
use of redundant hardware to handle faults. In response to these challenges, we pro-
pose FlyOS, an Integrated Modular Avionics approach to consolidate mixed-critical-
ity flight functions in software on heterogeneous multicore aerial platforms. FlyOS 
is based on a separation kernel that statically partitions resources among virtualized 
sandboxed OSes. We present a dual-sandbox prototype configuration, where tim-
ing- and safety-critical flight control tasks execute in a real-time OS alongside mis-
sion-critical vision-based navigation tasks in a Linux sandbox. Low latency shared 
memory communication allows flight commands and data to be relayed in real-time 
between sandboxes. A hypervisor-based fault-tolerance mechanism is also deployed 
to ensure failover flight control in case of critical function or timing failures. We 
validate FlyOS’s performance and showcase its benefits when compared against tra-
ditional architectures in terms of predictable, extensible and efficient flight control.
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1 Introduction

Multicopters have traditionally adopted a federated architecture (Gu et al. 2018; 
Mejias et  al. 2021), which isolates and distributes flight management functions 
of different criticalities across separate hardware components  (Intel; Qualcomm 
2017). Relatively powerful multicore CPUs are managed by a general purpose 
operating system (GPOS) such as Linux, and execute low time-sensitivity mission 
tasks. At the same time, an embedded microcontroller, or digital signal processor 
(DSP), processes the critical low-level flight control stack, often referred to as 
the autopilot. Connected locally via a slow serial (UART) interface, the loosely-
coupled framework suffers from high latency and limited bandwidth communi-
cation when transferring commands between the two subsystems. This severely 
restricts the throughput and responsiveness of autonomous mission tasks, leading 
to coarse-grained drone control.

To ensure fault-tolerance against critical functional failures, the combined 
hardware and software stack of the low-level flight controller requires redun-
dancy, which quickly becomes prohibitive given the limited size, weight, power 
and cost (SWaP-C) requirements of small-scale ( < 10kg) UAVs  (Boniol and 
Wiels 2014). Additionally, constantly evolving autopilot features and functional-
ity updates often render the resource constrained controller architecture obsolete, 
adding to hardware replacement and maintenance costs over time.

In this work, we present an integrated flight management system called FlyOS, 
which contrasts with the traditional federated approach that uses multiple separate 
hardware components. FlyOS takes inspiration from Integrated Modular Avion-
ics (IMA) (Watkins 2006; Watkins and Walter 2007) and ARINC-653 (Avionics 
Application Software Standard Interface) (ARINC Std. 653P1-5 2019; Prisaznuk 
2008) partitioning standard for avionic functions. These design guidelines envi-
sion consolidation of mixed-criticality flight functions on a centralized hardware 
platform, while ensuring temporal and spatial isolation of critical software com-
ponents from execution-time interference.

FlyOS employs a separation kernel (Rushby 1981) to map two or more guest 
operating systems to virtualized sandbox domains or partitions. For the purposes 
of this paper, we use the terms guest OSes, sandboxes and partitions interchange-
ably in the context of FlyOS. Separation kernels (Green Hills Software Inc 2010; 
Leiner et al. 2007; Li et al. 2014a; Lynx Software Technologies; McDermott et al. 
2012; West et al. 2016) allow guests to co-exist on a common hardware platform 
as isolated regimes, which communicate only through explicit and secure chan-
nels. Virtualization technologies, featured by modern heterogeneous platforms, 
are used to statically partition hardware resources (processing cores, memory and 
I/O devices) and software components between separate execution environments 
of the guests. The individual system partitions operate together as a tightly cou-
pled distributed system-on-a-chip. Explicitly defined shared memory communi-
cation channels set up low-latency and high bandwidth control and data paths 
between sandboxes. Isolation between guest domains allow for safe, secure and 
predictable consolidation of functional avionic components.
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FlyOS enables software redundancy to meet SWAP-C constraints of small-scale 
UAVs. The system aims to overcome the inherent limitation of shared resource 
architectures to fault containment  (Rushby 1999) by providing strict temporal and 
spatial partitioning between guests. FlyOS’s approach to integration therefore pro-
tects against fault propagation across guest boundaries, avoiding system-wide failure 
and corruption.

For our prototype implementation, shown in Fig. 1, we map the distributed com-
panion architecture of traditional multicopter systems entirely in software using a 
dual-sandbox approach. Timing and safety-critical flight control modules are imple-
mented as latency-sensitive threads in a lightweight real-time OS (Quest  (Danish 
et  al. 2011)), alongside mission control tasks in Yocto Linux. FlyOS’s separation 
kernel works on the principle of partitioning hypervisors  (Cesarano et  al. 2022; 
Li et al. 2014a; Martins et al. 2020; Ramsauer et al. 2017; Technology 2014; West 
et al. 2016) whereby each guest directly manages its own set of allocated resources 
without any run-time intervention of the most trusted compute base (TCB) of the 
hypervisor. It differs in its partitioning scheme compared to the state-of-the-art 
ARINC-653 extended architectures, which predominantly employ consolidating 
hypervisors  (Craveiro et  al. 2009; VanderLeest 2010). These systems rely on the 
hypervisor for time and space multiplexing as well as the overall management of 
shared platform resources on behalf of the hosted guests. Hypervisor-based shared 
resource management potentially adds undue overheads (Hwang et al. 2013), which 
impact predictability and determinism of critical flight control.

Fig. 1  FlyOS dual-sandbox configuration: Linux + Quest. ∗For the purposes of this work, we identify 
ring -1 to be the root mode software layer, which sits between the hardware and non-root guest 
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Within FlyOS, we refactor a performance-critical flight controller to execute with 
real-time guarantees on Quest. A camera-based vision detection and tracking sub-
system is implemented in a Linux sandbox as part of our mission control functional-
ity (e.g., to represent a search and rescue objective). Additionally, we showcase our 
hypervisor-based fault-recovery subsystem for fail-safe flight control in the presence 
of critical function failures.

Contributions: In this paper, we: 1. lay down the foundation for next-generation 
flight architectures designed around the principle of integrated modular avionics 
for multicopters, 2. motivate FlyOS’s design choices by drawing parallels with the 
required services of the core/host software as specified by the ARINC-653 avion-
ics standard, 3. describe FlyOS’s separation kernel in the context of a dual-sandbox 
implementation co-hosting Linux with Quest, 4. implement a timing- and safety-
critical flight stack with a low-level attitude (3D orientation) controller by retrofit-
ting a well-known autopilot as a real-time avionic application, 5. introduce high-
level mission-critical autonomous navigation control, and 6. implement online 
health-management and fault-tolerance for time-bounded activation of failover flight 
control.

We evaluate FlyOS’s performance with real-world experiments on a quadcopter. 
We also compare inter-sandbox communication overheads against a typical compan-
ion-board architecture of a popular drone system, manufactured by Intel®. FlyOS 
opens opportunities for reusable application implementations, system-wide optimi-
zations, re-configurability and improved resource usage, while reducing size, weight 
and power requirements of the underlying hardware.

Layout: The following section describes the FlyOS model. We motivate our 
design goals followed by a brief discussion on ARINC-653 objectives. We then pre-
sent an overview of the system framework and take a deep dive into the avionic 
functions and capabilities currently supported by our prototype. Sect. 3 presents an 
extensive evaluation of flight performance with hardware-in-the-loop experiments. 
Sect. 4 introduces our readers to additional benefits afforded by FlyOS’s approach 
to IMA. In particular, we highlight the flexibility and adaptability characteristics by 
describing the design of a multicore adaptive flight controller. The proposed design 
is extended from our prior work on smartflight  (Farrukh and West 2020), which 
handles environmental factors such as wind disturbances. Related work is described 
in Sect. 5, while conclusions and future work are discussed in Sect. 6.

2  FlyOS: a flight management framework

2.1  Motivation

FlyOS is designed around a characteristic set of goals for functional safety, tim-
ing predictability and efficiency of flight control for multi-rotor UAVs. As such, 
this work targets timing- and safety-criticality (Radio Technical Commission for 
Aeronautics (RTCA) Std 2011a) dimensions of the mixed-criticality architec-
ture design-space for drone autopilots. We define safety-criticality as a measure 
of functional importance of a software component to the overall flight control 
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operation. Timing criticality on the other hand is concerned with guaranteeing 
real-time flight control responses within prescribed temporal bounds.

Orthogonal to this work, we define a third dimension of security-critical-
ity  (Radio Technical Commission for Aeronautics (RTCA) Std 2014, 2018) for 
tasks and system components. This directly concerns policies related to the pres-
ervation of information integrity and confidentiality. An implementation and 
evaluation of such policies is beyond the scope of this paper. However, we note 
that FlyOS’s isolation by design architecture lends itself to support security capa-
bilities such as gateway (guard) services at communication interfaces between 
different sandboxed domains. This allows runtime checks to be enforced within 
FlyOS’s inter- and intra-sandbox communication stacks that mitigate threats from 
malicious attacks crossing sandbox boundaries. Carefully designed OS-kernel 
and hypervisor-based security policies  (Klein et  al. 2018; Steinberg and Kauer 
2010; Wang and Jiang 2010) allow FlyOS to monitor and validate flow of infor-
mation between sandboxes such as flight mission commands.

Additionally, FlyOS features a thin and simple hypervisor on a per guest basis. 
Hypervisor redundancy inherently enables fault detection and recovery for the 
most privileged layer of the system. It also heightens security by reducing the 
attack surface of each hypervisor instance  (Missimer et  al. 2014). FlyOS’s dis-
tributed virtualization architecture leverages compute redundancy within multi-
core systems to replicate complete system stacks. It therefore enables security by 
design.

Notwithstanding, in this paper, we focus our architectural objectives on the fol-
lowing principles of design: 

1. Isolation Software consolidation based on the IMA concept and ARINC-653 
standard requires temporal and spatial isolation between avionic functions that 
are critical for correct flight operation from other less-critical and non-essential 
services. FlyOS employs a novel partitioning approach in this context to allocate 
hardware resources of a centralized platform to virtualized system-level partitions. 
The goal is to deploy separate guest system environments for locally-hosted tasks 
of different criticalities. Details of our design are presented in Sect. 2.3.

2. Extensibility Low-criticality sandboxes support re-configurable and adaptable 
autonomous mission applications, which increases application portability and 
reduces redeployment costs. Similarly one or more real-time safety-critical sand-
boxes allow dynamic hot-plugging of flight controllers that are tuned to different 
flight characteristics, e.g., for high maneuverability versus greater stability or 
environment adaptability.

  FlyOS envisions multiple independent sandboxed system partitions to be hosted 
on the same hardware platform. Static partitioning allows each sandbox to be 
allocated a configurable set of resources based on application demand. Each guest 
partition, in turn, hosts a multitude of avionic functions of equivalent levels of 
criticality. This enables guests and their applications to be certified independent 
of the other guests in the system and in accordance with their associated design 
assurance level as defined by the certification authorities (Radio Technical Com-
mission for Aeronautics (RTCA) Std 2011a).
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3. Enhanced functionality FlyOS targets hardware platforms with multiple cores, 
advanced sensors, high-speed networks, buses, and device interfaces (e.g., Cam-
era Serial Interface), which are often unavailable in simpler autopilot platforms. 
FlyOS leverages the capabilities of multicore platforms with hardware virtual-
ization support to build sophisticated flight management software that would 
otherwise require separate hardware components, increasing the size, weight, 
power and cost overheads.

4. Fault tolerance FlyOS’s sandboxed design, by virtue of partitioning, inherits fault-
containment capabilities that are inherent to federated or hardware-distributed 
architectures. Likewise, FlyOS operates on the principle of separation of con-
cerns. The hypervisor layer has a minimal memory foot-print and resides at the 
most privileged protection domain, replicated across each sandbox. The hyper-
visor (a.k.a., virtual machine monitor (VMM)) implements a run-time health-
monitoring subsystem within its trusted compute base. Together with redundant 
VMMs, functional and timing related faults may be handled across the entire 
guest stack, from the application to sandboxed partition, down to the hypervisor.

  FlyOS’s integrated and modular nature therefore opens new opportunities to 
incorporate system-wide software redundancy. However, FlyOS does not address 
hardware fault redundancy due to SWaP-C restrictions.

We now briefly dive into the specifics of the ARINC-653 partitioning standard as it 
largely applies to the general avionics domain since its inception in 1996. As men-
tioned previously, FlyOS draws its design inspiration from the ARINC partitioning 
standard. The upcoming section thus constructs parallels and identifies design dif-
ferences between the core operating environments provided by FlyOS and ARINC-
653. We aim to delineate the design goals of an IMA-based flight management sys-
tem when applied to small-scale multicopters.

2.2  ARINC‑653: a discussion

ARINC-653 is the de-facto partitioning standard, enforced by the regulatory bodies 
such as the FAA (Federal Aviation Authority)  (FAA) and EASA (European Avia-
tion Safety Agency) (FAA and EASA), within the commercial avionics domain for 
manned aircraft. Compliance with the standard is required to achieve airworthiness 
of IMA-based flight architectures.

Temporal and spatial isolation of system resources is one of the key requirements 
of IMA for predictable and safe flight behavior. Such isolation is necessary when 
consolidating mixed-criticality flight functions on a common compute platform. 
ARINC-653P1 (ARINC Std. 653P1-5 2019) defines a set of essential baseline ser-
vices and required behaviors (Fig. 2a) to facilitate system architects in their design 
of a robust safety-critical avionic system. Conforming with the ARINC rules enables 
multiple avionic applications of varying certification requirements, to execute with-
out interference, using logical containers called partitions.

The ARINC standard defines two main software abstractions for an IMA archi-
tecture: 1. 2. a standard core operating environment as the IMA Host and 3. the 
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APEX API interface between avionic applications and the IMA Host. The interface 
allows applications to communicate with their execution environment, which pro-
vides a standard set of system services (Spitzer et al. 2015).

Figure 2b illustrates the layered structure and software components of a repre-
sentative, ARINC-653 compliant, IMA system. System components are mapped to 
the corresponding list of mandatory services, which are extracted from the technical 
standard and summarized in Fig. 2a.

As per the ARINC specification, application partitions are assigned independent 
regions of system memory. These regions are protected by hardware mechanisms 
such as a Memory Management (or Protection) Unit. Partitions consist of independ-
ent text and data regions within memory and have a well-defined execution context 
and configuration attributes. A partition comprises a set of periodic and aperiodic 

Objec�ves 
. . 

Required Features/Characteris�cs 
Par��on ini�aliza�on by IMA host so
ware: {RTOS, Hypervisor or Microkernel} 
Sta�c configura�on of system  resources between par��ons: 

Par��on Management . Temporal par��oning of CPU: Predetermined non-preemp�ve cyclic 
scheduling (Major & Minor �me frames) . Spa�al par��oning: Memory and I/O devices 

. Process is the basic execu�on unit within a par��on 
Process Management . At-least one process per par��on managed by the par��on host so
ware . Priority-based preemp�ve process scheduling (periodic or aperiodic policy) 

. Interrupt handlers for hardware �mers Time Management . Hard Real-Time guarantees to real-�me applica�on processes 

Inter-Par��on 
. Unidirec�onal message channels with two types of end ports: 

Communica�on 
. Sampling/ Non-blocking ports (asynchronous fixed-length messaging) 

Intra-Par��on . Inter-process communica�on (IPC) mechanism: Shared memory buffers 
Communica�on . Synchroniza�on for shared resources of a par��on: Semaphores and events 

. Two part mechanism: . Fault monitoring module within the IMA host Health Monitor . Preemp�ve error handling process of highest priority within a par��on 
invoked by the monitoring module 

. Queueing/Blocking ports (synchronous variable-length messaging)

(a) (Part-1) Required Services and Goals.

(b) Reference software stack of an ARINC-653 compliant system. (Top-left) Temporal
partitioning schedule in ARINC-653.

Fig. 2  ARINC-653 avionic standard for IMA architectures
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processes or tasks. To draw an analogy with UNIX-like systems, an ARINC par-
tition refers to a UNIX process while an ARINC process corresponds to a UNIX 
thread running inside the process address space.

ARINC partitions execute in a non-preemptive periodic manner, at-least once 
every major cycle of the statically defined partition schedule. This is accomplished 
by allocating execution time windows, often called minor frames, to each par-
tition within a major time frame. When the minor frame terminates, the partition 
is preempted and the next partition in the schedule is selected for execution. The 
preempted partition can continue its execution in the next activation slot. An execut-
ing partition is allowed exclusive access to available hardware resources and runtime 
services during the duration of its minor time frame. A second level of fixed-priority 
preemptive scheduling is applied to the ARINC processes within each partition. The 
two-level hierarchical schedule thereby ensures strict temporal partitioning within 
the IMA platform.

The IMA host is responsible for partition initialization and configuration as well 
as system-wide run-time management. Process management and intra-partition 
communication between processes is delegated to software within individual parti-
tions. Communication between partitions is managed by Sampling and Queueing 
ports and channels. These provide explicit message transfer semantics for asynchro-
nous and synchronous communication, managed by the IMA host.

Overall, the ARINC standard aims to promote application portability and plat-
form (re-)configurability through a clear demarcation of boundaries between soft-
ware components and explicit definitions of inter- and intra-partition communica-
tion interfaces. Each ARINC abstraction layer within the reference stack of Fig. 2b 
renders specific services to the overall avionic system according to the assigned 
objective(s).

The APEX API decouples partitioning and multitasking, while exposing a stand-
ard interface for applications to access and interact with the IMA host services. This 
is intended to promote widespread adoption of IMA architectures across all avionic 
domains, beyond that of commercial aircraft.

Separation Kernels and partitioning hypervisors Depending on the target 
avionics domain and system’s requirements, the partitioning environment provided 
by the IMA host has historically been implemented within different abstraction lay-
ers of the system: user/application, (micro-)kernel (Buczyński et al. 2022; Delange 
2011; VanderLeest 2016), or hypervisor (Han and Jin 2011; Masmano et al. 2011; 
VanderLeest 2017).

A hypervisor provides logical isolation between hosted virtual machines (or guest 
operating systems (OSes)). Whereas consolidating hypervisors multiplex guests 
on a shared physical machine, FlyOS adopts a partitioning hypervisor approach to 
implement a separation kernel. This statically divides a pool of machine resources 
such as CPU cores, memory regions and I/O devices, between different guest virtual 
machines. Distinct resource domains thereby ensure strict isolation between guests.

In accordance with the separation kernel principles, guest partitions there-
fore appear indistinguishable from separate physical machines thus implement-
ing a distributed system-on-a-chip. Contrary to other ARINC compliant separa-
tion kernels  (Green Hills Software Inc 2010; Leiner et  al. 2007; Lynx Software 
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Technologies), FlyOS’s design, inspired from the Quest-V hypervisor  (Li et  al. 
2014a; West et al. 2016), avoids the need for hypervisor-level runtime resource man-
agement on behalf of the guests. This, in turn, minimizes the trusted code base of 
the hypervisor, enhancing safety and security. Since guests have direct access to a 
subset of the hardware, this greatly improves access latencies and hence enables 
real-time predictability for application execution. We measure task latencies for our 
prototype multicopter implementation in Sect. 3.

FlyOS guests are connected via explicitly defined synchronous and asynchronous 
communication channels for safe and predictable inter-partition communication. 
Unlike a federated architecture that connects separate physical machines via com-
munication bus networks (e.g., CAN, Ethernet, TSN and so forth), FlyOS provides 
secure shared memory communication between guests on the same host (Sinha and 
West 2021). A prototypical architecture enabled by FlyOS is shown in Fig. 3. The 
figure also shows a mapping of FlyOS services to ARINC-653 objectives enumer-
ated in Fig. 2a.

FlyOS distributes the task of the IMA host between the hypervisor and guest ker-
nel domains. The virtual machine monitor (VMM) of each guest in Fig. 3, supports 
a distilled subset of the core features required by ARINC-653: ∙ (1) spatial parti-
tioning of resources and guest initialization and ∙ (6) fault identification and recov-
ery. Spatial partitioning of processing cores, memory and I/O devices between guest 
OSes, essentially achieves partitioning in both time and space. FlyOS therefore com-
pletely voids the need for a partition schedule. Upon system initialization, guest par-
titions are created and subsets of machine physical resources are allocated to each, 
based on a static configuration. Once the setup is complete, control is transferred 
to the guest kernel. Thereafter, the VMM plays a more passive role in the run-time 
management of the guest. This lowers system’s run-time complexity and reduces the 
interface requirements between the hypervisor and application tasks to a simplified 
hypercall interface (Fig. 3).

Fig. 3  FlyOS’s architectural layout with ARINC-653 services mapped to corresponding software layers
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Benefits of a partitioning hypervisor FlyOS relies on the share-nothing prin-
ciple and introduces the concept of self-management for guest system partitions. 
Without active involvement of the monitor in the critical execution path of each vir-
tual machine, guest OSes becomes solely responsible for managing their assigned 
resources according to their respective kernel-level policies. For example, temporal 
partitioning of CPU cores is directly determined by the built-in scheduling policies 
of the guests. Similarly time and process management responsibilities are dedicated 
to individual guest kernels. This greatly reduces resource management overhead per 
guest, while improving flight responsiveness and timing predictability of avionic 
applications.

An important benefit of FlyOS’s approach is that its partitioning hypervisor 
avoids the need for two-level scheduling of traditional ARINC-653 architectures. 
Instead FlyOS achieves both temporal and spatial partitioning of CPU, memory and 
I/O resources by first partitioning platform resources spatially between guests and 
then partitioning the subsets of resources temporally within guests.

Criticality levels FlyOS defines separate criticality classes for mission, timing, 
safety and security, to address the design assurance levels (DAL) (Radio Technical 
Commission for Aeronautics (RTCA) Std 2011a, b; Spitzer 2006) required by certi-
fication authorities. Each guest is assigned a distinct criticality class or DAL to focus 
verification and validation efforts according to their respective requirements. This 
allows concurrent development of guest systems and modular upgrades of functions 
as well as incremental assurance (VanderLeest and Matthews 2021) to prove airwor-
thiness of the IMA system.

For our dual-partition prototype, we define the RTOS partition as timing- and 
safety-critical and Linux as mission-critical (or non-safety critical). Each guest, in 
turn, hosts application tasks that directly coincide with the partition’s criticality 
class. Applications are either hosted entirely within a partition or span across parti-
tions depending on their task criticality requirements. Each partition and its resident 
tasks are then assured at varying levels of rigor for predictability, safety and secu-
rity. Partitions can be configured as symmetric multi-processing (SMP) or asymmet-
ric multi-processing (AMP) guests based on the availability of platform resources. 
In accordance with ARINC-653, this enables flexible architectures for guests and 
overall system scalability.

Multicore systems The newest revision of ARINC-653 Part-1  (ARINC Std. 
653P1-5 2019; LYNX and AFuzion) extends applicability to multicore plat-
forms  (European Union Aviation Safety Agency (EASA) 2012; Federal Avia-
tion Administration 2017, 2016; Silva and Tatibana 2014), requiring each ARINC 
process to at least have a fixed processor core affinity. This capability is termed 
bound multi-processing (BMP). Due to its restrictive nature, BMP falls short when 
it comes to CPU utilization and efficient management of multicore IMA platforms. 
Part-2 (ARINC Std. 653P2-4 2019) of the standard therefore extends this capabil-
ity to optionally enable symmetric multi-processing. Thus a process can run on any 
core as well as change its task-to-core affinity at runtime based on statically defined 
configuration tables.

Upon initialization of a standard, ARINC-compliant IMA system, processes 
need to be statically assigned core affinities from amongst the allocated cores of 
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an ARINC partition  (Jo et  al. 2019). These assignments optionally change during 
normal operation mode based on the extended specification. ARINC partitions are 
also portable between different processors. In addition to task and application level 
portability  (Ye et  al. 2016) within an SMP guest, FlyOS extends the load-balanc-
ing capability across guest boundaries. This allows use of run-time process migra-
tion (Li et al. 2014b) between guests within agreed upon criticality domains.

FlyOS allows single- and multicore partitions to execute simultaneously on their 
respective subset of core(s). The tightly coupled multi-domain framework ensures 
bounded end-to-end worst-case execution times for task pipelines spanning multi-
ple cores or guest OSes. FlyOS mitigates micro-architectural resource conflicts by 
implementing cache and memory contention-aware policies. Section  3 presents 
quantified empirical evidence of predictable execution of parallel task pipelines 
spanning two guest domains in our prototype setup.

FlyOS enforces real-time schedulability of critical task pipelines  (West et  al. 
2012). Notwithstanding, efforts are underway to further investigate possible interfer-
ence channels  (Domas 2018; VanderLeest and Thompson 2020) that affect timing 
behavior (Andersson et al. 2022; Park et al. 2019).

Predictable I/O Interrupt-based I/O has the potential to compromise temporal 
partitioning  (VanderLeest 2017) between ARINC partitions, which time-share a 
CPU core. Methods such as slack scheduling (Beckert and Ernst 2015; Cronk; Par-
kinson 2018; Parkinson and Kinnan 2015) and credit-based reservations  (Beckert 
et al. 2017; VanderLeest 2014) have been proposed to achieve deterministic asyn-
chronous event handling for I/O requests. However, research in this domain primar-
ily relies on maintaining a partition schedule that is compliant with ARINC-653. 
Contrary to these approaches, FlyOS partitions I/O devices and their correspond-
ing hardware interrupt lines (IRQs) between individual guest OSes. This is achieved 
via device blacklisting in the PCI and ACPI configuration space during device 
enumeration.

Time critical I/O handling is dedicated to the Quest RTOS. Quest handles I/O 
events at the same priority as the requesting task in a time-budgeted manner (Danish 
et al. 2011; Missimer et al. 2016). Since device management is performed directly 
within each sandbox, interrupts are delivered directly to the sandbox kernel without 
monitor intervention. FlyOS therefore avoids monitor traps to handle interrupts. It 
also circumvents the need for a split driver model found in systems like Xen (Bar-
ham et al. 2003), which require a specialized guest domain for system-wide interrupt 
handling and distribution. FlyOS benefits from the increased performance of multi-
core platforms whilst ensuring safe isolation and accounting of I/O events.

Predictable communication The APEX interface defines partition communica-
tion mechanisms facilitated by the IMA host. These are based on synchronous and 
asynchronous message transfers with queuing and sampling ports respectively. In 
accordance with the standard, FlyOS defines an equivalent shared-memory commu-
nication library and corresponding shmcomm API  (Sinha and West 2021), which 
allows both synchronous and asynchronous message-passing semantics between 
guest partitions.

Our inter-partition communication mechanism implements low latency and 
high bandwidth channels between virtualized guest domains. Channels and their 
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corresponding end points are set up via shmcomm kernel modules within each 
guest. Channel creation requests are mediated by the kernel to the corresponding 
guest-local VMMs. The VMM uses a hardware virtualization feature of the plat-
form to create memory mappings per channel. Tasks in a remote guest connect to 
the channel using system-wide unique channel IDs. Once a channel is created, tasks 
in one partition communicate and interact with remote partitions without involve-
ment of the VMM or the kernel. This allows secure and predictable information flow 
across guest boundaries.

FlyOS implements blocking and non-blocking communication protocols using 
ring buffers and Simpson’s 4-slot mechanism (Simpson 1990), respectively. Simp-
son’s algorithm ensures data integrity during reads and writes for the single, most 
recent message data. Ring buffers on the other hand enable historical data to be 
maintained for as many slots as the size of the buffer.

Our blocking approach using ring buffers is based on pairwise communication 
between a producer and a consumer. Using shared variables that identify the IN 
(next slot to place data) and OUT (next slot to consume data) indices of the ring 
buffer enables the communication protocol to differentiate between buffer full and 
empty states. When the buffer is full, the producer will wait, while when the buffer 
is empty the consumer will wait. In our case, we implement a busy waiting mecha-
nism with the knowledge that producers and consumers will be vacated from their 
CPUs when they no longer have budgets to continue execution or the guest sched-
uler has selected other tasks. Blocking is avoided, however, by rate-matching the 
data producer and consumer tasks.

For intra-partition semantics of queues and buffers as well as shared access to 
resources within a single partition, FlyOS relies on the default inter-process com-
munication (IPC) mechanisms and synchronization primitives available within each 
respective guest kernel such as pipes, shared memory, mutexes and semaphores.

Fault management As mentioned earlier, FlyOS’s design allows fault manage-
ment across the system stack. A prototype of the hypervisor-based health moni-
toring subsystem for applications is presented in Sect. 2.4.3 along with an outline 
of our forthcoming research work for ensuring fault isolation at the partition-level 
(or sandbox-level in FlyOS parlance). As opposed to the contemporary hypervisor 
based approaches to IMA in the commercial and open-source sectors, FlyOS rep-
licates monitor functionality (Fig. 3) with a distinct monitor module for each sand-
box. The distributed design opens opportunities for 1. increased system availability 
in case of faults at the most privilege level of the IMA host, 2. modular redundancy 
against Byzantine faults and 3. functional diversity to avoid duplication of exploit-
able weaknesses within a single monitor  (Li et  al. 2014a; West et  al. 2016). The 
modular structure of the fault tolerance subsystem thus aligns with the health moni-
toring requirements specified by the ARINC standard.

In summary, FlyOS presents a novel space-time partitioning approach to IMA, 
which is on par with the strict isolation requirements of ARINC-653. FlyOS’s archi-
tecture distributes core system services of the IMA host between the VMMs and 
individual guest kernels. Each VMM operates at the highest privilege level of the 
platform with a minimal TCB. This reduces the cost of assurance of the hypervisor 
and allows reusable software modules between guests.
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FlyOS’s design paradigm for multicore IMA leverages robust partitioning mech-
anisms of separation kernels to implement predictable, safe and performance effi-
cient avionic systems. As such, it has the potential to impact the current architectural 
landscape of integrated modular avionics for the multicopter domain. A comparison 
with state-of-the-art implementations within this domain is provided in Sect. 5. In 
the next sections, we showcase our design in detail with a working prototype on a 
custom-built quadcopter featuring autonomous flight with real-time temporal char-
acteristics and a robust health monitoring subsystem.

2.3  System prototype

Figure 1 presents our proof-of-concept implementation in a dual-sandbox configura-
tion. The Quest real-time operating system (RTOS) hosts timing- and safety-critical 
flight control functionality alongside a legacy Yocto Linux system for high-level 
mission control. FlyOS’s separation kernel architecture allows a mutually benefi-
cial symbiotic relationship to be established between the two isolated sandboxes: 
the light-weight RTOS gains access to the pre-existing third-party libraries, run-
time frameworks, toolchains, device-drivers and various other legacy services, 
while the general-purpose system is empowered with hard real-time flight execution 
capabilities.

FlyOS’s execution begins with the Quest RTOS booting up as a standalone 
bare-metal system. The bootstrapping process proceeds to activate the hypervisor 
monitor logic baked within the core image. On instantiation, the monitor partitions 
hardware resources among the two guest domains based on boot-time configuration 
parameters. A snapshot instance of the Quest kernel along with the minimal monitor 
code base is replicated in a distinct non-overlapping physical memory region for the 
Linux guest sandbox. The kernel copy is then replaced with the Yocto Linux binary 
image, which is thereafter launched on its pre-assigned bootstrap processor.

Depending on the sandbox configuration, one instance of Quest kernel + VMM 
logic acts as a bootloader for each new guest OS. Both kernels are then allowed to 
independently proceed with their respective normal boot procedure eventually tran-
sitioning into user-space. This marks the completion of each sandbox’s initialization.

Our implementation targets multicore x86-based embedded flight computers with 
hardware-virtualization (VT-x) extensions (Adams and Agesen 2006). For the cur-
rent work, we utilize the quad-core Aero Compute Flight Hardware by Intel® (Intel). 
Processing cores and I/O devices of the platform are asymmetrically distributed 
between the two sandboxes.

FlyOS allows a configurable number of CPU cores to be partitioned among 
guests. For our example implementation, Linux is assigned one physical core. This 
greatly simplifies the use of Linux’s sched_deadline scheduling policy, and allows 
relatively easy enforcement of service guarantees for mission tasks with the included 
preempt-rt patch. In contrast, Quest is configured to work in SMP mode and uses a 
round-robin load-balancer to assign real-time flight control tasks between the three 
remaining processing cores.
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Our flight control software runs as a multithreaded application for Quest, taking 
advantage of the parallelism supported by this core assignment. Spare CPU capacity 
available to the RTOS supports the addition of future timing-critical tasks as well 
as non-linear control algorithms (Kamel et al. 2015) and communication protocols 
(e.g., DShot  (OscarLiang.com)) for more precise control of the copter. To ensure 
timing predictability for concurrently executing tasks, techniques are employed that 
handle both cache and bus contention (Ye et al. 2016).

In FlyOS, the inertial measurement unit (IMU), motors, electronic speed con-
trollers, and serial debugging ports are exclusively allocated to Quest. In contrast, 
Linux is given access to the USB host controller for the camera interface discussed 
in Sect. 2.4.2.

Linux and Quest independently manage their assigned resources using their 
respective guest scheduling policies in isolated execution environments. The mem-
ory resident monitor code in each kernel is only invoked at run-time, to set up inter-
sandbox communication channels and handle guest preemption timers. Such a timer 
is enabled for the most critical Quest sandbox, as part of FlyOS’s hypervisor-level 
fault-detection mechanism discussed in Sect. 2.4.3.

2.4  Avionic capabilities

2.4.1  Real‑time flight controller

For the example flight controller implementation, we take inspiration from our 
team’s previous work (Cheng et al. 2018; Farrukh and West 2020) on the popular 
open-source autopilot: Cleanflight  (Cleanflight Autopilot). Cleanflight’s vanilla 
flight control features a minimalist software stack targeted towards flight efficiency 
and functional robustness, reliability and performance. Control tasks are tightly cou-
pled in a linear closed feedback loop, which employs sensor data processing with 
attitude estimation to regulate motor speeds for tracking a target trajectory (Farrukh 
and West 2020). Differential angular velocities of the motors generate net rotational 
torques to adjust the roll, pitch and yaw attitude about the center-of-gravity of the 
multicopter.

Cleanflight’s responsive attitude maneuverability gives it a competitive edge 
over other open-source autopilots (Ardupilot Autopilot; Betaflight Autopilot; iNAV 
Autopilot; PX4 Autopilot). However, it is specifically tailored to execute as firmware 
on resource-constrained microcontrollers. Low-frequency single-core processing 
with limited memory restricts Cleanflight’s ability to implement complex controllers 
(e.g., model predictive control) or autonomous obstacle avoidance or object tracking 
missions.

We empower Cleanflight’s performance-critical flight control loop with autono-
mous functionality by retrofitting the native tasks to execute as real-time user-space 
threads within the Quest sandbox (Fig. 1). The main control components are identi-
fied and subsequently classified into flight safety and mission-critical task-brackets 
based on their importance to flight control functionality and corresponding conse-
quences on operational failure.
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Table  1 lists each required Cleanflight task, �i , with budget, Ci , and period Ti . 
These tasks are redefined with hard deadlines equal to their corresponding periods, 
for FlyOS. Sensor (imu) and actuator (motor) tasks are bound to kernel-level threads 
that handle real-time I/O. These threads read gyroscope and accelerometer data, and 
write pulse-width modulation (PWM) commands to the motors, respectively. Sens-
ing, processing and actuation tasks form pipelines (Cheng et al. 2018; Golchin et al. 
2018), along which data flows from inputs to outputs.

Quest uses a variant of rate-monotonic scheduling (RMS)  (Liu and Layland 
1973) algorithm by defining a virtual CPU (vCPU) abstraction as a schedulable 
entity (Danish et al. 2011) on top of a physical CPU (PCPU). Threads and their cor-
responding pipe wrappers are directly mapped to vCPUs, which are then mapped to 
PCPUs. This two-level scheduling hierarchy guarantees each task �i to execute for Ci 
time units every Ti when runnable (Mercer et al. 1993).

In accordance with RMS, vCPUs are assigned static priorities based on their 
time periods: highest priority is given to the smallest time period and vice versa. 
Quest executes interrupt service routines in a separate real-time thread context with 
a time period inherited from its user-level counterpart. This allows I/O interrupts 
to be handled at the correct priority of the task issuing the request thus enabling 
real-time management and deterministic accounting of CPU clock cycles for each 
device interrupt. The scheduling subsystem therefore guarantees temporal isolation 
between flight control threads executing on multiple cores.

Figure 4 shows the distribution of control functionality between Yocto Linux and 
Quest in our dual-sandbox setup. Timing and safety-critical control threads are allo-
cated to Quest while mission-critical functionality is mainly ported to Linux. For rx 
(Table 1), a setpoint generator (Process-1) in Linux communicates across an asyn-
chronous shared memory pipe buffer with a light-weight thread in the RTOS act-
ing as a receiver gateway. Similarly, a background logger thread (blackbox) receives 
flight data (Process-2) in Linux from the corresponding sender-stub in Quest. A 
FIFO circular-buffer transfers the time-ordered history of flight logs, which are 
saved to permanent file storage in Linux.

Asynchronous pipe buffers are implemented using Simpson’s four-slot algo-
rithm  (Rushby 2002; Simpson 1990), which ensures data freshness and integrity. 
The control loop needs to keep track of the most recently sampled sensor values and 
target trajectory updates. Pipe-buffers therefore allow accurate data-flow and low-
latency attitude control in response to the most up-to-date current and required state 
of the drone.

We identify two task pipelines within the main flight control loop: 1. intra-sand-
box Pipe-1: imu → motor and 2. inter-sandbox Pipe-2: rx → motor. Pipe-1 com-
prises 1. imu sampling and processing, 2. sensor fusion based on a complemen-
tary-filter (Madgwick et al. 2011; X-IO Technologies) for attitude estimation, 3. a 
pid+mixer that transforms the error between actual and target attitudes into control 
signals mixed with throttle, and 4. a motor thread that generates PWM waveforms 
for the multicopter’s motors.

Pipe-2 involves the mission task in Linux (Process-1), which computes target 
attitude and thrust set-points based on the application’s flight objective. The refer-
ence commands are then sent to the gateway receiver (rx), which forwards the roll, 
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pitch and yaw targets along the feed-forward path of the loop, shared with Pipe-1 
(refer to Fig.  4). FlyOS envisions a criticality-aware distribution of tasks among 
guest domains. Task pipelines are thus composed on the basis of each task’s role and 
importance in the perception, planning and control of the drone.

2.4.2  Autonomous vision subsystem

We implement vision navigation in Linux for our mission application. Linux sup-
ports a rich collection of USB video-class drivers for interfacing with hardware cam-
eras. Corresponding libraries and APIs provided by Video4Linux (V4L), OpenCV 
and CUDA toolkits enable efficient development and testing of autonomous percep-
tion applications using state-of-the-art image capture technology.

For autonomous mission control, we design a simple pattern recognition appli-
cation for face-image detection and tracking that relies on librealsense  (Intel) and 
OpenCV for capturing and processing camera images. We utilize a USB3.0 Intel 
RealSense (R200) (Intel) camera module, which features a 3D imaging system that 
is capable of providing color and depth video streams. Figure 5 depicts individual 
task components of our vision framework along with the intrinsic characteristics of 
the R200 camera. Algorithm 1 details our application loop from image frame cap-
ture to generation and communication of mission control commands (setpoints) to 
the flight controller executing in Quest.

Fig. 4  FlyOS’s software-distributed flight-control model with threaded tasks
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Algorithm 1 Image Detection and Tracking.
Require: Haar-classifier pre-trained XML file containing stage thresholds and filter weights:

haarcascades/haarcascade frontalface alt.xml
Require: < cv :: Rect > faces /*array to store detected face(s)*/
Require: rate {dPitch, dY aw} /*rates of change of command*/
1: async chan = create shared memory (async type)
2: ctx = r200 create context()
3: r200 enable stream(ctx, {color, depth})
4: while true do
5: /* Capture and retrieve image frame */
6: data = get raw frame data() /*for enabled image streams*/
7: frame = to openCV matrix(data) /*frame vector to matrix*/
8: {px0, py0} = { frame.cols

2 , frame.rows
2 } /*frame center*/

9: /* OpenCV: detect face */
10: cv::CascadeClassifier.detectMultiScale(frame,faces,

min=200×200,max=1000×1000)
11: /* Estimate distance offset and generate command */
12: {fxc, fyc} = faces[0].width

2 , faces[0].height
2 /*1st face’s center*/

13: dPitch = rate dPitch×(fyc - py0) /*pitch-up distance*/
14: dYaw = rate dY aw×(fxc - px0) /*yaw-right distance*/
15: /* command in correct format */
16: commandData[Roll,Pitch,Yaw, Throttle] = F({0, dPitch, dYaw, 0}) /*F(command) is

the conversion function specific to the flight controller*/
17: /* Write to shared memory */
18: write shared memory(async chan , commanData)
19: end while

OpenCV supports a ready-to-use face detection algorithm based on the Haar-fea-
ture cascade classifier  (Viola and Jones 2001) approach. Known for its speed and 
simplicity, it is one of the most popular algorithms still used today for frontal-face 
detection with high accuracy and image-scale invariance. We utilize OpenCV’s 

Fig. 5  FlyOS’s vision subsystem (Process-1) with the RealSense R200 Camera
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built-in repository of pre-trained parameters for the cascade classifier composed of 
22 total stages and a sliding window of 20× 20 pixels (px). An integrated classifier 
function (Line 10) detects faces in each frame captured by the color camera at run-
time and returns a bounding rectangle.

We calculate the center coordinates (Line 12) of the face to determine an offset 
distance from the frame center in 2D pixel coordinates. These are forwarded to a lin-
ear algorithm, which computes the required direction of movement for the multicop-
ter as well as the target set-points for the pitch and yaw rotational axes to minimize 
the offset and track the detected face (Lines 13–14).

Our algorithm enables configuration of rate of change of set-point commands in 
each axis of rotation ( rate_{dPitch, dYaw} ). This allows us to affect the sensitivity 
and precision of mission control per unit of error distance, which in turn impacts 
responsiveness of flight control to target commands. Data is converted to a compat-
ible RX format  (Line 16) for the gateway thread in Quest and sent across shared 
memory asynchronous pipe buffer (Line 18). For the Cleanflight autopilot, set-point 
values are packaged as SBUS (ROBOTmaker) protocol frames before transfer.

We use the depth stream to de-project the offset distance in pixels into a real-
world displacement of the face-image from the camera center, in meters. This allows 
us to convert between different coordinate systems, and log the multicopter’s angu-
lar movement against the ground truth trajectory of the image.

sched_deadline is used to schedule the vision process allowing mission com-
mands to be generated with sufficient predictability. Our design also caters for face 
occlusions for a limited time-horizon. We configure a threshold time-out value 
before the mission is aborted. This allows configurable tolerance against occasional 
occlusions.

We note that this work does not focus on performance comparisons between dif-
ferent real-time image-detection frameworks. Instead the OpenCV implementation 
serves as a model example of showcasing the autonomous capability and practical 
feasibility of FlyOS’s architecture. Mission tasks in Linux are able to effectively 
communicate commands to the flight controller tasks over a low latency inter-sand-
box channel interface. FlyOS therefore ensures predictable autonomous control with 
bounded worst-case end-to-end latencies. Section 3 validates FlyOS’s autonomous 
tracking capability.

2.4.3  Fault‑tolerance subsystem

FlyOS’s virtualized sandboxed architecture lends itself to support high-confidence 
avionic systems. The partitioning hypervisor prevents access to the separate mem-
ory spaces and resources assigned to remote guests. FlyOS’s distributed system-on-
a-chip design attempts to contain faults within separate sandboxes, similar to how 
federated architectures isolate faults in separate hardware. Our fault tolerance sub-
system enables: 

1. Application fault tolerance for failures within user-space applications: A func-
tional or timing based failure is detrimental to the safe operation of the multi-
copter if it directly affects the real-time and safety-critical behavior of the flight 
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control loop. FlyOS allows flight controller redundancy across different sandboxes 
and implements efficient controller hand-off mechanisms. In this work, we focus 
on faults within the critical motor task.

  FlyOS uses heartbeats to capture a class of functional and timing failures, 
which jeopardize the progress of critical tasks. For example, if the motor task fails 
to generate a heartbeat by a certain time, this could jeopardize the control of the 
drone. Loss or delay of a heartbeat triggers the activation of a failover controller 
to maintain flight.

2. Sandbox (guest) fault tolerance for failures impacting the entire guest OS domain: 
Such failures often involve kernel memory corruption or other types of malicious 
kernel attacks initiated by external non-certified third-party services. A local copy 
of the VMM in each guest sandbox allows for sandbox-level redundancy. The 
VMM is able to quarantine a malicious guest and even re-instantiate or duplicate 
an entire guest partition with its corresponding application stacks, to replace the 
corrupted guest instance. I/O device hand-off between sandboxes with replica-
coordination mechanisms is implementable in FlyOS’s monitor logic. Failover 
standbys will be activated while the original sandbox is recovered, thereby pro-
viding an online and effective way to handle such system-level faults. We reserve 
further discussion on this topic for future work.

We propose a unified fault-detection mechanism, which operates in the most-
secure mode (root-mode) of the system. The VMM keeps a runtime health-check of 
the critical tasks within its respective sandbox through timer-initiated guest preemp-
tions (VM-exits). x86 hardware-assisted virtualization timers called VMX-preemp-
tion timers are leveraged for this purpose. The timer operates at a frequency propor-
tional to the hardware time-stamp counter (TSC)  (OSDEV.org 2019) available to 
each core of the processor. This detection mechanism has the benefit to be agnostic 
to functional, event or timing related failures within the system.

Application task failures that compromise the correctness of real-time flight con-
trol are attributed to factors such as delayed mission commands, incorrect tuning of 
the PID controller, motor runaway or stale motor updates. Due to the closed loop 
nature of the flight control, it is possible for a fault originating in a single thread to 
propagate through the entire application. Fig. 6 enumerates the steps involved in the 
workflow from fault-detection to recovery for the dual-sandbox system.

The motor task is instrumented to generate periodic heartbeat messages (Step-1). 
A VMX-preemption timer is enabled within the VMM logic of the Quest sandbox. 
It counts down during the execution cycles of the guest, in non-root mode, based 
on a configured timeout value. This directly controls the fault-detection latency. On 
expiration, a low-cost VM-exit (Jiang 2016; Schildermans et al. 2021) is triggered 
causing a soft-trap to the hypervisor (Step-2). If the monitor observes a heartbeat 
message inconsistency, a system mode change is initiated (Step-3) following a dis-
tributed recovery response (Step-4 and 5). Consequently, the faulting flight con-
troller is marked as compromised (depicted in grey in Fig 6) and all corresponding 
threads terminated.

Two proxy real-time tasks are activated, to control the sensor (IMU) and actuator 
(motor) devices (Step-5). This retains predictable safety-critical I/O control within 
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Quest. The local monitor sends an inter-processor interrupt (IPI) to trigger the 
remote recovery pipeline, in parallel, within Linux (Step-4). A kernel module listens 
for the IPI and acknowledges receipt with an interrupt-handler routine (Step-4a).

Two userspace task pipelines (Step-4b) are then launched: 1. fast-loop response 
(pipe-fast), which pre-arms the backup flight controller (Linux port of vanilla 
Cleanflight) to transfer simple hover commands to the virtual device proxy inter-
faces in Quest, and 2. delayed response (pipe-delayed) employing the Linux mis-
sion task to initiate relatively more complex maneuvers such as radio over-ride to 
return the multicopter to base or force an emergency-land.

Table  2 shows a preliminary set of latency measurements for each step of the 
online recovery within Linux. The timing measurements incorporate processing, 
scheduling and transition delays, which may cause the drone to experience motor 
downtime. To avoid crashing, we activate a first-response (pipe-fast) recovery, 
which complements the delayed response.

To keep execution costs low, we ported vanilla Cleanflight as a backup-control-
ler supporting only the most critical functionality of the fast-loop. Asynchronous 

Fig. 6  Flight controller fault tolerance: detection and remote recovery

Table 2  Recovery path latencies for pipe-delayed in Linux

Tasks: Linux (Detection → Recovery) Min Average Max

(Step-4a) IPI RX: Kernel → Userspace(ms) 0.004 0.005 0.007
(Step-4b) IPI RX Userspace → Mission Process (ms) 24 43 81
(Step-4c) Mission Process → Backup-FC: RX (ms) 19 29 35
(Step-4d) Backup-FC: RX → Shared Memory (ms) 0.005 0.075 0.4
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communication channels between the failover controller and real-time device gate-
way threads ensure timely transfer of commands. Despite sched_deadline schedul-
ing optimizations, the overheads experienced by Linux indicate it is only really suit-
able as a temporary backup until the primary hard real-time controller is restored.

3  Evaluation

We evaluate FlyOS for three different scenarios: 1. Manual radio control with atti-
tude stabilization in the presence of an external disturbance, 2. Autonomous mis-
sion control with face-image detection and tracking, and 3. Failover flight control 
to recover from a critical actuator fault. We conduct hardware-in-the-loop (HIL) 
experiments and latency-benchmark simulations. Our testbed setup common to all 
HIL experiments is presented next.

3.1  Experimental setup

3.1.1  Hardware

Figure 7 shows our custom built S500 (500 mm) quadcopter mounted at the center of 
a 3-axis mechanical gyroscope, called the BirdCage (Farrukh and West 2020). The 

Fig. 7  BirdCage testbed for real-world experiments. The quadcopter motor configuration is enumerated 
at the bottom-right
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three orthogonal gimbal rings (annotated in the diagram) allow the drone to freely 
rotate about its roll, pitch and yaw axes thus enabling repeatable attitude adjustments 
in a controlled environment. We also mount a flat passive screen ( 40ε× 30ε ) in front 
of the drone to project images for vision-based tracking experiments.

The quadcopter’s frame is fitted in an X motor configuration for symmetrical 
mass distribution in all three rotation axes. This ensures 100% motor output perfor-
mance (OscarLiang.com 2017) with 4 EMAX 935kV brushless DC motors.

We host FlyOS on Intel’s purpose-built UAV developer kit featuring the Aero 
Compute Board and a complementary vision accessory kit  (Intel), which includes 
the RealSense R200 camera module.

Figure 8 shows a block diagram layout for the hardware modules integrated into 
the Aero Compute Board. This board features 4GB RAM, a quad-core Intel Atom 
x7-Z8750 processor, a GPIO expander, a 6 degrees-of-freedom BMI160 IMU (for 
3-axis gyroscope + accelerometer), and an Altera MAX10 FPGA. The processor 
nominally runs at 1.6GHz and supports Intel VT-x virtualization technology. The 
FPGA generates PWM motor signals from commands issued by the Atom processor. 
A RadioLink R9DS receiver connects to the GPIO expander to receive raw SBUS 
commands required for manual radio control. We deploy FlyOS on the Aero Com-
pute Board with the task distribution shown in  Fig. 4.

3.1.2  Performance metrics and settings

For the BirdCage experiments, we record attitude variation profiles of the quad-
copter over time in response to an appropriate stimulus. We measure the response 
time to achieve a steady-state target attitude with an error-band of ±0.5◦ (shown 

Fig. 8  Aero Compute Board with manual radio control setup
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as horizontal red lines in our plotted results). This allows us to account for data 
imprecision and any inherent imperfections in the drone hardware or positioning 
of the payload. We additionally compute error statistics for each flight, to quan-
tify the impact on the accuracy of flight control. Results are averaged over at least 
3 flights.

We design microbenchmarks to draw conclusions about the worst-case observed 
end-to-end (E2E) delays along critical flight control paths. We now present FlyOS’s 
performance results for each of the three flight scenarios described above.

3.2  Manual radio control

FlyOS is compared with vanilla Cleanflight (CF) firmware leveraging manual radio 
control capability. The mission process in FlyOS’s Linux sandbox reads raw SBUS 
radio input from the GPIO connector of the Aero Board and sends processed SBUS 
commands to the rx gateway thread in Quest.

3.2.1  Setup

Vanilla Cleanflight is flashed on an spracingf3 (Clifton 2015) flight microcontroller 
and installed on the drone. The microcontroller’s GPIO pinout provides a direct 
interface to the drone’s motors, as shown in the connection diagram in Fig. 9. Fea-
turing the stm32f3 processor, the hardware controller offers native support for the 
original flight software stack. A TX/RX pair is used to arm (activate) the drone, so 
that its ready to fly, and transfer throttle and attitude target commands to the auto-
pilot. Cleanflight is configured to run the same subset of critical flight control tasks 
as FlyOS (Sect. 2.4). The main loop-time for the fast-loop is set to the maximum 
supported frequency of 1000 Hz, which represents the best response time perfor-
mance (Farrukh and West 2020) on the microcontroller platform. PID constants for 
both FlyOS and Cleanflight autopilots are tuned to yield stable flight control behav-
ior with minimal response time.

Fig. 9  spracingf3 with manual radio control setup
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3.2.2  Results

For the BirdCage experiment, our steady-state target is set at a horizontal hover 
( 0◦ ± 0.5◦ ) in the Roll axis. A transient step-input attitude disturbance is introduced 
in the Roll-Right direction by displacing the corresponding axial ring of the Bird-
Cage by 15◦ . The quadcopter is then allowed to stabilize to target hover. Due to the 
symmetrical nature of the motor + mixer configuration, Roll axis proves sufficient to 
showcase the attitude correction behavior.

Figure  10 shows that FlyOS’s integrated architecture yields the same control 
integrity and functional correctness as the vanilla firmware. FlyOS, however exhib-
its a slightly better response time of 10.87 s compared to 11 s of Vanilla-CF despite 
running a more complex software stack involving two guest OS domains. Smaller 
peak-amplitude oscillations by FlyOS lead to lower mean error values reported in 
Table  3. FlyOS’s predictable task execution therefore exhibits higher accuracy of 
control with a timely and precise response from the motors. This manifests as lower 
magnitude of under- and over-shoots from the hover target.

Table 3  Error statistics of the 
flight profiles in Fig. 10

Autopilot Mean Absolute error RMSE

FlyOS 3.85◦ 5.18◦

Vanilla-CF: 1000Hz 4.93◦ 6.53◦

Fig. 10  Roll-Right attitude correction profile
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E2E control latency is reported in Fig. 11 for the two task pipelines (Pipe-1 
and Pipe-2) within FlyOS’s flight control loop (Refer to Fig. 4). Vanilla-CF laten-
cies provide a baseline reference. FlyOS performs 59% and 20% better for Pipe-1 
and Pipe-2, respectively, in the worst-case. This ensures low-latency responsive-
ness and expedited recovery from anomalous attitude shifts. FlyOS takes advan-
tage of the higher clock rate and powerful processing capabilities of embedded 
multicore platforms to ensure predictable flight behavior. Low E2E pipeline 
latencies are crucial for high frequency mission control to track a trajectory target 
in real-time.

We note that Vanilla-CF shows a limited variance between maximum and min-
imum latencies for both pipes as opposed to FlyOS. This is a direct consequence 
of Vanilla-CF’s fast control loop, which executes non-preemptively at the highest 
priority. The fast loop comprises a chain of sub-tasks that sample gyroscope data, 
execute PID control and update motor commands in tandem, as part of a single 
task. Additionally the best-effort non-real time scheduler does not guarantee task 
frequencies or deadlines. Tasks of lower priority exhibit significant deviations 
from their assigned execution frequencies and experience heavy activation jit-
ter (Farrukh and West 2020). This is directly influenced by the runtime frequency 
of the higher-priority fast-loop.

Contrary to this setup, the FlyOS port of Cleanflight tasks enforces strict dead-
lines and maintains fixed task execution frequencies and corresponding priorities 
as configured in Table  1. We also refactor the fast-loop as individual real-time 
threads in-order to improve E2E times. The task distribution shown in Fig. 4 was 
determined as the ideal task set to achieve lowest worst-case control latencies 
from amongst different possible configurations. Since tasks are preemptible and 
scheduled by a real-time scheduling policy, FlyOS pays the cost of predictability 
with increased variance. However, the E2E delay variance of a feasibly schedu-
lable sequence of FlyOS tasks is always bounded by the sum of all periods (Gol-
chin et  al. 2020). No such guarantee is provided for Vanilla-CF’s E2E pipeline 
execution.

Fig. 11  E2E latencies for two critical flight control paths within FlyOS. Vanilla-CF provides a reference 
for comparison
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3.3  Autonomous mission control

We now demonstrate how FlyOS supports autonomous mission control. Our sample 
mission requires the quadcopter to use face detection to locate and track a target 
image, which is projected onto a 2D screen (Fig. 7).

3.3.1  Setup

The RealSense R200 camera is mounted at the front of the quadcopter, such that the 
image plane1 center is aligned to the middle of the screen. The image plane is set 
to a resolution of 640 × 480 pixels, with the middle of the screen having the origin 
coordinates, x0 = 0, yo = 0.

The autonomous flight objective is threefold: 1. detect an image of a face of size 
10 × 10 pixels (target) on the screen, 2. determine its horizontal or vertical displace-
ment from the origin, and 3. adjust the drone’s pitch or yaw attitude in the direction 
of the target, to accurately align the center of the camera plane with the projected 
image. In case of a moving target, the aforementioned steps are repeated every time 
the target location updates.

We interpret a static image to be equivalent to a step input target signal, whereas 
a moving image corresponds to a ramp input signal to the flight controller. The 
BirdCage is placed at a fixed distance from the screen (Fig.  7), which we meas-
ure using the native depth stream from the IR-sensors in the Realsense module. We 
record updates in the horizontal (x) and vertical (y) displacement of the center of 
the image-plane over time in meters, as the drone rotates in the yaw and pitch axis, 
respectively. This distance is then converted into an angular rotation in degrees using 
trigonometry. A similar technique is used to record the ground truth for the target’s 
movement in a pre-programmed trajectory for the duration of each experiment.

3.3.2  Results

Pitch and Yaw attitude adjustment profiles in response to step- and ramp-input stim-
uli are shown in Figs. 12 and 13 respectively. Target image location is restricted to 
the positive y-axis of the screen for Pitch-Up experiments and positive x-axis for 
Yaw-Right experiments. Corresponding error and response time values are reported 
in Table 4. Steady-state alignment and root-mean-square tracking error is measured 
for statically positioned and moving targets respectively.

For step-profiles shown in Fig.  12, the drone eventually settles to an accurate 
steady-state, aligning with the image center within ±0.5◦ error threshold in both 
axes. The response times for pitch and yaw are also within 0.9 s of each other. The 
transient control response however, shows higher magnitudes of over- and under-
shoots and sharper corrections in the pitch axis compared to yaw’s smoother and 
heavily damped trace. Similarly, ramp profiles in Fig. 13 show that the drone is suc-
cessfully able to track the target with a root-mean-square error of 1.19◦ and 0.5◦ in 

1 We refer to image and camera plane interchangeably.
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pitch and yaw axis respectively. These fall within the boundary of the 10px by 10px 
target-image, which translates to the drone’s angular span of ±1.25◦ from the image 
center. We again observe that compared to pitch, yaw response exhibits a greater 
accuracy of control (lower RMSE) and smaller transient lag leading to a lower aver-
age response time.

Fig. 12  Detecting a static image: step-response in Pitch and Yaw axis

Fig. 13  Tracking a moving image: ramp-response in Pitch and Yaw axis

Table 4  Response time and error statistics for vision experiments

Parameters Static image Moving image

Pitch Yaw Pitch Yaw

Mean Steady-State (S.S) Error ( deg) 0.16 0.15 – –
Root Mean Square (RMS) of Total Error ( deg) – - 1.19 0.50
Avg. Response Time to reach Target Angle (s) 4.10 3.21 1.26 1.22
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This performance difference results from the hyper-sensitivity of the pitch axis to 
changes in airflow dynamics, ground-effect and external environmental forces like 
gravity  (Liszewski 2021; Sanchez-Cuevas et  al. 2017). As the quadcopter pitches 
up towards the target, downstream turbulence produced by the front two propellers 
interferes with the rotation of the rear propellers. This prop-wash effect is largely 
absent in yaw rotations with all four propellers operating in the same horizontal 
plane. We also note that the weight of the hardware payload, including the battery, is 
predominately distributed along the pitch axis. The resultant center-of-gravity vector 
therefore has a direct impact on pitch sensitivity to slight changes in motor thrusts. 
We thus observe a less damped transient response, which is possible to improve with 
a more finely tuned PID controller. Despite the differences in performance between 
the axes, FlyOS exhibits efficient, autonomous detection and tracking behavior for 
both static and moving targets, with reasonable accuracy and responsiveness.

FlyOS’s vision detection pipeline spans across Linux and Quest sandboxes. We 
measure round-trip latencies of the autonomous pipeline: Image detection & track-
ing mission application (Linux) → rx stub processing (Quest) → pid+mixer (Quest) 
→ motor Update (Quest)→ blackbox Logger (Linux). Average and worst-case 
end-to-end latencies of the entire workflow and constituent software modules are 
reported as stacked bar graphs in Fig. 14. Vision processing in Linux includes frame 
retrieval and processing delays, as well as object inference delays. Inter-sandbox 
communication delays and sched_deadline scheduling overheads are aggregated 
as “System Overheads”. Quest delays involve the execution times of flight control 
tasks along Pipe-2. These tasks read and process vision commands sent via shared 

Fig. 14  Round-trip times for vision pipeline with constituent task latencies
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memory, and generate corresponding PWM commands. On average, our vision 
application is able to maintain a frame processing rate of ≈ 30 fps (yellow bar). Even 
in the rare worst case, the processing rate still results in the drone tracing an accurate 
tracking trajectory as seen in the attitude profiles.

Although our application employs a relatively simple object detection algorithm, 
it serves as proof-of-concept for FlyOS’s ability to support real-time autonomous 
missions.

3.4  Comparison with Intel drone

To further motivate our architectural framework, we compare the communication 
overheads of FlyOS and the Intel Ready-to-Fly (Intel-RTF) (Intel; Intel) drone. The 
Intel-RTF drone runs the Ardupilot (Ardupilot Autopilot) flight controller hosted on 
the Pixhawk (DroneCode) companion microcontroller board.

3.4.1  Setup

The Intel-RTF drone is a pre-assembled quadcopter, which supports programma-
ble UAV applications and mission control. The platform is a dual-board (feder-
ated) solution to flight management. The main compute engine comprises the Aero 
Compute Board connected via an HSUART (high-speed universal asynchronous 
receiver-transmitter) serial bus to the Pixhawk flight controller hardware. Pixhawk 
offers native support for Ardupilot’s flight stack, which ships as a binary with the 
Intel-RTF drone. We flashed the Compute Board with the Ubuntu Linux 16.04 oper-
ating system, to develop and host our microbenchmark for measuring communica-
tion latencies.

Communication over the serial link (baud: 57600 bits per second) is managed by 
the MAVLink-router (MAVLink Router) soft-service within Linux. MAVLink com-
mands  (Ardupilot Autopilot; Dronecode Project) and the corresponding acknowl-
edgment (ACK) messages, packaged in frames of 263 Bytes in size, are transferred 
between high-level mission applications in Linux and Ardupilot’s control loop exe-
cuting on the Pixhawk. The control loop logic within the flight stack is split into 
two parts  (Bregu et al. 2016): critical flight controller tasks (termed the fast-loop) 
and non-critical application tasks, including MAVLink message retrieval, process-
ing and ACK generation. Priority is given to the fast-loop, which executes controller 
sub-tasks in a sequential manner. Remaining time of the control loop is then distrib-
uted between application tasks that are scheduled in a best-effort preemptive man-
ner. In contrast, all threads within FlyOS’s critical flight control loop, including rx 
processing, are managed by a real-time scheduler that guarantees each task’s ( �i ) 
execution time budget ( Ci time units) every time period ( Ti time units).

We measure the round-trip latencies of the MAVLink communication protocol 
using DroneKit’s python API  (3D Robotics Inc; 3DR), to send “set-yaw-attitude” 
commands to the flight controller and receive corresponding ACK messages. Simi-
larly for FlyOS, we use our vision-detector Yocto Linux application to transfer yaw 
commands to the flight controller executing in Quest, using asynchronous shared 
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memory communication. For every message sent, an ACK message is received, 
timed and logged on the Linux side.

3.4.2  Results

Table 5 presents our results averaged over 2000 transferred messages. As shown, the 
MAVLink protocol incurs a significant delay.

We also note that FlyOS’s shared memory inter-sandbox communication 
exhibits lower overhead latencies than inter-partition communication based on a 
data-distribution service (DDS) network as evaluated by Pérez et  al. (2017). The 
authors analyze an ARINC-653 compatible DDS communication link between two 
MaRTE  (OSRTOS) RTOS virtualized partitions, hosted by the XtratuM  (Crespo 
et  al. 2010) hypervisor on a multicore x86 platform. Their results show average 
round-trip latencies of 100 s of microseconds for simple data transfers. Such delays 
result from the ARINC-653 virtual network service, DDS middleware stack, hyper-
visor-based processing of interrupts and other operating system overheads.

With reduced data transfer costs, FlyOS allows mission tasks the flexibility to 
execute at high frequencies, while incurring minimal delays for communicating tar-
get commands to the flight controller. It thus ensures agile and responsive flight con-
trol with enhanced maneuverability.

3.5  Failover flight control

We next study the performance impact of the fault identification and failover subsys-
tem. We measure the latencies of Detection→Recovery pipelines within each guest 
OS. An artificial fault is injected within the motor-update (motor) thread, which 
sends stale commands to the motors after the flight controller has been operational 
under Normal mode for some time. This causes the heartbeat messages sent to the 
hypervisor to stall after the fault is encountered, resulting in a Fault-Tolerance sys-
tem mode switch.

We utilize vanilla Cleanflight’s fast-loop operating at 1000 Hz frequency (loop-
time=1 ms) as our ported failover controller.

The VMX-preemption timer for Quest’s bootstrap processor (BSP) core within 
the Aero Compute Board is configured to expire periodically at intervals of 2 ms 
(500 Hz). This defines our worst-case time bound for fault-detection. Each sand-
box’s corresponding recovery response is tracked in parallel based on the steps enu-
merated in Fig. 6. End-to-end delay statistics are presented in Fig. 15. The meas-
ured worst-case recovery time to reach the hover state in Quest is 0.77 ms. This 

Table 5  Communication 
overheads in federated & FlyOS 
architecture

Communication protocol Min Average Max

Asynchronous Shared Memory (ms) 0.0004 0.00052 0.0091
MAVlink on UART-serial (ms) 4.13 9.99 301.54
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represents the duration from the system mode change (Step-3 in Fig. 6) to the first 
set of valid hover commands sent to the motors (Step-5).

For Linux, the measured worst-case end-to-end recovery time for the longer pipe-
line (pipe-delayed) (Steps:4-4d) is 84ms. This is less than the total sum of the worst-
case constituent step latencies of the pipeline as shown in Table 2. The pipeline thus 
activates the emergency landing mode for the backup flight controller within the 
practical latency upper bound. Comparatively, the first response pipeline (pipe-fast) 
is activated with a maximum delay of 0.41 ms. This latency comprises the combined 
delays for Step-4a: 6.5μ s and Step-4d: 0.4 ms, and falls well within the upper bound 
latency of 1 ms (1000 Hz) for the fast-loop vanilla controller. PWM hover com-
mands are therefore sent to the shared memory channel with a lower latency than the 
pipe-delayed pipeline. The motor proxy task in Quest reads the asynchronous chan-
nel on activation and transfers processed commands from the Linux-side flight con-
troller to the motors. This allows the quadcopter to stabilize until emergency landing 
is activated at a later time.

A comparative primary-backup partitioned system built for helicopters by Jeong 
and Kim  (2013) reports the first response time to be 11 ms using a hardware-in-
the-loop simulation environment. This is at-least 90% slower than FlyOS’s pipe-fast 
failover hover response. A primary reason is the temporal multiplexing approach 
taken by the authors for scheduling virtualized primary and backup partitions onto 
shared hardware resources. FlyOS’s hypervisor allows each sandbox partition to 
directly and independently manage its local resources, thus allowing activation of 
parallel recovery pipelines. This leads to a more timely first response for a fault that 
originates in one or more critical flight control tasks.

Figure 16 shows the real-world attitude response profile of the quadcopter in 
the BirdCage. For normal mode operation, the primary flight controller within 
Quest tracks a static image along the x-axis of the screen with corresponding 
yaw-right rotations. We observe a failover response time of 2.51 s from when the 
motor fault is detected to the time when the quadcopter achieves a stable hover 
under the control of the backup Cleanflight. This experiment provides a practical 

Fig. 15  E2E latencies from fault detection to flight recovery within Quest (left) and Linux (right)
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latency bound to regain stable flight, when the quadcopter is subjected to physi-
cal constraints, considering factors such as the rotational inertia of the motors 
and rotor drag. We note that during the dynamic hand-off between the primary 
and backup flight controllers, the motors do not exhibit any visible downtime 
but only a change in the update frequency of corresponding angular velocities. 
This example fault-tolerance subsystem shows FlyOS to be capable of maintain-
ing safe failover flight control.

Our current implementation relies primarily on Linux to be the warm standby 
sandbox for failover flight control. In an effort to reduce the response time even 
further, we propose using an RTOS sandbox for real-time failover recovery. This 
would allow us to overcome the timing shortcomings of Linux, and implement a 
real-time safety-critical backup flight controller. Efforts are therefore underway 
to extend the dual-sandbox prototype implementation to a more general setting 
for supporting two or more RTOS sandboxes. Each sandbox would be qualified 
to act as a hot or cold standby to account for different fault scenarios.

In the next section we present different aspects of the FlyOS system as they 
relate to application and system level adaptability. In view of the flexible nature 
of the FlyOS framework, we also provide a design layout of a unique flight con-
troller that showcases dynamic switching between different levels of process and 
partition criticalities.

Fig. 16  Static image detection (Normal Mode) and Fault recovery hover stabilization (Fault-Tolerant 
Mode) with fault injection at 8.27 s
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4  Enhanced avionics: a case for adaptability and flexibility

Parallel flight controllers FlyOS’s sandboxes encapsulate entire virtual 
machines. These system-level partitions enable unique and customizable combi-
nations of software + hardware stacks to be statically configured and spawned by 
the hypervisor. Parallel partitions enable FlyOS to benefit from different flight 
control implementations, each in its own isolated container environment and each 
tuned to a specific flight profile or characteristic. Multiple safety-critical control-
ler algorithms can therefore co-exist as application-level logic. The trusted hyper-
visor has the ability to dynamically engage and disengage these pre-configured 
controllers depending on the intended flight behavior, environmental conditions 
and required mission objectives. We utilized this feature of FlyOS to enable fail-
over control in the presence of timing related faults in the primary Cleanflight 
flight controller. Details of our hypervisor-based fault tolerance mechanism were 
presented in Sect. 2.4.3.

FlyOS thus enhances the flexibility of the flight management system by ena-
bling low-latency dynamic switch-over capability between flight controllers. This 
aligns with ARINC’s multiple module schedules  (ARINC Std. 653P2-4 2019) 
capability that allows different schedules to be set up for application modules. 
The feature facilitates module initialization, recovery from component failure, as 
well as interoperability between distinct implementations of the application.

Adaptable task-to-core affinities FlyOS sandboxes are configurable with 
single- or multicore CPU partitions. For example, our dual-sandbox working 
prototype features a hybrid setup with single-core Linux and SMP Quest featur-
ing three cores. The real-time vCPU scheduler within Quest manages concur-
rent flight control tasks on the available cores of the quad-core aerial platform. 
Threads mapped to vCPUs are assigned to separate physical cores (PCPUs) based 
on their resource usage demands. Compute-bound tasks such as attitude and 
pid+mixer can be assigned to separate physical cores compared to those that are 
I/O-bound, such as motor and imu. Alternatively, a mix of compute- and I/O-
bound tasks can be assigned different cores to balance the computational load.

Initial task-to-core assignment decisions are informed by each task’s individ-
ual requirements and resource contention with other tasks. Tasks can be migrated 
between cores at runtime depending on the active load-balancing profile of the 
system such as per-core power consumption, cache occupancy characteristics or 
per-core utilization.

FlyOS supports the construction of task pipelines that read sensory inputs, pro-
cess corresponding data, and ultimately generate actuator output values. The sys-
tem attempts to decouple the execution of tasks within the same pipeline, using 
non-blocking or asynchronous inter-task communication abstractions. This allows 
tasks to be treated as independently schedulable entities, assigned to individual 
vCPUs, which are in turn mapped to PCPUs with available compute capacity to 
achieve a feasible schedule.

Adaptive criticality FlyOS adds a new dimension to system flexibility by sup-
porting criticality switching at the application and guest partition granularity. An 
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application can modify its runtime behavior by changing the criticality level, and 
hence the scheduling priorities, of the constituent tasks based on some trigger 
condition or system parameter. Criticality adaptation is also enabled at the parti-
tion level via multiple system modes per guest sandbox.

Multicopter autopilots often need to alter their behavior and reconfigure their 
mission objectives when operating in varying environmental conditions  (Farrukh 
and West 2020). To this end, we present the design of an environmentally-aware 
rate-adaptive flight controller application for the SMP Quest sandbox. This type 
of controller compensates for transient fluctuations in attitude relative to a target, 
caused by external disturbances such as wind.

Our purpose here is twofold. First, we highlight the ease with which avionic 
applications that originally target federated architectures can be redesigned with 
minimal effort and integrated to the FlyOS platform. We describe the integration of 
a dynamic flight controller, called smartflight (Farrukh and West 2020), into FlyOS. 
We then introduce two different flight mission modes and extend the task pipeline 
model of the critical flight control loop with task and sandbox criticality levels. We 
note that FlyOS opens opportunities for re-using applications and corresponding 
artifacts within isolated guest domains. FlyOS thereby ensures compatibility with 
legacy functions, while allowing application designs to take advantage of the multi-
core IMA architecture.

Secondly, we focus on criticality adaptability for the guest and hosted tasks under 
the influence of varying external conditions. This emphasizes the dynamic switch-
over capability between different safety-critical operating states for a sandbox sys-
tem. FlyOS thus has the potential to change the operational behavior of the flight 
management system. Dynamically changing design assurance levels of the applica-
tion and its operating environment presents an interesting challenge for certification 
of such system-level transformations (Annighoefer et al. 2019).

The design presented in Fig. 17 considers two separate task and sandbox critical-
ity levels (or modes): { lo and hi} . Each task �i , executes with either low ( LO ) or high 
( HI ) criticality. Task criticality ( Li ) provides a measure of functional importance, or 
consequence of failure, to the overall flight objective. hi criticality is assigned to 
tasks that must operate correctly within hard real-time constraints of their budget, Ci 
and period, Ti , to maintain flight. lo criticality tasks, on the other hand, have mini-
mal impact on the target flight behavior.

Similarly, a guest system is characterized with a sandbox criticality level, or 
operating mode, Lsb , depending on external factors such as wind. Lsb = LO for Calm 
(Normal) conditions, while a mode-switch to Lsb = HI occurs when adverse (e.g., 
Windy or Inclement) conditions occur. A switch is triggered as a direct consequence 
of attitude variations beyond a target threshold value in any axis of rotation: roll, 
pitch or yaw. Sandbox criticality therefore captures the influence of external distur-
bances on the internal state of the drone.

Two further flight modes, angle and rate, are used within the flight control-
ler sandbox. These directly correspond to: (1) attitude lock, and (2) fast acrobatic 
maneuver, missions respectively, and are configured for the set-point genera-
tor process  (Fig.  4) within Linux. The angle flight mode stabilizes the copter in 
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a steady-state (horizontal) hover attitude. In contrast, the rate mode enables more 
nimble maneuvers such as rolls, flips or in-flight object tracking.

The active flight mode depends on the mission requirements. We note that flight 
control relies primarily on the feedback loop (Pipes 2 & 3 in Fig. 17) of the flight 
controller, when the angle mode is active. Fusion of gyroscope (gyro Task) and 
accelerometer (accel Task) data from the IMU sensor, estimates the current orienta-
tion of the copter to achieve a level steady-state attitude (attitude Task). In contrast, 
rate mode leads to precise rotations by reading just the gyroscope sensor and the 
mission update commands (Pipes 1 & 2 in Fig. 17) for more finer adjustments to the 
copter’s angular velocity. This flight mode is useful in navigating close to a rough 
terrain or inside tight building spaces for search and rescue operations.

Collectively, the {flight, sandbox} mode pair dynamically determine task criti-
calities under normal and inclement weather conditions, as illustrated in Fig.  17. 
In accordance with smartflight, a task’s active criticality level allows us to directly 
associate one of the two rate-adaptation behaviors, rate increase ( ↑ ) or rate decrease 
( ↓ ) with each task: a hi criticality mode increases task rate, whereas lo criticality 
mode decreases the execution rate.

Our rate-adaptation policy is built upon a key insight developed in smartflight 
that the response time performance of a flight controller is directly related to the rate 
of execution of its control loop tasks. Under Calm conditions, the Quest sandbox and 
all the flight control tasks operate in lo mode. An erroneous change in the drone’s 
attitude state signals an adverse change in the external environment, which necessi-
tates a finer granularity of control. The sandbox therefore switches to hi mode. This 
results in triggering a subset of the most relevant flight control tasks to undergo a lo 
→ hi criticality transition based on the currently active flight mode. Consequently, 

Fig. 17  Adaptive flight controller design with dynamic task and sandbox criticalities under calm and 
inclement environmental conditions. angle and rate flight modes represent configurable mission objec-
tives
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all hi criticality tasks increase their rates of execution while other non-essential lo 
criticality tasks reduce their rates to dynamically compensate for the adverse effects 
of the environment.

lo mode tasks play a crucial role in protecting against potential system overloads 
in the hi sandbox mode, thus ensuring real-time schedulability for the entire task-
set across all the cores. This enables FlyOS to support more feasible tasks sched-
ules with a wider range of execution frequencies for critical flight control tasks. On 
return to normal conditions, the sandbox reverts back to lo mode, triggering the 
tasks to reset their rates to the original lo mode values. Table 6 summarizes the rela-
tionship between task periods for lo and hi criticality tasks in each sandbox mode.

The flight controller adapts to a changing environment using dynamic criticali-
ties and task frequency adjustments. This ensures predictable low-latency flight con-
trol across different mission objectives and flight modes. Our design allows smart-
flight to run as a multi-vCPU flight controller application across multiple cores of 
the Quest sandbox. FlyOS therefore empowers smartflight with additional compute 
flexibility, autonomous mission capabilities, and run-time criticality adaptability.

In summary, the FlyOS framework presents an opportunity to extend multicop-
ter flight characteristics with adaptive control capabilities for a centralized IMA 
platform.

5  Related work

Multicopter flight management relies primarily on federated architectures for func-
tional segregation. Hardware segregation of flight control stacks from mission appli-
cations is provided by Cube Autopilot’s co-processors (Cube Pilot), Intel’s Ready-
to-Fly (RTF) Drone (Brunner et al. 2019; Intel; Morales et al. 2020), Qualcomm’s 
digital signal processors (DSPs)   (Ardupilot; Qualcomm 2015, 2021), and various 
companion board solutions (Gu et al. 2018; Mejias et al. 2021; UAVOS). In each of 
these cases, timing and functional failures are isolated from tasks running on remote 
hardware.

Other researchers have focused on the security of mission components used in 
a federated flight management architecture. For example, Klein et  al.  (2018) use 
seL4  (VanderLeest 2018) to separate trusted from untrusted software in separate 
VMs of a mission computer that is distinct from the flight control hardware.

However, to reduce size, weight, power and cost (SWaP-C), the research com-
munity has recently considered a software-based integrated modular avionics (IMA) 

Table 6  Relationship between task time periods ( T
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approach to flight architectures (Boniol and Wiels 2014; Rushby 1999; Watkins and 
Walter 2007). IMA in UAVs takes its inspiration from the commercial aerospace 
domain led by Airbus (Ramsey 2007) and Boeing (Jensen 2005; Watkins 2006), to 
employ temporal and spatial partitioning techniques in compliance with ARINC-
653 software development standard.

Several mechanisms for an IMA host have emerged that target partitioning at 
either the application  (Kang et al. 2016), kernel  (Arcaro and de Oliveira 2015) or 
hypervisor level (VanderLeest and White 2015) of the consolidated flight manage-
ment system (Han and Jin 2014). LynxOS-178 (Leiner et al. 2007) is a small parti-
tioning kernel, which establishes encapsulated domains for applications, and sched-
ules them on shared hardware in dedicated timeslots. Jo et al. (2019) define an OS 
abstraction layer (OSAL) for Linux and RTEMS, along with an ARINC-653 core 
layer tailored for small civilian UAV applications.

Other kernel-level partitioning approaches include those from commercial ven-
dors such as VxWorks 653 (Ruan and Zhai 2014; Wind River Systems) and Green 
Hills’ Integrity-178B  (Software). Similarly AUTOBEST  (Zuepke et  al. 2015) and 
ARINC extended Linux  (Han and Jin 2012) are some of the example systems 
originating from the academic community. These systems extend existing OSes 
with ARINC-653 API support. In these approaches, user-level partitions are typi-
cally multiplexed on processing cores, resulting in frequent context switching, and 
potentially increased system overheads. Lack of temporal and spatial isolation in the 
shared interrupt handling subsystem for I/O devices results in unpredictable worst-
case execution times at the task level. This negatively impacts the timing predict-
ability of flight control, and responsiveness of mission control.

In contrast, research in virtualization technology for general avionics approached 
IMA’s partitioning requirement at a deeper system-level by employing consolidating 
hypervisors. Examples of such systems are the ARINC-653 Hypervisor  (Vander-
Leest 2010), MPSoC by DornerWorks (VanderLeest; VanderLeest and White 2015), 
XtratuM (Masmano et al. 2011) and Deos (Bloom and Sherrill 2020), to name just 
a few. These hypervisors allows multiple operating systems to run simultaneously 
as virtual machines or partitions on shared flight hardware. The hypervisor manages 
the entire IMA system and the hardware. As such, the hypervisor must be certified 
to the highest level of any of the hosted guests or applications, which may incur high 
certification costs.

In order to keep costs low, many of the aforementioned commercial vendors offer 
the hypervisor as a separate product to be used in conjunction with their flight certi-
fied RTOSes. These hypervisors are based on multiple independent levels of secu-
rity (MILS) (Alves-Foss et al. 2006) and employ the separation-kernel approach to 
partitioning. However, these systems do not support ARINC features but instead 
are tailored to meet security requirements. LynxSecure (LYNX Software Technol-
ogies 2015) and VxWorks MILS  (Wind River Systems) are two such proprietary 
systems, whose implementations are closed source. PikeOS  (SYSGO 2015) and 
AIR (Craveiro et al. 2009) are two micro-kernels with support for a virtualization 
layer responsible for partitioning of resources between hosted guest operating sys-
tems. Partitioning hypervisor based approaches to IMA however, have only been 



1 3

Real-Time Systems 

deployed either in spacecraft or aircraft applications (Almeida and Prochazka 2009; 
Muttillo et al. 2019; Windsor et al. 2011).

State-of-the-art multicopters, on the other hand, employ traditional hypervi-
sors like Xen  (VanderLeest 2010), VMware and VirtualBox  (Han and Jin 2011). 
These offer support to host Linux VMs extended with ARINC-653 standard APIs. 
Linux however lacks hard real-time support for I/O interrupt scheduling (Zhang and 
West 2006), which is needed for sensing, processing and actuation tasks in a flight 
controller.

Pérez and Gutiérrez (2017) and Pérez et al. 2017 integrate DDS (data distribu-
tion service) with ARINC-653’s port-based communication. The authors validate 
their approach by implementing RTOS-based publisher-subscriber partitions on the 
Xtratum (Crespo et al. 2010) hypervisor. The inter-partition communication is pre-
sented as a general avionic solution applicable to all IMA-based flight management 
systems.

Contrary to the current virtualization solutions, FlyOS presents a partitioning 
hypervisor approach tailored towards efficient flight control for multicopters. To the 
best of our knowledge, FlyOS is the first consolidated avionic system to statically 
partition hardware resources between guest sandboxes that remain under the direct 
management of their respective OS kernels at run-time. Consequently, the system 
incurs minimal operational overheads. FlyOS’s separation kernel thereby achieves 
spatial and temporal isolation in the context of Integrated Modular Avionics for mul-
ticopters. Additionally, mixed-criticality avionic services mapped to different sand-
boxes are able to communicate with low latencies using shared memory mapped 
into user-level address spaces.

6  Conclusions and future work

This paper presents FlyOS, an integrated modular avionics (IMA) framework for 
next-generation multicopter flight management systems. FlyOS employs a partition-
ing hypervisor to statically partition hardware resources among virtualized guest OS 
domains or sandboxes. Our prototype implementation hosts a built-in RTOS (Quest) 
with a legacy feature-rich Linux system in a dual-sandbox configuration. A real-time 
safety-critical flight controller ported to Quest communicates via shared memory 
with autonomous mission critical application services in Linux.

FlyOS guarantees temporal and spatial isolation of mixed-criticality avionic tasks 
consolidated onto a centralized flight platform. Hardware virtualization support is 
used to implement fault isolation, detection and recovery mechanisms for critical 
flight controller failures. An empirical evaluation validates the effectiveness of Fly-
OS’s approach for sustaining safe, predictable and efficient autonomous control of a 
real-world quadcopter in the presence of critical task failures.

FlyOS’s architecture opens up future possibilities to extend the system with addi-
tional avionic capabilities for an enriched flight solution. We intend to expand our 
fault-tolerance subsystem to handle kernel- and sandbox-level failures in a time-
bounded manner, while still maintaining the original flight performance. In addition 
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to redundant failover mechanisms, complete fault-recovery will also be considered. 
Using techniques described in Sect. 4, we also aim to evaluate real-time capabilities 
for adaptive flight control, and in-flight mission re-configurability. The goal in this 
case is to maintain flight stability in varied environmental conditions.
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