ModelMap: A Model-based Multi-domain Application
Framework for Centralized Automotive Systems

Soham Sinha
soham1@bu.edu
Boston University
Boston, MA, USA

ABSTRACT

This paper presents ModelMap, a model-based multi-domain ap-
plication development framework for DriveOS, our in-house cen-
tralized vehicle management software system. DriveOS runs on
multicore x86 machines and uses hardware virtualization to host
isolated RTOS and Linux guest OS sandboxes. In this work, we de-
sign Simulink interfaces for model-based vehicle control function
development across multiple sandboxed domains in DriveOS. Mod-
elMap provides abstractions to: (1) automatically generate periodic
tasks bound to threads in different OS domains, (2) establish cross-
domain synchronous and asynchronous communication interfaces,
and (3) handle USB-based CAN I/O in Simulink. We introduce the
concept of a nested binary, for the deployment of ELF binary ex-
ecutable code in different sandboxed domains. We demonstrate
ModelMap using a combination of synthetic benchmarks, and ex-
periments with Simulink models of a CAN Gateway and HVAC
service running on an electric car. ModelMap eases the develop-
ment of applications, which are shown to achieve industry-target
performance using a multicore hardware platform in DriveOS.

CCS CONCEPTS

« Software and its engineering — Integrated and visual de-
velopment environments.

KEYWORDS
multi-domain Simulink models, vehicle control software

ACM Reference Format:

Soham Sinha, Anam Farrukh, and Richard West. 2022. ModelMap: A Model-
based Multi-domain Application Framework for Centralized Automotive
Systems. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD °22), October 30-November 3, 2022, San Diego, CA, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3508352.3549463

1 INTRODUCTION

Automotive systems are continuing to increase in complexity, with
the advent of advanced driver assistance systems and connected ser-
vices. This has led to a corresponding increase in electronic control
units (ECUs), with a modern luxury vehicle having over 100 such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD °22, October 30-November 3, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9217-4/22/10...$15.00
https://doi.org/10.1145/3508352.3549463

Anam Farrukh
afarrukh@bu.edu
Boston University
Boston, MA, USA

Richard West
richwest@bu.edu
Boston University
Boston, MA, USA

units [42]. An alternative approach to using large numbers of sepa-
rate ECUs is to develop a centralized vehicle management system
(VMS) [6] where functions are consolidated as software tasks on a
single multicore machine [55]. Software is more easily upgraded
and extended, without the cost of added electronics [23]. However,
software tasks must now implement functions with different timing,
safety and security requirements on the same hardware.

To address this, VMSs assign tasks having a high criticality, or
consequence of failure, to a real-time OS (RTOS), while low criti-
cality tasks run on a general purpose OS (GPOS) [1, 3, 7, 24, 41, 55].
Example high criticality tasks are those that affect vehicle control,
including steering, throttle and braking, while low criticality tasks
include infotainment services. Both the RTOS and GPOS are able
to run on a single hardware platform using machine virtualization.

A significant challenge is how to develop, deploy and support
communication between mixed-criticality tasks running in different
domains, or operating systems, on multicore VMSs. To date, most
vehicle functions such as heating, ventilation and air conditioning
(HVAC) or powertrain control are developed for simple, single-
core ECUs. These ECUs host a single, simple RTOS or firmware.
Engineers accustomed to model-based design languages such as
Simulink [21] and LabView develop functions for these ECUs with-
out awareness of control flow (e.g., threads), data structures, and
low-level communication primitives. Model-based design languages
have thus far lacked support for multi-OS domain systems, leaving
the burden on expert programmers to port ECU functions.

We introduce ModelMap, a model-based multi-domain appli-
cation development framework for automotive functions in our
in-house centralized VMS, called DriveOS. DriveOS leverages a par-
titioning hypervisor to host RTOS and Linux sandboxed domains
on top of a multicore PC-class x86 machine [55]. ModelMap imple-
ments a set of Simulink interfaces that target multiple sandboxes,
or OS-level protection domains, in DriveOS.

ModelMap supports binding a real-time periodic thread to a
Simulink control task for timing-predictable execution. It provides
synchronous and asynchronous inter-task communication primi-
tives, and real-time I/O for commonly used protocols such as con-
troller area network (CAN) bus. Vehicle functions that span OS
domains are encapsulated as nested binaries, which support the
deployment of executable code for multiple application binary in-
terfaces. To the best of our knowledge, ModelMap is the first open
model-based multi-domain VMS application framework.

We present two Simulink automotive software models and im-
plement them using ModelMap Simulink blocks in DriveOS. These
models are: (1) a CAN Gateway service, which delivers CAN mes-
sages to different software threads in DriveOS, according to end-
to-end timing guarantees, and (2) a port of an HVAC controller for

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

an electric vehicle being developed with our partner company. We
demonstrate the HVAC model’s functional and timing correctness
with a model-in-the-loop (MIL) and hardware-in-the-loop (HIL)
execution equivalence against real-world data traces.

The contributions of this paper are three-fold: (1) we introduce
the first model-based multi-domain application development and
deployment framework for a VMS; (2) we demonstrate that Simulink
models running on a multicore x86-based centralized VMS have
predictable end-to-end delays; (3) we illustrate a Simulink model’s
functional and timing correctness with MIL and HIL equivalence.

The next section provides motivation and background to model-
based design in DriveOS. Section 3 describes the ModelMap tools
for multi-domain code development. Section 4 explains the nested
binary concept in the DriveOS VMS. An evaluation of ModelMap
is covered in Section 5, using simulated and real-world data sets as
well as CAN Gateway and HVAC case studies. This is followed by
related work and conclusions, respectively, in Sections 6 and 7.

2 MOTIVATION AND BACKGROUND

Simulink Model-based Design. MATLAB/Simulink is the de-
facto design tool for model-based vehicle control software. Pro-
prietary functional blocks are commonly provided by vendors for
use on their own ECUs, which traditionally feature single-core
microcontrollers. However, the growing popularity of embedded
multicore processors has led to the development of task-parallel
Simulink models [5, 44, 45]. Notwithstanding, there appears to
be a lack of Simulink model-based design frameworks for multi-
OS domain systems. This has consequently motivated our work,
which targets the use of Simulink development tools in hypervisor-
based [13, 50, 58] vehicle management systems.

In Simulink, a control task is modeled with a number of func-
tional blocks that are connected with signals. Each functional block
derives output signals from a combination of its inputs and internal
states. A subsystem comprises one or more functional blocks.

A complete control system is developed from multiple subsys-
tems. In a modern VMS, these subsystems may require execution
in different OS domains, depending on criticality and functionality.
For example, a CAN Gateway [55] might run within an RTOS to
directly access a timing- and security-critical vehicle bus for chassis
and powertrain control. At the same time it may wish to transfer
processed data from the CAN bus via secure shared memory to
a Linux domain, to update a less critical instrument cluster ser-
vice that relies on a graphical display. Likewise, a Linux domain
user-interface to control cabin temperatures might interact with
an HVAC controller within an RTOS. ModelMap eases the develop-
ment of applications for these types of multi-domain systems.
Centralized VMS. A centralized VMS consolidates multiple ECU
functions onto a multicore platform. Drako Motors’ DriveOS™ [54,
55], Mercedes-Benz’ MB.OS [41] and Toyota’s Arene OS [1] are
examples of centralized VMSs. These all support multiple guest
operating systems, or sandbox domains, running on a partitioning
hypervisor [46, 58]. They provide temporal and spatial isolation be-
tween guest sandboxes so that tasks executing within one sandbox
do not interfere with tasks in other sandboxes. The hypervisor is
removed from normal sandbox execution, allowing guest operating
systems to execute directly on their assigned hardware.

Soham Sinha, Anam Farrukh, and Richard West

5 E Linux Domain

General Purpose Tasks

Quest Domain

. and User Interface Apps S
Real-time Control ' PP g
Tasks Shared 5]
Memory Libraries and Runtime

H

3
Corel..i : Core (i+1) ... m o
- 1 — 5
. 5
: &

L]
H T

'

L]

.

L]

=%

Figure 1: High-level Design of DriveOS

This paper addresses the tools and mechanisms for multi-domain
functional development and deployment, in the context of DriveOS,
as shown in Figure 1. A Quest real-time OS [14] domain works
in unison with a general-purpose Linux OS domain. For proof of
concept, this paper focuses on two single-core domains, although
DriveOS is capable of supporting more domains and cores.

3 ModelMap DESIGN TOOLS

Figure 2 shows an overview of the ModelMap code generation for
a multi-domain application. A model is first designed with Mod-
elMap and other Simulink blocks. Then, ModelMap block-level and
DriveOS system Target Language Compiler (TLC) [53] files are uti-
lized by the Simulink Embedded Coder, to generate the domain OS-
specific C source code. OS-specific versions of gcc cross-compile
C code into Quest and Linux ELF binaries. Finally, a nested binary
compiler (see Section 4) creates a multi-domain binary executable.

A custom Embedded Real-Time (ERT) system TLC file [53] spec-
ifies the C code generation from Simulink model blocks. This is
explained further in Section 3.1.4.

3.1 Thread Setup Blocks

A threadSetup Simulink block is used to create periodic threads
for either Quest or Linux, and aperiodic threads restricted to Linux.
The block details are summarized below:

e Block Type: C MEX S-function [34].

e Block Parameters: A Simulink block mask [35] identifies thread-
specific parameters. These include the Thread Name and Domain OS
(Quest or Linux). A Quest periodic thread is further parameterized
with a Runtime and Period. A Linux domain periodic thread has a
Runtime, Period and Deadline, while a Linux-only aperiodic thread
has no further parameters.

ModelMap Simulink
Blocks Model
ModelMap Y DriveOS
Block TLC ——— Errétfdd(ged <— System Target
Files TLC Files
Domain Domain
specific ™ gcc specific
C Code Binary
S e s e sl Nested
Domain Domain Compiler Sz Ry
specific — gcc > specific
C Code Binary 4

Figure 2: The ModelMap Workflow

ModelMap: A Model-based Multi-domain Application Framework

e Block Output: The output of this block is a function trigger sig-
nal that connects to an input trigger port of a function-call subsys-
tem [39]. This subsystem is executed as a threaded task configured
using the above parameters.

3.1.1 Quest Periodic Threads. Timing and safety critical control
tasks run as periodic threads in Quest. Application threads in this
domain leverage Quest-specific and C library [43] APIs, to perform
real-time I/O and secure CAN bus operations.

Example tasks include HVAC and powertrain control, which
are designed as Simulink function-call subsystems. The function
trigger ports of these subsystems are connected to the output port
of a corresponding threadSetup block. threadSetup is configured
with a Thread Name parameter, and the Domain is set to Quest. A
model developer provides the Runtime and Period parameters that
are respectively set as the budget (C) and period (T) of a Quest
periodic task, 7. 7 is implemented following a Liu-Layland task
model and scheduled using the RMS algorithm [30]. This guarantees
7 receives its budget, C, every period, T, when runnable.

3.1.2 Linux Periodic Threads. Linux is the lower criticality GPOS
domain in DriveOS. Although not a hard real-time OS, it provides
sufficiently predictable timing guarantees for SCHED_DEADLINE [27]
tasks using the PREEMPT_RT patch [47]. Linux provides comple-
mentary support for Quest with its libraries, device drivers and
services that would take many years of development to implement
in a new RTOS. A developer provides the Runtime, Period and
Deadline threadSetup block parameters that are passed on to the
SCHED_DEADLINE policy via the Linux sched_setattr system call.
3.1.3 Linux Aperiodic Threads. A centralized VMS also runs non-
timing critical operations such as logging, storage and over-the-air
updates. threadSetup supports these tasks as Linux pthreads. No
additional threadSetup block parameters are needed.

3.1.4 Code Generation. The threadSetup S-function block’s prop-
erties are described in a C MEX (threadSetup.c) file for sim-
ulation, and in a TLC file (threadSetup.tlc) for code genera-
tion. As the threadSetup block is designed for model deploy-
ment in a DriveOS system, threadSetup.c only saves the block
parameters for code generation, without any simulation. In the
threadSetup. tlc file, three key steps are followed to generate its
corresponding C code [32]:

1) The BlockInstanceSetup TLC function of an S-function
block is executed at the very start of code generation. ModelMap
uses this function to retrieve all the block parameters from the
simulation environment.

2) The Start TLC function (Code Block 1) includes any initializ-
ing code in the final C source code. ModelMap uses this function
to assign the block parameters (Runtime, Period and, if applica-
ble, Deadline) to a DriveOS C structure (driveos_sched_param_t)
with domain-specific members.

%% Simulink TLC Code starts with a %; TLC comments start with a %%
%% Any other code goes to an initializing block of the final C code

%if targetosVal == @ %% Quest domain .
s_params->C = %<Quest budget>; s_params->T = %<Quest period>;

%elseif linuxschedpolicyVal == 1 %% Linux domain SCHED_DEADLINE
s_params->is_sched_deadline = 1; s_params->C = %<linuxruntime>;
%endif

s_params->threadfuncname = %<threadName>_func;
Code Block 1: A snippet of the Start TLC function

The DriveOS system TLC file declares all_thrd_parms as an
array of driveos_sched_param_t structures. This array is used to

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

save the parameters of multiple threads in the same domain, each
time a Start function of a threadSetup block is called.

3) The Output TLC function of a block is used to generate the
block’s corresponding C code. ModelMap uses Output to add a new
function in the model’s C source file, named <threadName>_func.
The same function is also embedded in the previous Start function
as the pthread function name. The driveos_sched_param_t C
structure is passed as an argument to the pthread function, to
set the corresponding thread scheduling parameters for the given
domain. Finally, a %<LibBlockExecuteFcnCall>() TLC function
is embedded in an infinite while loop, to repeatedly invoke the
subsystem’s corresponding C function according to the specific
scheduling parameters.

The DriveOS system TLC spawns the pthreads from the main
function of the generated C source code. A Simulink custom file
processing template [36] is used to generate the main function. A
new pthread is created for every element in all_thrd_parms. Part
of the main function is shown in Code Block 2.

for(i = @; i < num_threads; i++) {
#ifdef QUEST
pthread_t* new_thread = (pthread_t *) malloc(sizeof(pthread_t));
pthread_create(new_thread, NULL, all_thrd_parms[i].threadfuncname,
all_thrd_parms[il);
#else
// Linux domain

#endif
}

Code Block 2: A snippet of the ModelMap-generated main function in C

3.2 Inter-task Communication Blocks

ModelMap provides a set of blocks for intra- and inter-domain task
communications. These blocks are set up as shared memory com-
munication channels by the DriveOS hypervisor [55]. Intel VT-x
extended page tables (EPTs) securely map host physical memory
regions between communicating threads, irrespective of their do-
main. Both synchronous and asynchronous communications are
supported across channels identified with a unique channel_key.

DriveOS has a set of C API functions in Linux and Quest to set
up the communication channels. ModelMap implements MATLAB
interfaces for these C functions [33], which are described below.

A ModelMap createChannel Simulink block takes an integer
input as the channel_key. It has block mask parameters to set the
type and specification of the channel. For a synchronous channel,
the buffer length and the size of each element must be specified.
For an asynchronous channel, only the element size is needed.
3.2.1 Synchronous Communication. A synchronous channel is im-
plemented as a ring buffer in DriveOS. This is useful for control data
that must be communicated without loss. Channel data structures
are created by OS-specific userspace libraries in both Quest and
Linux domains. syncRead and syncWrite are busy-waiting calls
that read and write, respectively, a message in the buffer. Busy-
waiting is used for synchronous communication in Quest-V [58]
and DriveOS [55].

Blocking or busy-waiting is problematic when reading or writ-
ing to different channels. As will be seen later in Figure 10, a
syncRead on one channel may delay the execution of syncRead
calls on other channels. To mitigate this issue, ModelMap imple-
ments syncNWRead and syncNWWri te, which are non-waiting (NW)
functions. Calling syncNWRead (or syncNWWrite) when a channel
buffer is empty (or full) immediately returns -1, otherwise it returns
the size of the read (or written) message.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

3.2.2 Asynchronous Communication. An asynchronous channel in
DriveOS is implemented using Simpson’s four-slot protocol [52].
This is useful when the most recent (i.e., freshest) data must be com-
municated, while stale data is discarded. Sensor readings fall into
this category of communication. The asyncRead and asyncWrite
Simulink blocks are available to read and write asynchronous mes-
sages, respectively.

3.3 CANI/O Blocks

CAN communication between sensors and actuators is commonly
used in the automotive domain. DriveOS implements real-time
USB-CAN I/O in its Quest domain. The Quest CAN I/O API is
accessed via MATLAB’s C-interface function blocks, including
canChannelSetup, canRead, and canWrite. canChannelSetup has
ablock parameter to set the CAN baud rate from 10 kbit/s to 1Mbit/s.

3.4 Timing Blocks

ModelMap implements several Simulink timing blocks. MATLAB
function block time_from_start outputs the time in us since the
model starts running. Similarly, time_since_last_called outputs
the time in ps since the last time this block was called. These timing
functions use the x86 RDTSC instruction to measure processor clock
cycles, divided by the base clock frequency, to yield accurate time
in ps. These blocks are C-function interfaces in MATLAB [33].

3.5 Domain-specific C Code Generation

Domain-specific components of a model are designed as subsys-
tems in Simulink. The slbuild(<subsystem name>) command is
used by ModelMap to generate domain-specific C code for a target
Simulink subsystem.

4 NESTED BINARIES

ModelMap produces an ELF binary [31] format for DriveOS, called
a nested binary. This is similar to a fat binary [17], and contains
multiple executables with Application Binary Interfaces (ABIs) for
different operating systems. For example, DriveOS nested binaries
contain executable images for both Quest and Yocto Linux.
ModelMap includes a nested binary compiler. A corresponding
nested binary loader performs runtime parsing of individual exe-
cutables within a nested binary. It then spawns a new process for
every executable into a corresponding DriveOS sandboxed domain.

4.1 Nested Binary Format

As shown in Figure 3, a nested binary section header table contains
file offsets to N>1 binexec sections. Each binexec section stores
the ELF binary data for a specific domain executable. A nested
binary metadata ELF section also stores the mapping between an
individual ELF binary and a runtime domain ID.

4.1.1 ELF Header. The ELF header defines the target OS ABI, bit-
ness, and other details in an ELF binary. The following fields are
modified: (1) e_ident[EI_OSABI]: The target OS ABI s set to a cus-
tom value of 0x15; (2) e_machine: The target ISA is set to EM_386
(0x03) for an x86 target; (3) e_type: The object file type is set to
0x02 for an executable file; (4) e_ident [EI_DATA]: The endianness
is set to little-endian.

4.1.2 Program Header Table. This section has one entry to satisfy
the ELF format requirement. The entry is the Program Header Table

Soham Sinha, Anam Farrukh, and Richard West

binexec3 for Linux
ELF Header
Program Header Table

A Nested Binary

ELF Header

Program Header Table text
metadata .rodata
binexecN

.data
binexec3 — Section Header Table

binexec2 —

binexecl
shstrtab

A\

Section Header Table ELF Header

Program Header Table
text

data
Section Header Table

binexec1 for Quest binexec2 for Quest

Figure 3: Nested Binary Sections

(PT_PHDR) itself. As individual executables have their own program
header information, this section is not needed.

4.1.3 Section Header Table. This section lists all the data sections
in a nested binary:

o binexec: Every nested binary has a separate binexec section for
each ELF binary executable. The name of every binexec section is
appended at the end with an integer numeric ID, starting from 1.
This ID specifies the order in which the binaries will be spawned
at runtime, where lower ID means earlier execution.

e metadata: The metadata section maps an individual binary in a
binexec section to a domain in DriveOS. The nested binary loader
uses the metadata section to spawn a new process from an indi-
vidual binary in the corresponding domain. The section contains
an array of C structs which holds a tuple of the binexec section
name and the corresponding integer domain ID. Currently, DriveOS
assigns domain ID 1 to Quest and 2 to Linux.

o shstrtab: This is the string table section that contains the section
names, like other ELF binaries.

4.2 Nested Binary Compiler

ModelMap’s nested binary compiler (nested_bin_cc) creates a
nested ELF binary from multiple individual binary executable files.
The compiler utilizes the 1ibelf library [25] to create, enumerate
and organize different ELF binary sections according to the above
format. The following command is used to create a nested binary:

nested_bin_cc <Binary Filel> <Domain ID1> ...
<Binary FileN> <Domain IDN> <Name of Nested Binary>

The above command combines N ELF binary executable files and
saves the mapping between a binary and its runtime domain in the
metadata section. For example, Binary Filel is mapped to Domain
ID1. A new nested binary is created with the name specified in the
last argument. binutils tools such as readelf support inspection
of nested binary sections.

4.3 Nested Binary Loader

The nested binary loader is also implemented with the libelf
APIs [25]. The loader runs in a DriveOS Linux domain and takes
a nested binary as the first argument. It also takes a number of
command-line arguments for every individual ELF binary. The
following command is used to execute a nested binary:

nested_loader <nested ELF binary>
<argcl> <argvl11> ... <argc2> <argv21> ...

ModelMap: A Model-based Multi-domain Application Framework

Quest Domain Yocto Linux Domain

Quest Process Linux Process

fork-and-fexecT

Ring

fork-and-exec Buffer \ Quest ELF Léllil::x Nested
CShared Binary g Binary
{Memory |

by

RemotelBinany Nested Binary Loader

Loader

Figure 4: Nested Binary Loader

Here, argcl is the number of command-line arguments for the
binexec1, starting with argv11. Similarly, argc?2 is the argument
count for binexec2, starting with argv21, and so on.

The loader parses the metadata section in a nested binary to read
the mapping between a binexec section and its runtime domain. It
spawns a new process with the raw bytes of a binary embedded in
a binexec section to its respective domain. Figure 4 summarizes
the steps to execute a binary in Linux and Quest.

4.3.1 Executing a binary in a Linux Domain. The nested binary
loader parses the metadata section of a target binary to locate the
corresponding binexec sections for Linux (Domain ID=2). The
loader employs the fork-and-exec approach in Linux to spawn the
executable image as a new process. However, as the executable is
not in a file and directly available in memory, the execve-class of
C functions cannot be used. Instead, the loader creates a new file
descriptor for the memory location of the Linux binary with the
memfd_create function [29]. Then, it forks a new child process
and calls fexecve [28] to start execution.

4.3.2 Executing a binary in a Quest Domain. In this case, the Linux
nested binary loader first identifies the domain ID=1 for a Quest
binary object. It then sends the executable bytes to Quest via shared
memory as shown in Figure 4. A specific shared memory region of
800KB is mapped between the Quest and Linux domains at system
boot time for remote binary execution. The region is appropriately
sized to accommodate typical Quest static binaries. This shared
memory region works as a synchronous ring buffer channel with a
single buffer slot. A remote binary loader process in Quest polls the
shared region for any new binary execution request. Once the Linux
nested binary loader indicates that it has written a new program to
the shared region, the remote binary loader in Quest starts reading
the program and its arguments. Then, the remote Quest loader
spawns a new process with a fork-and-exec mechanism.

5 EVALUATION

In this section, ModelMap is tested with custom and real-world
Simulink models. The goal is to show that the end-to-end (E2E)
delays, or the maximum reaction times [15], of the models are
within their expected upper bounds after deployment in DriveOS.

ModelMap Simulink blocks are applied to the following three
models: (1) a multi-domain synthetic benchmark with different types
of inter-task communication, (2) a DriveOS CAN Gateway [56] to
filter and forward CAN messages to different Quest and Yocto Linux
applications, and (3) a port of an automotive HVAC Simulink model
for a MotoHawk ECU to the DriveOS VMS. The functional and
timing correctness of the ported HVAC model is demonstrated by
the output equivalence in both MIL and HIL execution.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

The three models are tested with the DriveOS VMS running on
a Cincoze DX1100 industrial PC [12], featuring an Intel 2.4GHz
i7-8700T processor. The DX1100 is connected to a Kvaser Pro 5xHS
USB-CAN adapter [26].

DriveOS supports real-time USB-based CAN I/O using Quest.
Quest handles device interrupts in the context of time-budgeted,
schedulable threads [14]. The test setup uses two USB xHCI bottom-
half handler threads, each with budget=0.1ms and period=1ms,
referred to as USBBH_rx and USBBH_tx. Two USB-CAN kernel driver
threads, each with budget=0.2ms and period=1ms, send (CAN_tx)
and receive (CAN_rx) CAN messages.

5.1 Synthetic Benchmarks

Figure 5 shows our multi-domain Simulink benchmark model, de-
signed using ModelMap blocks. The inter-task and CAN chan-
nel setup blocks are not shown for space constraints. The model
reads a CAN message in the canReader subsystem of the Quest do-
main (Domain 1) from CAN channel 0 (CANO) via canRead. Then,
syncWrite forwards the data to the procThread subsystem for
processing in the Linux domain (Domain 2). This setup allows
procThread to apply any control logic to the received message us-
ing additional Simulink blocks. For our experiments, procThread
forwards the message to a canWriter subsystem in Domain 1 us-
ing syncWrite. The canWriter then outputs a message on CAN
channel 1 (CAN1). This model is representative of the canonical
communication path between two CAN bus interfaces and separate
OS domains in DriveOS.

#\threadSetup
CANO £() . ¥ threadSetup
#\canRead %
N i £0)
A syncirite #syncRead

canReader

-\ Control Logic
4\threadSetup < v

<-4 syncWrite
e
" procThread
£0 Domain 2

= SEREE - System’s Internal

Data Flow
CAN1 4\ canWritt. | —» Simulink
canWriter Connections

Domain 1

Figure 5: A Multi-Domain Simulink Benchmark

The canReader, canWriter and procThread blocks in Figure 5
are function-call subsystems, configured as periodic threads. Their
function trigger ports are connected to the output ports of the
threadSetup blocks. The threadSetup blocks are assigned to the
Quest domain for the canReader and canWriter subsystems, and
to the Linux domain for the procThread subsystem. Their budgets
and periods, given in Table 1, are derived empirically by profil-
ing [59], and assigned in the corresponding threadSetup blocks.
canReader and canWriter subsystems rely on Quest real-time ca-
pabilities. procThread is representative of a lower criticality control
task that is scheduled in the Linux domain using the SCHED_DEADLINE
policy.

The Simulink model’s corresponding C code and subsequent
nested binaries are automatically generated. When this model is
launched by ModelMap’s nested binary loader, canReader and
canWriter threads are spawned in Domain 1, and procThread is

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

Table 1: Budgets and Periods for the Synthetic Benchmark

Subsystem/Thread| Budget (us) [Period (us) [Util.(%) [#of Threads
Domain 1

canReader [100 [2000 [5% [1

canWriter | 100 | 2000 [5% [1
Domain 2

procThread [100-500 [1000 [10-50% [1

spawned in Domain 2 at runtime. This model is a classic example
of a sensing-processing-actuation task pipeline [2, 15].

5.1.1 End-to-end Delay Performance. We measure the end-to-end
(E2E) delay (also known as the maximum reaction time) [11, 15, 18]
of a CAN message traversing through canReader — procThread
— canWriter threads. The E2E delay upper bound for a pipeline
of periodic real-time tasks has been theoretically analyzed be-
fore [2, 15, 18], but only for a domain-specific scheduling algorithm.
However, it is important to measure the E2E delay of multi-domain
applications in a centralized VMS where the time-critical software
components expand beyond a single domain [3, 55]. We perform
an experimental evaluation of such multi-domain applications in
this paper and use the sum of the task periods [22] (optimistic) and
Davare’s upper bound [15] (conservative, twice the sum of periods
assuming response-time of a task < its period) as the two target E2E
delay bounds. As stated earlier, the USBBH_rx, USBBH_tx, CAN_rx
and CAN_tx threads are also considered in a task chain for CAN
I/O, as a CAN message has to pass through these I/O threads as
well. For example, the aggregate period delay bound for Figure 5
will be ((1 + 1+ 1 + 1) [for the I/O system threads] + (2 + 2 + 1)
[from Table 1]) = 9ms.

5.1.2 Result Analysis. A stream of messages is sent from an Ubuntu
18.04 Linux machine to DriveOS via CANO on the DX1100. A corre-
sponding message is received via CAN1 on the same Ubuntu ma-
chine. The sent and received CAN message timestamps are logged
with candump in Ubuntu, to calculate the E2E delay. In the first
set of experiments, we vary the utilization (ratio of Runtime and
Period) of the procThread subsystem from 10 to 50% by increasing
the Runtime parameter in the associated threadSetup block. Fig-
ure 6a shows the minimum, average and maximum E2E delays with
increasing procThread utilization in Linux. All the E2E delays are
within the target upper bounds.

Figure 6a shows that the maximum E2E delay is improved by
46%, as procThread’s utilization is increased from 10% to 50% in
Linux. This coincides with the increased fraction of all E2E delays
within the x-axis bound in Figure 6b. The median latency every 10
frames in Figure 7 is more variable for the 10% case than others.
Allocating more utilization to a Linux domain subsystem not only
improves the maximum E2E delay but also reduces jitter. However,
CPU utilization is often limited in resource-constrained automotive
systems. ModelMap’s maximum E2E guarantee is crucial for time-
critical control software modeling.

5.1.3 procThread in RTOS vs. Linux. The next experiment com-
pares the previous model to one where the procThread subsystem
in Figure 5 is moved to Domain 1, leaving Domain 2 idle. A special
BG scheduling mode in Quest is also tested. This mode gives addi-
tional CPU time to a task beyond its model-specified CPU time via
background scheduling, if other tasks do not need anymore CPU.

Soham Sinha, Anam Farrukh, and Richard West

18 1.0
Davare's bound

15 0.8
I —#&— Maximum Davare's bound
g 124 --e-- Average
> Minimum u 06 — 10%
&, 8 20%
[:
a Sum of periods © oal /L L. 300/:
2 .
& e ‘\‘\’\’_ﬁ- 40%

— 509
e 02 50%.
L IETTTTT Perreeennns P ° Sum of periods|
0 0.0
10 50 2 15 18

30 40 5
% of Utilization (procThread) End-to-end Delay (ms)

(a) Average, Minimum, Maximum (b) Cumulative Distribution Function
Figure 6: Benchmark E2E Delay vs Domain 2 Task Utilization

Figure 9a shows the E2E delays when increasing the procThread
utilization up to 30% !, keeping its period fixed at 1ms. All E2E de-
lays are under the target upper bounds. The maximum EZ2E delays
for the Quest BG mode stay almost the same, as procThread lever-
ages additional CPU time. Disabling BG mode still yields E2E delays
under the target bounds, but the maximum ones are worse than
Linux for higher utilization. As procThread’s period is fixed, its
priority remains the same in Quest, even with higher utilization.
Therefore, the maximum E2E delay does not decrease as much as it
does while running in Linux, where only procThread is executed.

In another experiment, procThread’s period is increased from
1ms to 8ms, keeping its utilization fixed at 10%. The results in
Figure 9b show that the E2E delays are increased with greater
procThread period. If a CAN message is not handled in the same
job (i.e., task instance) that it is received, it might wait for potentially
more than a task’s period to be transferred. Therefore, E2E delays
increase with higher procThread periods. However, the maximum
E2E delays are within the target upper bounds, except for the 8ms
period in Linux where it violates the aggregate period bound. As the
procThread period in the 8ms case is significantly more (4x) than
the periods of canReader and canWriter threads (2ms), buffering
delays increase the maximum E2E delay beyond the sum of periods.
Nevertheless, all the delays are well under Davare’s bound.

5.1.4 Asynchronous Communication Block. The next experiment
replaces all syncRead (and syncWrite) blocks with asyncRead (and

1>30% is not possible due to the rate-monotonic scheduling bound with other tasks.

—4~— Linux -
—m=— RTOS

7 -—10% =+ 30% —— 50%
20% 40%

Median Latency (ms)
Now s oo @
S 8 &8 8 3
<

S
~
~
-
\
\Y

CAN Message Loss Rate (%)
S
~

4

0 250 500 750 1000 1250 1500 1750 1
CAN Frame Count

2 4 8
procThread Period (ms)

Figure 7: Synthetic Benchmark
18

Figure 8: Loss Rate in Async Channel

Davare's bound ——Period Sum —w-Davare's bound
2 —=-Linux Avg EEELinux Max
151 -=-Linux Avg ELinux Max -+ "RTOS Avg [EZAIRTOS Max
@ |——RTOSAvg [EZIRTOS Max g [RTOS Avg (BG)EEEIRTOS Max (BG)
E 121, RTOS Avg (BG)IIRTOS Max (BG)| £ 30
z, 3
8 Sum of periods &2
} L) o
3
-]

10 20 25 30 1

15
% of Utilization (procThread)

2 4
procThread Period (ms)

(a) Increasing Util. (Fixed Period) (b) Increasing Period (Fixed Util.)
Figure 9: Running procThread in Linux (Domain2) vs. RTOS (Domain1)

ModelMap: A Model-based Multi-domain Application Framework

asyncWrite) blocks in the model of Figure 5. In asynchronous com-
munication, if a receiver task has a greater period than a sender task,
then a message is potentially overwritten by the sender, before it is
observed by the reader. The number of lost messages is important in
asynchronous communications. Figure 8 shows the loss-rate (ratio
of number of lost messages and total messages) against increasing
procThread period, while it is run in Linux and Quest.

A stream of 1275 CAN messages are sent at 5ms intervals from
the Ubuntu machine. In Figure 8, as long as receiving procThread’s
period in Linux is less than the sending canReader’s period of 2ms,
there is no data loss. The loss-rate increases with greater periods
from 2ms. As procThread’s period goes greater than or equal to
canReader’s period, procThread starts missing CAN messages. In
the Quest-only model, no loss is observed until 8ms period, because
the source message rate (1/5ms=200Hz) is greater than the rate of all
the tasks, and they are all running with the same RMS scheduling
policy. However, when procThread runs in Linux it is scheduled
earliest-deadline first according to the SCHED_DEADLINE policy. As
Quest tasks are scheduled in RMS order there is a potential priority
mismatch, highlighting the importance of correctly setting task
periods for multi-domain task models.

5.2 Case Study 1: CAN Gateway

DriveOS’s CAN Gateway is shown as a ModelMap Simulink model
in Figure 10. It is used to distribute messages between different
domains and CAN buses.

AthreadSetup +\ threadSetup
= £()
£() #syncRead
CAND switch can_id: 4\ syncWrite
#\canRead » 4\ case..: -« Filter and Control
case ...: >)
canReader dsyncwrite & #hsyncWrite
- forwarderl
4\ threadSetup
<\ threadSetup
£()
CANL 4\ canWrite «— #\syncNWRead £0)
- 4syncRead

#\ canWrite «+—#\syncNWRead ... 4Filter and Control

canWriter .

Domain 1 - syncWrite
------{>System’s Internal Data Flow forwarderN
— Simulink Connections Domain 2

Figure 10: Model of a CAN Gateway

As before, CAN messages are read via CANO in Quest (Domain
1) and forwarded to Linux (Domain 2) by a canReader subsystem.
A canWriter subsystem receives CAN messages from Linux to be
sent out via CAN1. Unlike the previous benchmark model, there
are multiple subsystems in Linux to process different categories of
CAN messages based on their CAN IDs.

Figure 10 shows N Linux subsystems (forwarder{1...N}) where
N ={1,2,4,8} in our experiments. Each forwarder Linux subsys-
tem is connected to two inter-task synchronous channels: one is to
receive CAN messages from canReader, another is to send CAN
messages to canWriter. If a different Linux application wants to
receive (or send) a message of any particular CAN ID, it has to re-
quest it from the specific Linux forwarder subsystem of the CAN
Gateway. For example, Instrument Cluster and In-vehicle Infotain-
ment applications in DriveOS request CAN message transfers via
specific Linux forwarder subsystems. For the E2E delay overhead

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

2000
I —_ —+—sync Avg sync Max
E 30 Davare's bound % -=-syncNW Avg B syncNW Max
] S
N b
EIS Sum of periods 2
= —&— Maximum =
E 74 --®- Average m
A Minimum E
2 — 3
])
a 8
w @errernannnns @i Y S o w
o In}
w

1 2

4 8
Number of Domain 2 Threads

1

2 4
Number of Domain 2 Threads
(a) Increasing # of Domain2 Threads (b) Polling vs Non-polling Read
Figure 11: CAN Gateway Case Study

of the CAN Gateway, forwarder{1.. .N} pass through the CAN
messages from their incoming inter-task channel (from canReader)
to the outgoing channel (to canWriter).

The syncNWRead block in canWriter is used to read from inter-
task channels, without busy-waiting when a buffer is empty. Ex-
periments show that syncNWRead significantly improves the E2E
delay. syncNWWrite blocks are not used in canReader, as the Linux
subsystems keep the inter-domain communication buffer free by
reading out messages at a suitable rate.

Table 2: Budgets and Periods for CAN Gateway Case Study

Subsystem [Budget (us) | Period (us) [Util. (%) [#of Threads
Domain 1

canReader [200 [2000 [10% [1

canWriter [300 | 1000 [30% [1
Domain 2

forwarder{1-8} | 6400-800 [8000 (fixed) [80%-10% [1-8

5.2.1 Result Analysis. Table 2 shows the budgets and periods of
all the CAN Gateway tasks. The E2E delays are plotted in Figure 11
against increasing numbers of Linux forwarder threads, keeping
their total utilization at 80%. For example, if two forwarder threads
are executed, then each of them has 40% utilization. The E2E delays
in Figure 11a exhibit low jitter and remain under the target bounds
in all cases. This shows that ModelMap’s CAN Gateway is able to
handle multiple Linux threads in a DriveOS VMS system.

In other experiments, syncNWReads are replaced with syncRead
blocks in the canWriter subsystem. Figure 11b demonstrates that
the polling syncRead block increases the E2E delay sharply as the
number of threads increase. syncNWRead blocks are important for a
scalable CAN Gateway as the busy-waiting times on synchronous
channels are prohibitively large with more threads.

5.3 Case Study 2: Automotive HVAC Control

In this study, an HVAC controller running on a MotoHawk ECU is
ported to DriveOS using ModelMap Simulink blocks. The HVAC
Simulink function-call subsystem is connected to a threadSetup
block. threadSetup configures the HVAC subsystem to run in
the Quest domain with 0.5ms budget and 5ms period. The HVAC
subsystem communicates with the Linux domain to save settings in
persistent storage for when the vehicle is restarted. The functional
and timing correctness of the HVAC control is investigated.

The HVAC control receives input signals via 18 CAN IDs and
sends the output signals via 7 additional IDs. CAN I/O is via two
inter-task communication channels with the CAN Gateway men-
tioned above. The HVAC control avoids waiting on any CAN IDs by
using syncNWWrite and syncNWRead blocks for message transfers.
The CAN Gateway canReader and canWriter threads are set to
0.2ms budget and 4ms period.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

The HIL outputs of the HVAC model after its deployment in
DriveOS are compared with the MIL outputs in Simulink, using
CAN data traces from our electric car. Every CAN input message
is tagged with a unique and monotonically increasing integer Tag
ID, which is passed through to the HVAC control’s output CAN
messages. The HIL and MIL signal values in the HVAC control are
checked to see that they match for all Tag IDs. Due to space limits,
the HIL and MIL Driver Temperature signal outputs are shown
over 30 seconds in Figure 12. For Tag IDs 756 and 762, driv_temp
is respectively 1 and 2 in both MIL and HIL simulations. This is
observed for all the Tag IDs and signals. The time difference on
the x-axis is the DriveOS system and HVAC control overhead and
contributes to the signal reaction time. Reaction times for all the
signals in the HVAC control are in the similar range of 160-180 ms,
which is deemed acceptable for our vehicle.

5.4 System Overheads

ModelMap overheads are measured with a series of microbench-
marks, averaged over 20 runs. The x86 RDTSC instruction is used for
timing measurements, having an overhead of 0.04ys or ~96 clock
cycles, which is subtracted from all delays.

Table 3: System Overheads for the DriveOS Simulink Blocks

Time (us)
Simulink Block Linux Quest
threadSetup 33 190
channelCreate{Sender,Receiver} | 5722 5486
channelConnect 5699 5448
(a)syncRead/Write 0.01-0.03 0.01-0.03
canChannelSetup - 18490
canRead/Write - 1

Table 3 presents the overheads of the ModelMap Simulink blocks
in DriveOS. The threadSetup block takes more time in Quest than
it takes in Linux, because Quest has to create a sporadic server
abstraction for RMS [14, 57]. The creation and connection to an
inter-task communication channel make expensive VMExit [46, 55]
operations to the underlying hypervisor and take more time than
reading/writing to the memory-mapped channels. CAN channel
setup takes 18ms to configure the transfer rate of the USB-CAN
interface. These blocks are only applied in an initial setup phase
without significant runtime costs.

5.4.1 Nested Binary Measurements. A nested binary’s size is the
sum of all individual binaries and 14-bytes of metadata per binary.

o 4
E [——HIL driv_temp] Hx76 38
g Y2
>, X 75.78 ||
© Y1 ‘-’
2
p=y
72 “ I L
60 65 70 75| 80 85 %0
Time(s)
—MIL dr\v temp 21
\\

X 76.

X 75 6 i Y2
H

60 65 75“

Tume‘(s)

T T t T
X 75.78 |,

asoo| [——HILTagID| |y 756 |,

27001 1 X 76.38

2 1Y 762

600 H

60 65 70 7511 80 85 90
Time |(5)

900

X 75.6 [
[R— I
a0l MILTag ID] {756 |!
2700 X 76.21
g 1{Y 762
600 +
[[[I [[
60 65 70 75 80 85
Time (s)

Figure 12: HIL and MIL: Driver Temperature Signal with Tag IDs

Signal Value
N S

Soham Sinha, Anam Farrukh, and Richard West

Table 4 presents the overheads of executing a nested binary. Quest

only supports static binaries for fast and predictable runtime, so

they are typically larger than Linux dynamically-linked binaries.
Table 4: Nested Binary Overheads

Operation Time (ms)
Extracting an individual binary from a nested binary 0.16
Forking a process via memory in Linux 0.11
Sending ~300KB binary from Linux to Quest 7.13
Receiving ~300KB binary in Quest and forking it 184

6 RELATED WORK

Pagetti et al. have done extensive work on periodic Simulink mod-
els for multicore platforms based on the ROSACE architecture for
avionics [5, 44, 45]. They employ formal verification techniques
from design to code generation, to meet avionics standards. How-
ever, multicore CPU modeling and verified code generation remains
a challenge, and relies on faithful code translation from other high-
level formally defined design languages like Lustre.

Formal verification has been applied in the context of Simulink
to C code generation [4], and is being used by automotive com-
panies [21]. Other work has investigated design-level verification
of Simulink models [9, 16, 19, 40, 48]. Fons-Albert et al. [20] ap-
plied model-based design to integrated modular avionics using the
XtratuM hypervisor [13], focusing on application partitioning, au-
tomatic code generation and real-time tasking. However, little has
been done on multi-domain code generation and deployment.

Emerging multi-domain vehicle management systems [1, 3, 41,
54, 55] require redesigned control function development tools [51].
Although new approaches are being considered [10, 49], they mostly
target ECU-based systems [8]. In recent years, MathWorks has
presented Simulink Desktop Real-time [37] for real-time simulation
of models. However, it is not a VMS solution. Simulink now supports
Linux and VxWorks [60] tasks, but without any periodic control
mechanism [38]. ModelMap presents an end-to-end model-based
framework for next-generation multi-domain VMS platforms.

7 CONCLUSIONS AND FUTURE WORK

This work presents ModelMap for model-based multi-domain ap-
plication development and deployment in a centralized vehicle
management system. ModelMap consists of Simulink blocks for
binding real-time threads of control, inter-task communication and
CAN /0. It supports the generation of nested binary executables to
encapsulate and execute DriveOS applications. Experiments show
that custom and real-world DriveOS Simulink models, designed
using ModelMap, have predictable end-to-end delays, in keeping
with the requirements of a high performance electric vehicle.

Future work will use ModelMap to integrate additional vehicle
control functions related to powertrain and battery management
into DriveOS. Plans are underway to extend ModelMap interfaces
with a model-driven pipeline programming language for multi-
/manycore systems spanning multiple OS domains.

8 ACKNOWLEDGEMENTS

This work is supported in part by the National Science Foundation
(NSF) under Grant # 2007707. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the NSF.
Special thanks are also given to our colleagues at Drako Motors.

ModelMap: A Model-based Multi-domain Application Framework

REFERENCES

(1]
(2]

[15]

[16]

[18]

[19

[20]

[21

[22]

[23
[24]

[25

[26]
[27]

[28]

[29]

Apex.ai. Customer Success Story: Toyota’s Woven Planet, 2022. https://www.
apex.ai/toyota-woven-planet.

M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte. End-to-end Timing
Analysis of Cause-effect Chains in Automotive Embedded Systems. Journal of
Systems Architecture, 80:104-113, 2017.

L. Belluardo, A. Stevanato, D. Casini, G. Cicero, A. Biondi, and G. Buttazzo. A
Multi-Domain Software Architecture for Safe and Secure Autonomous Driving.
In Proceedings of the 27th IEEE RTCSA Conference, 2021.

P. Berger, J.-P. Katoen, E. Abraham, M. T. B. Waez, and T. Rambow. Verifying
Auto-generated C Code from Simulink. In the International Symposium on Formal
Methods, pages 312-328. Springer, 2018.

H. Bourbouh, P.-L. Garoche, T. Loquen, E. Noulard, and C. Pagetti. CoCoSim, a
Code Generation Framework for Control/Command Applications: An Overview
of CoCoSim for Multi-Periodic Discrete Simulink Models. In the 10th European
Congress on Embedded Real Time Software and Systems, Toulouse, France, 2020.

O. Burkacky, J. Deichmann, G. Doll, and C. Knochenhauer. Rethinking Car
Software and Electronics Architecture. McKinsey & Company, 2018.

O. Burkacky, J. Deichmann, and J. P. Stein. Automotive Software and Electronics
2030: Mapping the Sector’s Future Landscape. McKinsey & Company, 2019.

A. Canedo,]J. Wan, and M. A. Al Faruque. Functional Modeling Compiler for
System-level Design of Automotive Cyber-Physical Systems. In 2014 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 39-46, 2014.
P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert. From
Simulink to SCADE/Lustre to TTA: A Layered Approach for Distributed Embed-
ded Applications. In LCTES, page 10, 2003.

W. Chang, D. Roy, L. Zhang, and S. Chakraborty. Model-Based Design of Resource-
Efficient Automotive Control Software. In the IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 1-8, Nov 2016.

Z. Cheng, R. West, and C. Einstein. End-to-End Analysis and Design of a Drone
Flight Controller. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(11):2404 — 2415, Nov 2018.

Cincoze. DX1100. https://www.cincoze.com/, 2021.

A. Crespo, L. Ripoll, and M. Masmano. Partitioned Embedded Architecture Based
on Hypervisor: The XtratuM Approach. In the European Dependable Computing
Conference, pages 67-72, 2010.

M. Danish, Y. Li, and R. West. Virtual-CPU Scheduling in the Quest Operating
System. In the 17th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 169-179. IEEE, 2011.

A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and A. Sangiovanni-
Vincentelli. Period Optimization for Hard Real-time Distributed Automotive
Systems. In Proceedings of the 44th Annual DAC, 2007.

D. de Niz, G. Bhatia, and R. Rajkumar. Model-Based Development of Embedded
Systems: The SysWeaver Approach. In the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 231-242, Apr. 2006.

P. Devanbu, P.-L. Fong, and S. G. Stubblebine. Techniques for Trusted Software
Engineering. In Proceedings of the 20th International Conference on Software
Engineering, pages 126-135. IEEE, 1998.

M. Diirr, G. V. D. Briiggen, K.-H. Chen, and J.-J. Chen. End-to-end Timing Analysis
of Sporadic Cause-effect Chains in Distributed Systems. ACM Transaction on
Embedded Computing Systems (TECS), 18(5s):1-24, 2019.

B. Finkbeiner, G. Pu, and L. Zhang, editors. Formal Verification of
Simulink/Stateflow Diagrams, volume 9364 of Lecture Notes in Computer Science.
Springer International Publishing, Cham, 2015.

B. Fons-Albert, H. Usach-Molina, J. Vila-Carbo, and A. Crespo-Lorente. De-
velopment of Integrated Modular Avionics Application Based on Simulink and
XtratuM. In Data Systems In Aerospace, volume 720, page 15, Aug. 2013.

J. Friedman. MATLAB/Simulink for Automotive Systems Design. In the Design
Automation Test in Europe Conference, volume 1, pages 1-2, Mar. 2006.

A. Golchin, S. Sinha, and R. West. Boomerang: Real-Time I/O Meets Legacy
Systems. In IEEE RTAS, pages 390-402, 2020.

Intel. Benefits of ECU Consolidation. 2020.

Z.Jiang, S. Zhao, P. Dong, D. Yang, R. Wei, N. Guan, and N. Audsley. Re-thinking
Mixed-criticality Architecture for the Automotive Industry. In IEEE ICCD, pages
510-517, 2020.

J. Koshy. libelf by Example, 2010. http://people.freebsd.org/jkoshy/download/
libelf/article. html.

Kvaser. https://www.kvaser.com/product/kvaser-usbcan-pro-5xhs/, 2022.

J. Lelli, G. Lipari, D. Faggioli, and T. Cucinotta. An Efficient and Scalable Imple-
mentation of Global EDF in Linux. In OSPERT, pages 6-15, 2011.

Linux. fexecve - Execute Program Specified via File Descriptor, 2022. https:
//man7.org/linux/man-pages/man3/fexecve.3.html.

Linux. memfd_create - Create an Anonymous File, 2022. https://man7.org/linux/
man-pages/man2/memfd_create.2.html.

"
fla’

[46]
[47]

[48

[49]

I
&

[58

[59

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a
Hard Real-time Environment. Journal of the ACM (JACM), 20(1):46-61, 1973.

H. Lu. ELF: From The Programmer’s Perspective, 1995.
MathWorks. Block Target File Methods, 2022. https://www.mathworks.com/

help/rtw/tlc/block-target-file-methods.html.

MathWorks. Call Custom C/C++ Code from the Generated Code, 2022. https:
//www.mathworks.com/help/coder/ug/call-cc-code-from-matlab-code.html.
MathWorks. Create a Basic C MEX S-Function, 2022. https://www.mathworks.
com/help/simulink/sfg/example- of-a-basic- c-mex-s-function.html.
MathWorks. Create Block Masks, 2022. https://www.mathworks.com/help/
simulink/block-masks.html.

MathWorks. Generate Source and Header Files with a Custom File Processing
(CFP) Template, 2022. https://www.mathworks.com/.

MathWorks. Simulink Desktop Real-time, 2022. https://www.mathworks.com/
products/simulink- desktop-real-time.html.

MathWorks. Spawn Task Function as Separate Linux Thread, 2022. https://www.
mathworks.com/help/supportpkg/armcortexa/ref/linuxtask.html.

MathWorks. Using Function-Call Subsystems, 2022. https://www.mathworks.
com/help/simulink/ug/using-function-call-subsystems.html.

B. Meenakshi, A. Bhatnagar, and S. Roy. Tool for Translating Simulink Models into
Input Language of a Model Checker. In Formal Methods and Software Engineering,
volume 4260, pages 606-620. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
Mercedes-Benz. MB.OS is the "Next Big Thing" - Interview with Dr. Michael
Hafner, 2022. https://group.mercedes-benz.com/careers/about-us/mercedes-
benz-operating- system/michael-hafner.html.

C. Miller and C. Valasek. Adventures in Automotive Networks and Control Units.
Def Con, 21:260-264, 2013.

Newlib. The Newlib Homepage, 2022. https://sourceware.org/newlib/.

C. Pagetti, J. Forget, H. Falk, D. Oehlert, and A. Luppold. Automated Generation
of Time-Predictable Executables on Multicore. In the 26th ACM International
Conference on Real-Time Networks and Systems, pages 104-113, France, Oct. 2018.
C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron. The ROSACE Case
Study: From Simulink Specification to Multi/Many-Core Execution. In the 19th
IEEE RTAS, pages 309-318, Apr. 2014.

R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer. Look Mum, No VM Exits!
(Almost). arXiv preprint arXiv:1705.06932, 2017.

F. Reghenzani, G. Massari, and W. Fornaciari. The Real-time Linux Kernel: A
Survey on PREEMPT_RT. ACM Computing Surveys (CSUR), 52(1):1-36, 2019.

R. Reicherdt and S. Glesner. Formal Verification of Discrete-Time MAT-
LAB/Simulink Models Using Boogie. In Software Engineering and Formal Methods,
volume 8702, pages 190-204. Springer International Publishing, Cham, 2014.

D. Roy, M. Balszun, T. Heurung, S. Chakraborty, and A. Naik. Waterfall Is Too
Slow, Let’s Go Agile: Multi-domain Coupling for Synthesizing Automotive Cyber-
Physical Systems. In ICCAD, pages 1-7, Nov. 2018.

J. M. Rushby. Design and Verification of Secure Systems. ACM SIGOPS Operating
Systems Review, 15(5):12-21, 1981.

K. Shigematsu, T. Sekisue, and K. Tsuji. The Automotive System Simulation by
Using Multi Domain Modeling Technique. In 2007 European Conference on Power
Electronics and Applications, pages 1-8, Sept. 2007.

H. Simpson. Four-slot Fully Asynchronous Communication Mechanism. IEEE
Computers and Digital Techniques, 137:17-30, January 1990.

Simulink. Extending Embedded and Generic Real-Time System Target Files,
2022. https://www.mathworks.com/help/physmod/simscape/ug/extending-
embedded-and- generic-real-time-targets.html.

S. Sinha, A. Golchin, C. Einstein, and R. West. A Paravirtualized Android for
Next Generation Interactive Automotive Systems. In Proceedings of HotMobile,
pages 50-55, 2020.

S. Sinha and R. West. Towards an Integrated Vehicle Management System in
DriveOS. ACM TECS, 20(5s):1-24, 2021.

J. Sommer and R. Blind. Optimized Resource Dimensioning in an Embedded
CAN-CAN Gateway. In the International Symposium on Industrial Embedded
Systems, pages 55-62. IEEE, 2007.

B. Sprunt, L. Sha, and J. Lehoczky. Scheduling Sporadic and Aperiodic Events in a
Hard Real-time System. Technical report, Carnegie-Mellon University, Pittsburgh,
PA, Software Engineering Institute, 1989.

R. West, Y. Li, E. Missimer, and M. Danish. A Virtualized Separation Kernel for
Mixed-Criticality Systems. ACM Transactions on Computer Systems, 34(3):8:1-8:41,
June 2016.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, et al. The Worst-case Execution-time
Problem — Overview of Methods and Survey of Tools. ACM Transactions on
Embedded Computing Systems (TECS), 7(3):1-53, 2008.

Wind River. VxWorks | Real-Time Operating System (RTOS), 2022. https://www.
windriver.com/products/vxworks.

