Exploiting Temporal & Spatial Constraints on Distributed Shared
Objects*

Richard West, Karsten Schwan, Ivan Tacic & Mustaque Ahamad

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332

Abstract

Gigabit network technologies have made it possible
to combine workstations into a distributed, massively-
parallel computer system. Middleware, such as dis-
tributed shared objects (DSO), attempts to improve
programmability of such systems, by providing globally
accessible ‘object’ abstractions. Researchers have de-
veloped consistency protocols for replicated 'memory’
objects. These protocols are well suited to scientific
applications but less suited to multimedia or group-
ware applications. This paper addresses the state shar-
ing needs of complex distributed applications with (1)
high-frequency symmetric accesses to shared objects,
(2) unpredictable and limited locality of accesses, (3)
dynamically changing sharing behavior, and (4) poten-
tial data races. We show that a DSO system exploit-
ing application-level temporal and spatial constraints
on shared objects can outperform shared object proto-
cols which do not exploit application-level constraints.
We compare our S(emantic) DSO against entry consis-
tency using a sample application having the four prop-
erties mentioned above.

1 Introduction

Gigabit network technologies have made it possible
to combine workstations into a distributed, massively-
parallel computer system. These platforms are diffi-
cult to program, because implementors must explic-
itly code complex message passing protocols to ex-
change shared state information between processes.
Distributed shared objects (DSO) have the potential
of simplifying the implementation of such shared state,
by providing globally accessible ‘object’ abstractions.
A run-time system is responsible for maintaining con-
sistency across distributed object components.

Early research on distributed shared objects con-
cerned ‘memory’ objects accessible via ‘read’ and

*This work is supported in part by the Engineering and Phys-
ical Sciences Research Council grant 92600699 and DARPA con-
tract DABT63-95-C-0125.

‘write’ operations (DSM) [1] or ‘fragmented’ objects
offering relatively simple operational interfaces[2, 3].
Since then, object-based research has moved toward
more general representations of shared abstractions, in-
cluding the support of arbitrary type hierarchies in ob-
ject access[4]. Simultaneously, researchers have inves-
tigated the efficient implementation of DSM, including
the development of efficient consistency maintenance
protocols[5, 6, 7, 8, 9], experimentation with alterna-
tive representations of shared memory pages[10] and
with alternative methods for dealing with specific im-
plementation issues, like false sharing[11].

This paper focuses on the required consistency
of logically shared state information in complex
distributed applications that range from irregular
parallel scientific codes to distributed groupware
environments[12]. Specifically, applications consid-
ered in our research include (1) distributed multime-
dia games; (2) virtual environments; (3) distributed
real-time command and control; and (4) high per-
formance applications exhibiting dynamic data access
patterns[13]. The characteristics of such applications
relevant to our work are:

e Poor and unpredictable locality: Distributed pro-
cesses may read and write arbitrary shared objects
at any time, thereby making it difficult to cache
shared state.

o Symmetric data access: All processes can read and
write ‘memory’ objects, unlike in an asynchronous
client-server system, where the clients might only
be allowed to read and the server can read and
write to shared objects.

e Dynamic changes in sharing behavior: Accesses
to shared objects change with time.

e Data races may occur: Data races occur when
two or more processes attempt to access the same
memory location, where at least one process is per-
forming a ‘write’ to that location[14, 6].

These characteristics lead to differences in assumptions

compared to past research on DSM systems. Most no-
tably, existing DSM systems assume that the programs
using them are data race free, because this property is
easily guaranteed if programs synchronize on access to
shared state. However, it is not easy to avoid data-
races in the more complex multimedia or collaborative
applications investigated in our work[15].

The central tenet of our work is that high levels
of concurrency and scalability for complex distributed
applications may be attained if programmers can ex-
ploit the specific semantics of these applications when
implementing and using shared state abstractions. In
order to focus on the exploitation of application-level
semantics, we utilize the relatively ‘simple’ model of
shared 'memory’ objects (e.g., bitmaps) accessed with
‘read’ and ‘write’ operations and not subject to run-
time resolution of type hierarchies. For such shared
abstractions, application-level semantics are used for
deciding when and who should be informed of updates
to them. In particular, we define the notions of ’tem-
poral’ and ’spatial’ consistency, which jointly capture
a wide range of consistency knowledge and constraints
about shared state in complex distributed programs.
A S(emantic)-DSO system supporting efficient encod-
ings of temporal and spatial consistency knowledge
is developed. Novel consistency protocols using this
knowledge are implemented and evaluated in compari-
son to protocols not using such information. With the
S-DSO system, we then show that complex distributed
applications using it perform comparably well to pro-
grams using explicit message passing, with improved
programmability compared to such programs.

In the remainder of this paper, we first present a
sample distributed program that is representative of
the complex distributed applications addressed by our
research. The notions of ‘temporal’ and ‘spatial’ con-
sistency are then defined, followed by a description of
the S-DSO system in Section 3. The S-DSO system
and novel consistency protocols using these notions are
evaluated in Section 4 in comparison to a well-known
DSM protocol, entry-consistency (EC)[5]. Section 5
describes related work, while conclusions and future
research appear in Section 6.

2 Memory Consistency for Interactive
Distributed Applications
2.1 A Sample Application

Our sample application is a multi-player game with
a shared environment (see Figure 1), derived from com-
plex command and control applications and from inter-
active distributed simulations. The object of the game
is for each player to maneuver her team of tanks to
some known goal as quickly as possible, while pick-

ing up bonus items and avoiding obstacles and enemy
tanks along the way. At any one time, each player
need only know about the positions of enemy tanks in
close proximity, since these tanks pose a threat to the
local team. Novel characteristics of this application
include its exploitation of user-specified attributes to
improve the performance of consistency maintenance
for its replicated objects, its high levels of concurrency
and asynchrony while performing what appear to be
sequentially consistent actions on shared data, and its
scalability in terms of the amounts of data shared as
well as the number of parties accessing shared data.
The game’s efficient implementation utilizes a looka-
head consistency protocol developed using S-DSO’s at-
tribute infrastructure. We use the term ‘lookahead’ to
describe any protocol that has the ability to predict
the future times at which groups of processes must ex-
change information regarding modifications to shared
objects that each process may later need. Our looka-
head protocol’s realization exploits spatial and tempo-
ral application-level semantics to improve the game’s
concurrency and asynchrony in execution. Namely,
with lookahead consistency, a process communicates
only with the subset of other processes currently ac-
cessing the objects it must know about in the immedi-
ate future. Moreover, such processes do not synchro-
nize at the access to a shared object unless they require
knowledge about that object’s current state. Thus, in-
formation about a shared object is only made known to
a process if and when it is required. The ‘spatial’ con-

e i ———

¥
|
1]

‘ .:._:_.__-:.“
e e PRy

LI

i L
- T = |
sl | r SR

[s

&
e _
i >

-
_ B S s P

Figure 1: A sample distributed multimedia applica-
tion: a video game

straints on consistency for this application are well de-
fined. Namely, if one team’s tanks move to within dis-
tance d of another team’s tanks, each such team must
know the exact position of the other team. When tanks

are separated by a distance larger than d, it is not nec-
essary to update each team with the locations of enemy
tanks. From this example, it is clear that such formula-
tions of ‘spatial’ locality are possible only in reference
to application-level program semantics. Clearly, the
2D shared environment used in the interactive game
gives rise to fairly simple functions with which spatial
consistency constraints may be computed, and simi-
larly straightforward formulations may be found for 3D
shared environments like those used in shared virtual
environments. Even scientific applications exhibit such
spatial consistency constraints, as is evident in n-body
simulations, where the gravitational effects of bodies
on each other are considered only when two bodies are
within minimum distance d of each other. Likewise,
molecular dynamics simulations tend to consider only
those interactions of molecules within some known cut-
off radius.

The distributed game exhibits the four features de-
scribed in Section 1. Firstly, there is poor and unpre-
dictable locality to shared objects, where each object
is at the granularity of a team’s tank. Secondly, each
user can manipulate her own team of tanks indepen-
dently of other users, which results in symmetric data
accesses. Thirdly, at any point in time, one team is
only concerned with a subset of all possible shared ob-
jects within range, but that set of objects may change
with time. Consequently, the DSO system must deal
with dynamic changes in sharing behavior. Finally,
data races may occur, since two tanks may attempt to
move to the same location in the shared environment.

2.2 Temporal and Spatial Consistency

All DSM systems deal with temporal consistency.
Temporal consistency determines when (and in what
order) changes to a shared object are made visible to all
processes interested in that object. However, this says
nothing about which processes should be informed of
changes, and a system that does not utilize such knowl-
edge can only assume that changes must be known by
all processes that have a copy of the shared resource.
Spatial consistency considers this latter problem.

Spatial consistency determines which processes
should be updated with changes to shared objects
based on the locations of those objects in the shared
space. For example, a contiguous block of memory,
such as an array, may be shared between two processes
P; and P;. A write to any element of this memory by
P; should be made visible to Pj, if the change is to an
element in a range of elements that P; needs to know
about. Likewise, if two moving objects in a virtual en-
vironment are within a certain distance of each other,
each object must know about the other. This ‘spatial’
consistency property is stated more precisely below in

the context of the distributed game.

Consider a process P; that writes to a location x
at time ¢. At time ¢ + 7, P; reads location x and,
based on the value read, generates a write to one of
two possible locations, y or z. Alternatively, P; may
decide to write to location y no matter what the value
of z, but the actual value written to y does depend on
the value P; sees at . Thus, we have a dependency
between the write of P; at time ¢ and the write of P;
at time ¢ + 7, based on the read of x by P; also at time
t + 71. However, if P; writes to a location 2’ at time
t, out of the range of necessary locations that P; must
know about for its next operation, P; can avoid being
updated with the new value at location z’. Spatial
constraints permit P; and P; to see inconsistent views
of the value at =’ at time ¢ + .

Defining the value of 7 is critical for the performance
of a system in which updates must be exchanged in this
manner. Between ¢ and ¢t + 7, P; and P; can be incon-
sistent, but at t+7 they must both see the same values
in all locations that affect their next write operations.

We can define 7 as the interval of time in which two
or more processes may concurrently perform a write
operation. These write operations will be based on the
states of each process’ local copy of the shared environ-
ment at time ¢t. Only at time t + 7 will each process P;
be required to synchronize with those processes that
have generated write operations that may affect P/s
operations in the interval [t + 7,t + 27].

In the worst case, each process must barrier syn-
chronize with every other process after each interval 7,
in which each process performed exactly one read of
the shared environment, followed by one write. Syn-
chronization at time ¢ is required for two reasons: (1)
to update the state of each process’ copy of the shared
environment, thereby ensuring any writes in the inter-
val [t,t + 7] are based on correct previous states, and
(2) to identify new locations in the shared environment
where access races may occur as a result of the dynam-
ically changing environment.

The synchronization actions described above do not
eliminate data races, because in any period 7, two or
more processes may be performing concurrent accesses
to the same location, where at least one is a write.
In such circumstances, only one process may access
the common shared object. All other processes must
block or perform access operations on other locations
in shared space. We adopt a simple policy of assigning
integer IDs to processes and block all processes except
the one with the highest ID.

1This assumes the real-time taken to perform a read before a
write is negligible.

2.3 Conventional Consistency Protocols

Previous consistency protocols for DSM systems
have been designed for scientific rather than multime-
dia or groupware applications. Three prominent pro-
tocols are causal memory[6], entry(EC)[5], and lazy
release consistency (LRC)[8].

In causal memory, data race avoidance using lock
management schemes can severely curtail the poten-
tial levels of asynchrony, concurrency, and scalability
of applications.

Entry consistency (EC) explicitly deals with data
races by associating distributed locks with shared ob-
jects, thereby enforcing consistency among those ob-
jects while also permitting the concurrent execution
of processes that lock disjoint sets of objects. How-
ever, in comparison to our ‘lookahead’ schemes, entry
consistency does not deal well with multiple shared ob-
jects that have spatial relationships subject to dynamic
change. Namely, any process requiring access to multi-
ple and consistent objects must explicitly acquire locks
on these objects prior to operating on them. The block-
ing overheads of lock acquisition can be severe if the
number of required locks is large. In addition, poten-
tial deadlocks must be resolved.

Like EC, LRC also uses locks to synchronize ac-
cesses to shared objects and thereby, enforce consis-
tency. With LRC, updates to shared data are propa-
gated when locks are transferred between processes.
However, unlike EC, LRC does not explicitly asso-
ciate shared data items with synchronization primi-
tives, so that it must include information concerning
the changes to all shared data objects with lock opera-
tions. We therefore, do not compare LRC performance
to the S-DSO approach.

3 The S-DSO Framework
3.1 System Description

The S-DSO infrastructure enables the specification
and use of application-level consistency semantics in
conjunction with the execution of consistency pro-
tocols. Specifically, it permits end users to write
application-specific functions, called semantic func-
tions or s-functions, that can be invoked by consis-
tency protocols. These functions allow users to state
when each process must see the most recent updates
to which of the objects being shared, thereby elimi-
nating unnecessary message exchanges and increasing
asynchrony, concurrency, and scalability in distributed
applications. Namely, an s-function calculates the fu-
ture times at which a process must send to and receive
from other processes the updates to the various objects
being shared. S-functions are stated using the S-DSO
system’s exchange call:

void exchange (obj_t *shared_obj, boolean resync_flag,
send_t how, void (*s_func) (), any_t arg);

The exchange function takes, as its first argument,
a pointer to the shared object. If ‘resync_flag’ is true,
then exchange() will wait for all remote processes that
receive updates at the current (logical) time to ex-
change any object updates they have made since the
local process last exchanged with them. S-DSO uses
s_func to calculate when to exchange (and, hence, re-
synchronize) in the future with the processes with
which it has just performed exchange operations. Since
s_func is specified by the user, it may convey to the
consistency protocol the semantic attributes it should
use for calculating future synchronization times with
other processes. The arg argument to exchange() is
the argument associated with s_func. The purpose of
‘resync_flag’ is two switch between two modes of oper-
ation: push and push-pull. If it is true, a synchronous
push-pull is used. If it is false, exchange simply pushes
changes out to appropriate processes, and the local pro-
cess continues to execute asynchronously.

The exchange function is used as follows. Every
time an application process modifies a shared object, it
calls exchange(), and a logical system clock is advanced
one time-tick. Each process maintains a local logical
clock that essentially counts phases of the local process
(i.e., the number of distinct periods of time, 7, in which
one modification to a shared object requires updates
to be sent to remote processes either now or some nr
periods in the future). This definition of 7 is consistent
with the definition in Section 2.2. The modified object
is referenced by the first argument to exchange(). The
S-DSO system can use the s-function specified in the
exchange call to determine whether or not the updated
object information should be sent to remote processes
that have a local copy of that object.

Diffs

G g Wy Gy o WO
T -
—

—

pof—(| =0] J—~

o]
A
B
B

n process slots
Figure 2: A sample slotted-buffer at local process 2.

There is nothing to send to process 3.

S-DSO maintains a time-ordered list of (exchange-
time, process) pairs for each process that must be up-

dated with object modifications in the future. The ob-
ject modifications themselves must be buffered if they
are not immediately sent to remote processes. Accord-
ingly, S-DSO maintains a slotted buffer at each process
for outstanding modifications to be exchanged with re-
mote processes (see Figure 2). There is one slot in the
buffer for each remote process. To reduce buffering
needs, the buffered changes are diffs of the state of
each object since their previous modification. In each
slot is the list of modifications about which the corre-
sponding process must be informed when it needs the
latest information on those objects. S-DSO uses the
s-function to calculate the times at which each list of
buffered changes must be flushed (i.e., sent to the cor-
responding remote process). With this model, object
changes are not sent to processes that will never need
them. Furthermore, exchange() only exchanges with
the subset of processes that need to know the changes
immediately. Also note that each process may need
knowledge of different objects at different times. This
implies that the buffered changes maintained by S-DSO
differ across processes at any one point in time. Fur-
thermore, S-DSO can be tuned to merge multiple diffs
to the same object into one diff since the last exchange
with a given process. This kind of optimization is es-
pecially useful for real-time applications and games,
since many such applications will not consider ‘old’
values when newer values of shared objects are avail-
able. Last, observe that an application process does
not explicitly specify which processes receive changes
to shared objects. Instead, the s-function is used to
determine who receives the information.

To override the multicasting capabilities of ex-
change(), the how argument can be set to ‘broadcast’.
This forces the modifications to the object referenced
by shared_obj as well as all buffered modifications to
be immediately flushed to all remote processes. Under
normal operation, the how argument is set to ‘multi-
cast’.

The exchange() function will update remote object
copies for all objects that must be updated at the
current time. If the resync_flag is true, exchange()
will then block until all such remote processes have
exchanged their buffered modifications with the local
process. At this point, the local process is consistent
with the remote processes involved in the exchange, for
those objects just exchanged by this group of processes.
The exchange() function will then use the s-function to
recalculate (for each local process) the future time at
which it must re-exchange information with this same
set of processes. Note that every time an application
process calls exchange(), it may do so with a different
s-function.

3.2 Lookahead Consistency

We have implemented several semantic-based con-
sistency protocols using the S-DSO system. These pro-
tocols are tailored to the sample video game described
in Section 2.1. The first protocol, called BSYNC,
broadcasts all object updates to every other process
after each object modification. The s-function for this
protocol is only used to establish when data-races can
occur and thus avoids them without recourse to a lock-
ing protocol. Each time the local process broadcasts a
synchronous update, it blocks until all other processes
have responded with their updates. In this way, each
process exchanges with every other process after each
object modification. When two processes are in con-
tention for the same object?, we arbitrarily block the
process with the lowest ID, while the other process gen-
erates an event that potentially modifies the common
object. During update exchanges, blocked processes
simply exchange control (SYNC) messages and wait
for all other processes to respond with their data up-
dates and/or SYNC messages. Unblocked processes
send a SYNC control message paired with a data mes-
sage. SYNC messages delimit one logical clock phase
from the next.

In any one time quantum 7, the BSYNC protocol al-
lows all processes to perform concurrent object writes,
with each process performing at most one object mod-
ification before broadcasting its updates and waiting
for responses from everyone else. Under this policy, a
process can be executing in a time quantum at most
one 7 earlier or later than any other process. Thus,
all processes’ logical clocks are synchronized to within
one time-tick, and their real-time clocks are synchro-
nized to within 7 seconds. This means that integer-
valued logical timestamps must be sent with each up-
date, to ensure that any early updates (by at most one
logical time-tick) are not applied to object copies too
soon. This also means that each process must buffer
at most one early message from every other process.
Unlike other consistency protocols, BSYNC does not
require vector-timestamps and does not require un-
bounded buffer space for early update messages.

We also developed two lookahead protocols,
MSYNC and MSYNC?2 that use the exchange-list and
slotted-buffer provided by S-DSO. In the video game
application, the s-function for MSYNC computes the
logical exchange times with each process (i.e., team
of tanks) by halving the distance between the near-
est tanks in any two teams. This approach is based

2For our application, this occurs when two enemy tanks are
within one block of each other. In this case, a block is a sin-
gle object in a two-dimensional array representing the shared
environment for the tanks.

on the assumption that, in the worst-case, one team’s
closest tank to an enemy will always move towards the
other team’s closest tank, and vice versa. Every logi-
cal time-tick, each team’s tank moves from one block
to another in the shared virtual environment. In the
context of the video game, MSYNC assumes that any
enemy tank in the same row or column of the shared
environment as a local tank can potentially affect a
local tank’s next operation. MSYNC2 refines this as-
sumption by only exchanging tank locations and their
image information with those processes whose tanks
could have moved into the same row or column as a
local tank, and the distance to those enemy tanks is
less than d blocks.

4 S-DSO Experimental Evaluation

All measurements presented in this section are con-
ducted on a cluster of 16 SGI Indy workstations (each
with a single MIPS R4400 processor and 64MBytes of
memory) connected via 10Mbps Ethernet, and using
TCP. In each of the experiments, the video game is
configured to run non-interactively, and the 2D shared
environment consists of 32x24 blocks (shared objects).
There is one team per process and one process per
physical processor, so that every process runs on its
own machine in the workstation cluster. In all cases,
team size is fixed to one tank. Each tank’s objective
is to reach the goal as quickly as possible, while trying
to acquire as many bonus points as possible and avoid
being destroyed by enemy tanks. For correct opera-
tion of the application, it is mandated that each tank
base its decision to move, rotate, or fire at an enemy
by looking a certain number of blocks in each of four
directions: north, south, east and west. This implies
that, at the very least, all blocks within range in each
direction have to be consistent when the correspond-
ing tank looks at the contents of those blocks. Each
tank performs a simple iteration each logical clock-tick:
(1) look at all the blocks within range in each direc-
tion, north, south, east and west; (2) generate a task
to modify a block object; and (3) goto (1), unless the
goal is reached or tank is destroyed. The consistency
protocol ensures that the necessary blocks, in the range
of a tank, are all always consistent.

Figure 3 shows the average execution times (in sec-
onds) of processes, normalized by the average num-
ber of object modifications performed by each process.
Normalization eliminates random effects, such as fa-
vorable locations of tanks (e.g., when their initial lo-
cations are close to the goal). For all cases, we use the
same random seed value to place the teams of tanks in
the shared environment. In all figures, each tank can

0.6

T
BSYNC ——
MSYNC -+--

MSYNC2 -8--
ENTRY -x

05 4

0.4 B

0.2 B

Time per Object Modification
o
w
T
|

0.1 ¥ e

8 10
Number of Processes

Figure 3: Average execution time per process normal-
ized by average number of object modifications

1200 T

x ENTRY -
1000 - g

Number of Message Sends

8 10
Number of Processes

Figure 4: Total control and data message transfers by
each protocol

‘see’ three objects away in each direction®. This means
that for entry consistency, each process must lock 13
objects before its tank can move; one lock is for the
location of the tank itself, four other write-locks are
for all adjacent locations in which a tank might move,
and the other locks are read locks. Locking is neces-
sary to prevent two tanks from attempting to move to
the same block.

From Figure 3, it is clear that entry consistency
performs worse than all of the semantically richer
synchronous ‘lookahead’ protocols, when the number
of processes varies from 2 to 16. From the gradi-
ents of the graphs, it appears that entry consistency
will remain worse than the other three protocols for
greater than 16 processes. Note that MSYNC2 ex-
hibits the highest performance, because its s-function
captures application-level behavior more precisely than
the functions used for MSYNC and BSYNC and

3For brevity, interpret range z’ as corresponding to z visible
objects in each direction.

T
BSYNC ——

Number of Data Message Sends

8 10
Number of Processes

Figure 5: Total data message transfers by each protocol

thereby avoids sending unnecessary updates to remote
processes.

Figure 4 depicts the total number of message trans-
fers for each protocol, as a function of the number of
processes in each experiment. In these graphs, the
number of messages is the total number of control and
data messages used by each consistency protocol. In all
cases, the average data size is the same as the average
control message size; both are 2048 bytes. Once again,
entry consistency performs worse than the other pro-
tocols, since more message transfers take place. The
major overhead to entry consistency is the number of
lock-acquire messages it must send around the network
to acquire all of the objects each process needs for each
of its iterations. With our entry consistency implemen-
tation, the lock-managers for each lock-able object are
evenly and statically spread across all host machines.
With n processes there is a 1/n chance of the lock
manager residing on the same machine as the process
requesting the lock. Thus, as the number of dynami-
cally shared objects increases, the majority of the lock-
acquire messages are sent to remote machines. As a
consequence, for 16 processes and when the number of
shared objects is increased, entry consistency sends far
more control messages than even BSYNC. Once again,
MSYNC2 performs better than all of the other algo-
rithms, at the cost of using a slightly more complicated
s-function algorithm.

Figure 5, shows only the number of data messages
transferred by each protocol, as a function of the num-
ber of processes. It is interesting to note that entry
consistency transfers the fewest number of data mes-
sages overall, in both graphs. The reason lies in the
fact that entry consistency is a ’pull-based’ protocol
that only pulls updates to objects when it is certain it
needs them. The three lookahead protocols are send-
ing updates to objects unnecessarily, even in the case

of MSYNC2. The problem with MSYNC?2 is that it as-
sumes worst-case prediction of the minimum time that
one object modification will affect another. Clearly,
with the tank application, it isn’t certain that two
tanks will ever come within range of each other, but
MSYNC2 assumes that this will eventually happen.
Entry consistency, on the other hand, avoids updat-
ing objects that are never modified.

From experiments, we conclude (without showing)
that the major overheads for entry consistency are ac-
quiring locks, and retrieving object updates upon ac-
quiring those locks to modified objects. The locking
overhead for entry consistency rises when the number
of dynamically shared objects increases, since more
locks have to be acquired each time. For the other
three protocols, the cost of exchanging updates domi-
nates the runtime cost. MSYNC2 has lower overheads
compared to MSYNC and BSYNC because, on aver-
age, each process needs to rendezvous at an exchange
time with a smaller number of other processes. In
all cases communication overheads dominate execution
time, since local processing is minimal.

The effectiveness of any lookahead protocol is de-
pendent on how accurately we can predict the worst-
case time of pairwise accesses by two or more processes
to the same shared object, or at least spatially-related
objects. If the data size is small but the number of
dynamically shared objects is large, it would appear a
lookahead protocol with a suitable s-function allows far
greater concurrency and scalability that a pull-based
protocol like entry consistency. For large numbers of
dynamically shared objects, we believe that entry con-
sistent processes are spending far greater amounts of
time in blocked modes, while waiting for locks that are
potentially held by other processes. Although a looka-
head scheme might send more data messages under the
same conditions, it is able to do so with far less block-
ing overhead and therefore, exhibit better performance
than the entry consistent scheme.

5 Related Work

Yavatkar[16] explores the notion of A-causality[17]
in unreliable networks, supporting multimedia real-
time collaborative applications. A-causality differs
from our work by dealing with the delivery of mes-
sages that respect causal ordering only for messages
received within their deadline-time, A. Messages arriv-
ing greater than A time units after their original trans-
mission are never delivered in such a system. Yavatkar
has built a Multi-Flow Conversation Protocol (MCP)
to support the temporal synchronization of multimedia
collaborative applications, with the explicit ability to
support A-causally-ordered message transfers.

Griffoen et al[18] describes the Unify system for ex-
ploring scalable approaches to designing distributed
multicomputer systems. They mention spatial and
temporal consistency, but their notion of spatial consis-
tency differs from ours in that it determines the relative
order of data contained in various replicated objects,
such as log files, associative and sequentially-ordered
memories. In comparison, this paper’s formulation of
spatial consistency determines when processes should
be updated with changes to shared objects, based on
the locations currently accessed by these processes in
shared space.

6 Conclusions and Future Work

We have implemented a framework, called S-DSO,
which permits applications to specify the semantics of
when and which processes should see updates to shared
memory objects of varying sizes, using additional pa-
rameters associated with object accesses, called ‘at-
tributes’. We have shown that for applications with
dynamic sharing behavior, poor spatial locality, data-
races, and symmetric object accesses, conventional
DSM protocols like entry-consistency may be inade-
quate, particularly when there is a large number of
shared objects.

The S-DSO system presented in this paper will be
one of several configurable substrates of the CORBA-
compliant, distributed object system for high perfor-
mance applications now being developed at Georgia
Tech, called COBS. Once integrated within the COBS
framework, S-DSO applications may execute on het-
erogeneous distributed platforms, across a variety of
network links. As a result of this integration, we ex-
pect to be able to investigate the effects of wide area
and high performance communication media on consis-
tency protocols for the types of applications described
in this paper.

We are also investigating the use of arbitrary graph
structures to capture the spatial relationships between
objects. Each shared object is represented by a graph
node and an edge joins two nodes n; and nj, if the
object represented by n; can be accessed immediately
after the object represented by n;. We are looking
at ways to decide when to update and exchange these
replicated graph structures, along with the changes to
the objects themselves.

References

(1] K. Li, “Ivy: A shared virtual memory system for parallel
computing,” in ICPP, pp. II 94-101, Aug 1988.

[2] C. Clemencon, B. Mukherjee, and K. Schwan, “Distributed
shared abstractions (DSA) on large-scale multiprocessors,”
in Proc. of the Fourth USENIX Symposium on Experi-
ences with Dist. and Multiprocessor Systems, pp. 227246,
USENIX, Sept 1993.

(3]

(4]

(10]

11]

(12]

13]

(14]

(15]

[16]

(17]

(18]

M. Shapiro, “Structure and encapsulation in distributed
systems: The proxy principle,” in Proc. 6th IEEE ICDCS,
Boston, Mass., pp. 198-204, IEEE, May 1986.

J. Siegel, CORBA - Fundamentals and Programming. John
Wiley and Sons, 605 Third Ave, New York, NY 10158. ISBN
0471-12148-7, 1996.

B. N. Bershad and M. J. Zekauskas, “Midway: Shared mem-
ory parallel programming with entry consistency for dis-
tributed memory multiprocessors,” Tech. Rep. CMU-CS-
91-170, CMU, Sept 1991.

M. Ahamad, G. Neiger, P. Kohli, J. E. Burns, and P. W.
Hutto, “Causal memory: Definitions, implementation and
programming,” Distributed Computing, vol. 9, pp. 37-49,
Aug 1995.

K. Birman, A. Shiper, and P. Stephenson, “Lightweight
causal and atomic group multicast,” Tech. Rep. 91-1192,
Department of Computer Science, Cornell University, Feb.
1991.

P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy release
consistency for software distributed shared memory,” in
Proc. 19th ISCA, 1992.

J. K. Bennett, J. B. Carter, and W. Zwaenpoel, “Munin:
Distributed shared memory based on type-specific memory
coherence,” in Proceedings of the 2nd ACM Symposium on
Principles and Practice of Parallel Programming, pp. 168—
176, March 1990.

P. Kohli, M. Ahamad, and K. Schwan, “Indigo: User-
level support for building distributed shared abstrac-
tions,” in Fourth IEEFE International Symposium on High-
Performance Distributed Computing, Aug 1995.

W. J. Bolosky and M. L. Scott, “False sharing and its ef-
fect on shared memory performance,” in 4th Symposium
on Ezxperimental Distributed and Multiprocessor Systems,
pp- 57-71, Sept 1993.

S. Gronemberg and D. Marwood, “Real-time groupware as
a distributed system: Concurrency control and its effect
on the interface,” in Proceedings of the ACM Conference
on Cooperative Support for Cooperative Work, ACM press,
pp. 207-217, ACM, 1994.

J. Wu, R. Das, J. Saltz, H. Berryman, and S. Hiranandam,
“Distributed memory compiler design for sparse problems,”
IEEE Transactions on Computers, vol. 44, pp. 737-753,
June 1995.

S. V. Adve and M. D. Hill, “Weak ordering - a new defini-
tion,” in Proc. 17th ISCA, pp. 2—14, May 1990.

B. Schroeder, G. Eisenhauer, J. Heiner, V. Martin,
K. Schwan, and J. Vetter, “From interactive applications
to distributed laboratories.” Submitted to the Visual Su-
percomputing special issue of IEEE Computational Science
and Engineering - June 1996, 1996.

R. Yavatkar, “MCP: A protocol for coordination and tem-
poral synchronization in multimedia collaborative applica-
tions,” in Proc. 12th IEEE ICDCS, pp. 606-613, IEEE,
1992.

R. Baldoni, A. Mostefaoui, and M. Raynal, “Causal de-
livery of messages with real-time data in unreliable net-
works,” Real-Time Systems, The International Journal of
Time-Critical Computing Systems, vol. 10, pp. 245-262,
May 1996.

J. Griffoen, R. Yavatkar, and R. Finkel, “Extending the di-
mensions of consistency: Spatial consistency and sequential

segments,” Tech. Rep. ¢s248-94, University of Kentucky,
April 1994.

