A Paravirtualized Android for Next Generation Interactive
Automotive Systems

Soham Sinha, Ahmad Golchin, Craig Einstein, Richard West
Department of Computer Science, Boston University
Boston, MA
{soham1, golchin, einstein, richwest}@cs.bu.edu

ABSTRACT

Android’s APIs, bluetooth support and smartphone integration
provide capabilities for user interaction with In-Vehicle Infotain-
ment (IVI) and vehicle control services. However, Android is not
developed to interface with automotive subsystems accessed via
CAN bus networks. This work proposes a new automotive system
based on our Quest-V partitioning hypervisor, which allows An-
droid to communicate and interact with timing and safety-critical
services managed by the Quest real-time OS (RTOS). Quest is used
to filter and receive messages from Android applications and to
interface with a car’s internal CAN bus in a timing predictable man-
ner. Android is then used to host IVI applications and provide a user
interface to real-time vehicle services. This system design allows
Android to leverage the timing guarantees of Quest, while securely
isolating critical hardware components and memory regions.

Quest-V hosts a paravirtualized Android 8.1 (Oreo) guest, which
required modification of 126 lines of kernel code. Secure shared
memory communication mechanisms between Android and a sepa-
rate Quest guest provide real-time I/O to CAN bus networks.

CCS CONCEPTS

« Computer systems organization — Real-time operating sys-
tems.

KEYWORDS

Machine Virtualization; Android; Real-Time; Automotive Systems

ACM Reference Format:

Soham Sinha, Ahmad Golchin, Craig Einstein, Richard West. 2020. A Paravir-
tualized Android for Next Generation Interactive Automotive Systems. In
Proceedings of the 21st International Workshop on Mobile Computing Systems
and Applications (HotMobile "20), March 3—4, 2020, Austin, TX, USA. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3376897.3377861

1 INTRODUCTION

Due to its popularity in the smartphone market and its familiar user
interface (UI), Android is a potentially suitable OS for interactive
automotive system services in next-generation cars. These services
include support for in-vehicle infotainment (IVI), and configuration

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMobile ’20, March 3—4, 2020, Austin, TX, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7116-2/20/03...$15.00
https://doi.org/10.1145/3376897.3377861

of advanced driver assistance systems (ADAS). IVI provides sup-
port for audio and video playback, navigation, climate control, and
smartphone integration, while ADAS services support features such
as lane departure warning or active cruise control. Android’s rich
application ecosystem makes developing interactive automotive
systems straightforward, with its well-developed communication
stacks such as bluetooth allowing smartphones to interface easily
with the system.

Currently, Android-based interactive automotive systems pro-
vide limited functionality such as the ability to play songs, and
make phone calls through a user’s smartphone. These features are
useful, but emerging systems seek to host more complex services
that manipulate the chassis, body and powertrain components of
an automotive system. For example, an interactive climate control
application requires access to a heating, ventilation, and air condi-
tion (HVAC) unit, and an ADAS service might affect the vehicle’s
brakes or powertrain components. Automotive systems require
careful isolation of critical components that affect vehicle dynam-
ics and safety from those that support user-interactive services.
For this reason, Android-based interactive services are not trusted
to directly communicate with other hardware components of the
vehicle.

Traditional automotive systems assign different functional com-
ponents to separate electronic control units (ECUs) connected via a
CAN bus network [9]. However, as the complexity of these systems
increases, hardware costs, wiring and packaging become prohibi-
tive. It is therefore desirable to enable interactive services to co-exist
on a shared hardware platform that has access to other components
that influence timing and safety critical control of the vehicle. The
management of a shared hardware platform requires a suitable OS
to control access to resources and provide software-based function-
ality that replaces traditional ECUs.

Companies such as Tesla are already using systems such as Linux
as the basis for IVI and auto pilot assistive vehicle control [11]. Un-
fortunately, a standalone Linux system does not provide sufficient
isolation or real-time capabilities to guarantee correct vehicle oper-
ation without significant code modifications. Timing and security
vulnerabilities limit the use of Linux in interactive automotive sys-
tems. As an example, security attacks have been observed on Tesla’s
Linux software stack, which remotely gain control over the vehicle’s
CAN network [8].

This work proposes a new design for interactive automotive sys-
tems in which two (or more) OS regimes, referred to as sandboxes,
are integrated in a safe and secure system architectural design. One
sandbox contains Android, suitable for user-interactive services,
while another features a specialized real-time OS that interacts with
timing and safety critical automotive components. The proposed

https://doi.org/10.1145/3376897.3377861
https://doi.org/10.1145/3376897.3377861

next generation system is based on the design of a partitioning
hypervisor called Quest-V [13], in which each sandbox hosts its
own guest OS and is assigned exclusive access to a subset of the
hardware resources of a single computational platform. Each guest
OS independently manages the resources assigned to it and has the
ability to communicate with other guests running on the platform
if needed. The two OSs used in this architecture are the Android
OS and Quest, a real-time OS (RTOS) [3].

In-Vehicle Infotainment
+ ADAS UI

Instrument Cluster

HW Adapter
HDMI
Y
(" Yocto Linux Android
Quest Quest
Communication Communication
k] Kernel Plugi Kernel Plugi B
2 ernel Plugin ernel Plugin g
s P
N N
S5 5
Quest RTOS Quest RTOS
‘ USB3-CAN USB3-CAN
Stack Stack

A

2+ Channel Kvaser
USB-to-CAN Adapter

A A Ly
. =
% A

Figure 1: High-level Interactive Automotive System Design

2+ Channel Kvaser
USB-to-CAN Adapter

A A

The right-hand side of Figure 1 shows the use of Android and
Quest in an interactive automotive system currently under devel-
opment. The left-hand side of this figure also shows a Quest-V
system running on a separate machine, hosting both Quest and
Yocto Linux for use with instrument cluster (IC) features, including
a speedometer, battery meter and other indicator readings. For this
paper, we focus on the system development comprising Android
and Quest, as the left-side of Figure 1 is largely complete.

Our current prototype system has been developed on x86-based
Up Squared Apollo Lake platforms, similar to those used in Tesla’s
main computer units (MCUs). We have a fully operational software-
based instrument cluster, developed as a Qt application for Yocto
Linux. We are now in the process of developing IVI and ADAS sup-
port for Android, which has been paravirtualized to run on Quest-V.
Secure and timing-predictable communication mechanisms have
been implemented in Quest-V to allow Android to safely and pre-
dictably communicate with Quest.

In a multicore machine, Android is given access to one or more
cores, along with hardware resources such as an HDMI display,
bluetooth and wireless networks. The other cores are allocated to

Quest, which accesses a serial port for logging and a USB host con-
troller to interface with the CAN buses. Thus, Quest is given access
to, and can communicate with, the hardware features of the vehicle
such as the HVAC unit through a USB-CAN interface. Android
communicates with Quest via a secure shared memory channel
to access timing and safety critical CAN interfaces. This allows
Android applications to manipulate HVAC settings and advanced
driver assistance features.

In this system architecture, Quest exclusively manages and com-
municates with the vehicle’s CAN controllers. Thus, automotive
manufacturers only need to develop for and maintain the RTOS.
The engineers who have exclusive knowledge of the vehicle’s in-
ternal components are able to develop for their platform in an
environment that is simpler than Linux and also offers real-time
capabilities, which are crucial for the vehicle to operate as expected.

The IVI and ADAS applications are supported in Android. Since
the critical hardware components of the vehicle will not be exposed
to Android, the OS is maintainable by a collaboration between
a specialized group of external developers and a few insider sys-
tem developers in the vehicle manufacturing company, to develop
compatible interfaces. There are already such alliances between
companies like GENIVI [4], which develop standards and reference
implementations of the IVI system. This work describes the de-
sign of an interactive automotive system that supports modular
automotive system software development.

For this paper, Android 8.1 (Oreo) has been paravirtualized for
use with the Quest-V partitioning hypervisor, with just 126 lines of
changes to the system kernel. An IVI application developed by a
partnering professional company runs in the paravirtualized An-
droid. For the rest of the paper, the design of the right-hand side
of Figure 1 is discussed. The integration of Android into the inter-
active automotive system is detailed, and promising preliminary
evaluations are presented that show the timing predictable behavior
of the approach.

2 DESIGN

Our interactive automotive system uses Android as the basis for
next-generation IVI applications and ADAS user-interface control.
Our approach supports the co-existence of the Quest RTOS with
Android, to manage timing-critical components of the vehicle. For
example, an ADAS torque vectoring and traction control service
configured for use on wet, dry, or snow-covered roads, must manage
updates to wheel torques within specific time bounds to prevent the
vehicle skidding out of control. While we want real-time control
to be handled by suitably predictable services, the interface to
configure ADAS settings will be exposed to Android.

The Quest-V partitioning hypervisor supports the co-existence
of Android and Quest, with real-time communication between each
guest managed by secure shared memory channels. Thus, Android
is empowered with real-time capabilities afforded by Quest, and
Quest is empowered with improved user-interactivity capabilities
provided by Android. We now describe the design of our system in
further detail, beginning with the partitioning hypervisor.

2.1 Quest-V Partitioning Hypervisor

Figure 2 shows a diagram of the Quest-V partitioning hypervisor,
configured for the IVI system. Quest-V is implemented for the x86

architecture and statically partitions the hardware resources of a
physical platform amongst each guest OS. This resource assignment
makes use of hardware-assisted virtualization techniques, which
isolate guest operating systems into distinct sandboxes. Quest-V
uses the Quest RTOS to initialize the system and allocate separate
cores, memory regions, and I/O devices to the guest operating
systems at boot time. Unlike traditional hypervisors such as Xen [2],
there is no multiplexing of resources or device sharing. This allows
each guest OS to manage its own set of hardware resources and
enforce its own scheduling policies. As the hypervisor does not
perform runtime resource management to share hardware amongst
guests its trusted code base is minimized.

/

, D —
(\ ' | User Interface and ||
Apps
Java API

4

Real-time
Control Tasks & - pid
Sensor Data Native Android || €
Processing C/C++ Runtime
Libraries
s B
Hardware Abstraction
L Layer

Android Linux Kernel

Shared and
VMM
(ring -1)

Quest Kernel

Memory Drivers
(ring 0)

[Core 2 })
[Memy) £
[Bluetooth J(WiFi] £
[

]
([usBCAN]| \(Touchscreen Display]|
A > AN 4

Figure 2: Design of the Quest-V Automotive System

Each sandbox in Quest-V includes a thin VMM layer which
resides between the guest and the hardware. This layer effectively
operates in ring -1 according to the x86 architectural definition (root,
ring 0). The VMM layer is designed with a philosophy of minimal
intervention with the guests. Interventions only occur when a
guest OS attempts to access an out-of-range memory address, or
attempts to execute some privileged instruction. In these cases, a
trap is sent to, and handled by, the VMM. The guests in Quest-V
operate in ring 0 (non-root, ring 0) and have been made aware
that they are operating in a virtualized environment. To allow this
awareness, each guest must be paravirtualized. Section 3 describes
the paravirtualization of Android.

For the IVI system, Quest-V hosts the Quest RTOS and Android
OS on physically separate cores. USB and serial ports are exclusively
allocated to Quest, and the remaining I/O devices are allocated to
Android. To receive information via USB, Android must communi-
cate with Quest through an explicit shared memory channel. A set
of remote procedure calls (RPCs) have been implemented to allow
Quest to exchange information with other guests. A Linux kernel
module runs in Android to facilitate these RPCs.

2.2 Advantages

The Quest-V architecture provides unique advantages to the IVI
system, which are crucial to building a secure, safe, and predictable
system.

2.2.1 Real-time I/O for Android Apps. In spite of being a non real-
time OS, Android is able to leverage the real-time capabilities of
Quest to interface with the timing critical components of a vehicle.
/O data is exchanged with Android applications without the need
to use traditional socket-based interfaces such as Ethernet. More-
over, SCHED_DEADLINE scheduling within the Linux kernel of
Android enables data exchanges with Quest to perform predictably.
This approach removes interference from device interrupts that are
managed in real-time by Quest. Details of this implementation are
given in Section 4.

2.2.2 Isolated I/O memory space for sensitive devices. The USB-
CAN interface is timing and safety-critical in automotive systems.
The injection of a malicious packet onto the CAN bus has potentially
devastating effects, dictating the need for secure access to this
network. Although malicious packet insertions must be prevented,
the IVI system must still be able to read from and write to this bus
network to receive data and control the components of a vehicle
such as the HVAC unit.

The isolated sandboxes in Quest-V prevent unauthorized access
to critical I/O devices by guests such as Android. In the IVI sys-
tem, the USB-CAN device is assigned to Quest and is inaccessible
to Android. RPC requests from Android to Quest traverse secure
shared memory channels enforced by extended page tables (EPTs)
managed by the Quest-V hypervisor. Quest additionally filters re-
quests to ensure any malfunction or vulnerability in Android will
be contained within its sandbox.

2.2.3 Flexibility in System Software Development. If Android is
used to interface directly with an automotive system’s electronic
control units (ECUs) through the CAN bus network, it ideally
needs to be independently maintained by automotive manufac-
turers. However, these manufacturers may not have the expertise
to develop and maintain a large and complex codebase like Android.

Using Quest to interface with the ECUs allows vehicle manufac-
turers to focus development and maintenance on a smaller, special-
ized RTOS that manages critical automotive subsystem components.
The Quest RTOS is able to consolidate the real-time functional re-
quirements traditionally managed by separate electronic control
units (ECUs) within different process address spaces. Additionally,
vehicle manufactures may not want to expose the details of their de-
vices drivers for safety reasons, which would be required by a GPL
licensed OS like Linux. Thus, it is beneficial for these manufacturers
to develop in a separate OS in which they have the flexibility to
apply their own safety and security policies. The only Android de-
velopment that is needed is the inclusion of a Linux kernel module
to handle the RPCs to and from Quest.

3 IMPLEMENTATION

The boot logic of Quest-V assigns a virtual machine monitor (VMM)
to each sandbox, which is not accessible by the other sandboxes.
As VMMs are not involved in runtime resource management their
codebase fits within a 4KB page, although additional space is needed

for EPTs (e.g., up to 24KB for 4GB address spaces). Using Intel’s
VT-x features, each monitor establishes one or more virtual ma-
chine control structures (VMCSs) per sandbox. Each monitor then
bootstraps its respective guest virtual machine and sends the sand-
box configuration parameters required for paravirtualization to the
respective guest kernels at boot time.

Through the configuration parameters of Quest-V, a tuple con-
taining the base and limit of host physical memory (HPM) must be
specified for each sandbox. Each sandbox monitor relocates its guest
in HPM according to the specified base address. Extended page ta-
ble (EPT) entries grant guests exclusive access to specific memory
regions, while safeguarding the monitor logic. The monitors also
identity-map a pool of shared memory pages for inter-sandbox
communication. Section 4 provides further details on the design of
the shared memory pool. Identity-mapped MMIO regions are used
by the guest kernels to manage their assigned devices.

The Android kernel has been paravirtualized to compensate for
the HPM base offset when a physical address is needed for DMA-
enabled devices. This avoids implementing VMM drivers to support
IOMMU technologies, such as Intel’s VT-d for those devices. As the
code size of each VMM is minimized, this helps enforce heightened
security and simplifies formal verification.

Device partitioning is accomplished by interposing on ACPI
configuration and PCI bus enumeration, thereby ensuring VMexits
into a guest’s corresponding VMM to check whether the device is
blacklisted or not. Each guest’s monitor will nullify their guest’s
access to a device or IRQ if they are not assigned to that guest.
Challenges. Quest-V attempts to eliminate as many invocations
of the hypervisor as possible. However, during development there
were several situations where VMexits arise through a guest’s use of
hardware-specific features. For example, VMexits were encountered
through a guest running a graphics-accelerated OpenGL instrument
cluster application. Such exits into the monitor occurred as a re-
sult of not granting the guests use of extended features related to
advanced vector extensions. As a result, the VMCS control bitmap
was updated to avoid exiting into the Quest-V monitor by all valid
attempts by a guest to access the hardware to which it is assigned.

Physical address extensions (PAE) are also supported by An-
droid on Quest-V. Although our monitor code is 32-bit, PAE allows
Android to occupy more RAM (currently a 52-bit address space),
which is beneficial for its memory-consuming Java applications.

4 REAL-TIME I/0 FOR ANDROID

In Quest, every real-time task has a budget, C, determined by its
worst-case execution time, and a period, T. Quest implements a
static priority rate-monotonic scheduling (RMS) algorithm with
a sporadic server, to guarantee a task or software thread receives
at least C amount of execution time every T. Per the RMS policy,
Quest assigns the highest priority level to the task with the smallest
period.

Quest ensures that temporal guarantees of real-time tasks are
not violated by interrupts from I/O devices. Quest handles an I/O
interrupt with a schedulable thread at its proper priority level. In
general, device interrupts are generated on behalf of tasks issuing
I/O requests. Thus, an interrupt must be handled at the same priority
level as the waiting task.

Quest SB Android SB
4

User App Channel [User interface & Apps }
(+libshm) m A, Pages - —
A] I‘ Native App/Service
a < R (+libshm)
Ring 3 o o % S
Ring 0 = . ‘Q i shmd E J
Kernel ¥ - T
/’ Info Page + Ring3 :i2
o g A Ring 0 |
Kernel
2 Subsystem gmem
iy module
Ring -1 = Ring -1 ig-
= i
.............. -
Quest-V Monitor Quest-V Monitor|

‘ = =» Data | we Control ‘

Figure 3: Inter-Sandbox Communication in Quest-V

Each interrupt handler is divided into two parts: a top-half and
a bottom-half. In Quest, the top-half handler is only used to ac-
knowledge an interrupt, and to determine which task is waiting for
the I/O device. Quest then schedules the bottom-half handler as a
separate thread at the same priority level as the waiting task.

As RMS determines a task’s priority by its period, T, the bottom-
half handler (BH) thread is assigned the same period as the task it
serves. The budget of the BH thread is derived from the I/O device
class and the waiting task’s budget. All I/O handling occurs in the
context of the BH thread.

4.1 Extending Real-time I/O to Android

A shared memory region is established between Quest and Android
during the booting of the system. A Linux kernel module, gmem,
mediates requests to map and unmap inter-sandbox communication
channels in this shared region. A service, shmd, has been developed
to manage the channels between sandboxes. In Quest, the inter-
sandbox messaging (ISBM) subsystem implements the functionality
in gmem and shmd. Once a channel is created between the two guests,
applications in different sandboxes communicate without invoking
system calls or VMexits. User applications use an API provided by
libshm, to read from or write to these channels for asynchronous
or synchronous communication. Figure 3 shows the tightly-coupled
inter-sandbox communication mechanism. The listing below shows
the API provided by 1ibshm used to construct application-specific
remote procedure calls spanning different sandboxes.

// VSHM management routines
int vshm_init (void);
void vshm_destroy (void);

// Asynchronous (4-slot) communication routines

int mk_vshm_async_ch(vshm_async_t* vac, u32 vshm_key,
u32 elem_sz, u32 sandboxes, u32 flags);

void vshm_async_write(vshm_async_tx vac, voidx item);

void vshm_async_read (vshm_async_tx vac, voidx item);

// Synchronous (Ring Buffer) communication routines
int mk_vshm_sync_ch(vshm_sync_t* vcb, u32 vshm_key,
u32 buf_sz, u32 elem_sz, u32 sandboxes, u32 flags);
int vshm_sync_insert(vshm_sync_t* vcb, void* item);
int vshm_sync_remove(vshm_sync_t* vcb, void* item);

Currently, the 1ibshm API works for C-language applications.
The APl is being ported to a Java library with a Java Native Interface
for the IVI and other Android applications. In addition, Android’s

Binder IPC mechanism is being modified to provide real-time no-
tifications to Android applications. The shared memory channel
communication will be integrated with the Binder IPC mechanism
to deliver real-time I/O from Quest to Android.

5 EVALUATION

We prototyped our system on an Up Squared Board, featuring an
Intel Apollo Lake Pentium N4200 processor. A similar Apollo Lake
Atom E3800 is used in Tesla’s MCUs for its electric vehicles. The UP
Squared’s features are listed in Table 1. The board has compact size,
low power, ample processing capacity and I/O capabilities befitting
modern interactive automotive systems.

Table 1: Up Squared Board Specifications

Processor Intel Pentium N4200 (< 2.5GHz)

RAM 2 GB

eMMC Storage 32 GB

Display and UI HDMI and DisplayPort

CAN Connector 3 USB3.0 ports

Serial /O 2 UART ports

Network 1 WiFi card and 2 Gigabyte Ethernet ports
Power 5V, 4A-6A

Dimension 85.6 mm X 90 mm

5.1 System and Apps Startup Time

The first set of experiments investigate whether the paravirtualiza-
tion of Android has any significant effect on either Android or an
IVI app startup time. The startup time is an important factor for
the end-users of an IVI system. In our system, the IVI app automat-
ically starts after Android is booted. Thus, the time to launch the
IVI application is also measured.

The average over five boots is presented. The Quest-V paravir-
tualized Android took 23.7 seconds to boot. The IVI application
launched in 59.2 seconds from the powering on of the platform. In
comparison, a vanilla Android took 16.6 seconds to boot, and the
IVI app starts in 49 seconds from power on. The extra time to boot
the paravirtualized Android is the time the Quest RTOS takes to
boot itself before executing the boot logic of Android. The overhead
of the Android startup time is expected to be further reduced in
this IVI system as debugging messages from Quest are still being
sent to a serial port to ease development.

It is important to note that launching the IVI app takes roughly
the same amount of time after Android is booted (35.5 seconds
for the paravirtualized Android and 32.4 seconds for the vanilla
Android). The minimal number of VMexits in the paravirtualized
Android is the reason behind the similarity between the perfor-
mance of the vanilla and paravirtualized Android for the IVI app
startup. The performance of the Android application after boot time
will be measured in future experiments.

5.2 Real-time I/0 Performance

Aside from startup times, we also show how Quest-V is able to
mediate real-time I/O required by ADAS services. Part of these
ADAS services, including the user interface to control features such
as lane departure warnings and vehicle collision avoidance, are
implemented in Android. A five-channel Kvaser USBCan Pro 5xHS
CAN bus interface is connected to our Up Squared via USB 3.0. A
vehicle’s CAN traffic, such as chassis and powertrain messaging, is

simulated by connecting Woodward MotoHawk ECM5634-70 ECUs
to channels 1-3. For performance measurements, channels 4-5 were
replaced with Arduino UNOs, but only CAN4 measurements are
reported due to space constraints.

In the experiment, the latency and throughput of CAN messages
being read from CAN4, processed by an application, and then fi-
nally written back to the same channel are measured. A USB-CAN
driver, called mhydra, facilitates the Kvaser USBCan scatter-gather
functionality. Two processes, CanRead and CanWrite read from
and write to I/O threads. A ProcData application representative
of an ADAS service then processes the CAN data. Each of these
tasks have specific budgets and periods. The chain of tasks along
with their budgets and periods (ms, ms) shown inside parentheses
are arranged as follows: mhydra_rx (0.2, 1) — CanRead (0.1, 2) —
ProcData (0.2, 2) — CanWrite (0.1, 2) — mhydra_tx (0.2, 1).

We compare the real-time I/O performance of a standalone An-
droid system to a Quest-V system hosting both Android and Quest.
In the latter case, an xHCI USB bottom half handler thread executes
in Quest to pre- and post-process data before and after it traverses
the above chain of tasks. In the standalone Android system, the
xHCI handler runs within its Linux kernel. This handler processes
USB operations resulting from host controller interrupts, including
the wakeup of other threads waiting on completion of I/O transac-
tions. USB bottom half processing is limited to 10% CPU utilization
within a service period equivalent to that of the mhydra thread,
according to the description in Section 4. The aim is to guarantee
end-to-end I/O latencies of less than 10ms, required by modern vehi-
cles to adapt wheel torque and maneuver quickly enough according
to ADAS functionality.

For Quest-V, we focus on communication between Android’s
Linux kernel and Quest. This is because once an ADAS service
has been activated by a user it no longer needs to communicate in
real-time with the user interface. For a standalone Android system,
we focus on real-time I/O between the USB-CAN interface and its
Linux kernel.

For the Quest-V setup, only the ProcData task runs in Android,
while all other tasks run in Quest. For the standalone Android
system, ProcData is run on one core and all others are run on
another core. In both cases, background tasks compete for the same
CPU core used by ProcData.

®
=

Latency (ms)
I)i,

o

e

Quest-V Android

Quest-V Android

(a) Asynchronous (b) Synchronous

Figure 4: Average I/0 Latency (min-max as error bars)

Figure 4 shows that the average latency for the CAN messages
are much lower in Quest-V than in standalone Android. With asyn-
chronous communication, a four-slot [10] buffer is used as part of
Quest-V’s shared memory communication between Android and

Quest. This is based on Simpson’s protocol that guarantees fresh-
ness and integrity of data but not necessarily loss-free communica-
tion. This is appropriate for sensor data processing, where recent
readings are more important than stale values. In contrast, syn-
chronous communication requires loss-free data exchanges, which
are critical for control message exchanges. Quest-V uses a shared
memory ring-buffer to pass messages between the ProcData task
and Quest-based CAN tasks.

The error bars in the figure represent the min and max latency,
which are also much higher in standalone Android than in Quest-
V. Android is affected by the unpredictable behavior of interrupts,
which increases the latency of the CAN messages. This is because its
Linux kernel does not have time-budgeted, priority-aware bottom-
half handlers.

In contrast, the Quest RTOS within Quest-V handles I/O by
running its bottom half handler threads at the proper priority levels.
Then, the data is passed to the Linux kernel in Android through
a secure shared memory channel, which is mapped directly to
the ProcData task. Therefore, communication between Quest and
Android incurs minimal overhead. Thus, the latency in the Quest-V
is not only smaller but also more predictable than in standalone
Android for both asynchronous and synchronous I/O.

Quest-V/ Android

Figure 5: Synchronous I/0 Throughput (stddev as error bars)

As synchronous communication potentially blocks a message
until it is delivered, the throughput in Figure 5 is similar for both
Quest-V and standalone Android. However, the error bars depicting
the standard deviation are much smaller for Quest-V, which demon-
strates that throughput is more predictable. Additional details about
these experiments are available in our technical report [5].

6 RELATED WORK

Several research groups have studied the use of Android for IVI
systems [6, 7]. GENIVI [4] and other alliances between automotive
companies are also developing Automotive Grade Linux [12] and
AUTOSAR-compliant OSs [1] for modern vehicles. However, they
do not address the timing, security, and development issues of an
integrated single-machine solution. Their approach requires the
real-time tasks and the IVI components to run on separate machines.
Android has also been redesigned to provide real-time guarantees to
different software components [14, 15]. Although that work makes
a number of important contributions, including making the Binder
IPC priority-aware, changing most of the architecture of Android
has little chance of wider adoption. Moreover, real-time I/O was
not addressed in these works. In contrast, the paravirtualization
of Android in our work required just 126 lines of changes, and the
real-time I/O capabilities of Android are being extended through
the Quest-V system design. Moreover, our design is deployed in a

single-board computer while maintaining the necessary space-time
partitioning requirement.

7 CONCLUSIONS AND FUTURE WORK

This paper presents a new design for interactive service integration
in automotive systems based on the Quest-V partitioning hypervi-
sor. With just 126 lines of changes, a paravirtualized Android 8.1 has
been developed for Quest-V, in which a professional IVI application
is run, along with prototype services for testing real-time ADAS
functionality. The Quest-V system design allows Android to lever-
age the timing predictability of Quest to support real-time I/O for its
applications. This system design isolates timing and safety-critical
devices from those used by Android. Similarly, application develop-
ersleverage convenient APIs provided by Android while automotive
developers focus on code deployment in a smaller, lighter-weight
real-time environment such as Quest. Experiments demonstrate
that paravirtualizing Android has non-intrusive startup overhead
and benefits from the real-time I/O capabilities of Quest. We are ex-
ploring more real-time I/O and notification capabilities in Android
for complete deployment of the interactive automotive system in a
working high-performance electric vehicle.

8 ACKNOWLEDGEMENTS

This work is supported in part by the National Science Foundation
(NSF) under Grant # 1527050. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the NSF.

REFERENCES

[1] AUTOSAR. 2019. AUTomotive Open System ARchitecture. http://www.autosar.
org.

[2] P.Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, 1.
Pratt, and A. Warfield. 2003. Xen and the Art of Virtualization. In ACM SIGOPS
OSR.

[3] M Danish, Y Li, and R West. 2011. Virtual-CPU Scheduling in the Quest Operating
System. In 2011 17th IEEE RTAS. IEEE, 169-179.

[4] GENIVI. 2019. GENIVI Alliance. https://www.genivi.org/. Last Accessed: Oct
2019.

[5] A Golchin, S Sinha, and R West. 2019. Boomerang: Real-Time I/O Meets Legacy
Systems. arXiv preprint arXiv:1908.06807 (2019).

[6] B. Kovacevic, M. Kovacevic, T. Maruna, and D. Rapic. 2016. Android4Auto: A
Proposal for Integration of Android In Vehicle Infotainment Systems. In 2016
IEEE ICCE.

[7] G. Macario, M. Torchiano, and M. Violante. 2009. An In-vehicle Infotainment

Software Architecture based on Google Android. In 2009 IEEE International Sym-

posium on Industrial Embedded Systems.

Sen Nie, Ling Liu, and Yuefeng Du. 2017. Free-fall: Hacking Tesla from Wireless

to CAN Bus. Briefing, Black Hat USA (2017), 1-16.

Georg Niedrist. 2016. Deterministic Architecture and Middleware for Do-

main Control Units and Simplified Integration Process Applied to ADAS.

https://www.tttech.com/technologies/adas.

[10] H.R. Simpson. 1990. Four-slot Fully Asynchronous Communication Mechanism.

IEEE Computers and Digital Techniques 137 (January 1990), 17-30.

Tesla. 2019. Linux. https://github.com/teslamotors/linux.

The Linux Foundation. 2019. Automotive Grade Linux.

automotivelinux.org/.

[13] R. West, Y. Li, E. Missimer, and M. Danish. 2016. A Virtualized Separation Kernel
for Mixed-Criticality Systems. ACM Transactions on Computer Systems (TOCS)
(2016).

[14] Y Yan, S Cosgrove, V Anand, A Kulkarni, S H Konduri, S Y Ko, and L Ziarek. 2014.
Real-time Android with RTDroid. In MobiSys. ACM.

[15] Y. Yan, K. Dantu, S Y Ko, J Vitek, and L Ziarek. 2017. Making Android Run on
Time. In 2017 IEEE RTAS. IEEE.

R
L %

= =
i N

https://www.

http://www.autosar.org
http://www.autosar.org
https://www.automotivelinux.org/
https://www.automotivelinux.org/

	Abstract
	1 Introduction
	2 Design
	2.1 Quest-V Partitioning Hypervisor
	2.2 Advantages

	3 Implementation
	4 Real-time I/O for Android
	4.1 Extending Real-time I/O to Android

	5 Evaluation
	5.1 System and Apps Startup Time
	5.2 Real-time I/O Performance

	6 Related Work
	7 Conclusions and Future Work
	8 Acknowledgements
	References

