
Jumpstart: Fast Critical Service Resumption for a
Partitioning Hypervisor in Embedded Systems

Ahmad Golchin
Boston University

golchin@bu.edu

Richard West
Boston University
richwest@bu.edu

Abstract—Complex embedded systems are now supporting the
co-existence of multiple OSes to manage services once assigned
to separate embedded microcontrollers. Automotive systems, for
example, now use multiple OSes to consolidate electronic control
unit (ECU) functions on a centralized embedded computing
platform. Such platforms have the complexity of an industrial
embedded PC, with multiple cores and hardware virtualization
capabilities. This enables a partitioning hypervisor to spatially
and temporally share the physical machine with separate guest
OSes, which manage services of different criticality levels. How-
ever, PC-class hardware incurs a large latency to bootstrap
an OS and associated application-level services. A firmware
BIOS performs a power-on-self-test, and then loads OS images
into memory from a bootable storage device. This latency is
unacceptable in time-critical embedded systems, where important
services must be operational within milliseconds of starting the
system. In this paper, we present Jumpstart, a PC-class power
management approach that minimizes the wakeup delay of a
partitioning hypervisor for use in embedded systems. We show
how Jumpstart resumes critical OS services and tasks from a low
power suspended state in approximately 600 milliseconds, and
reduces full system startup delay by a factor of 23. Additionally,
Jumpstart consumes minimal power compared to approaches
requiring a system boot from a previously powered-off state. By
comparison, an alternative firmware-optimized bootloader, called
Slim, reduces boot latency by a factor of 1.8.

Index Terms—partitioning hypervisors, power management,
ACPI, real-time operating systems

I. INTRODUCTION

Embedded systems are witnessing significant advances in
complexity. For example, modern automotive systems support
10s to 100s of millions of lines of code [16], and have upwards
of 100 electronic control units (ECUs) for chassis, body,
powertrain, infotainment and vehicle control services [21],
[36], [51]. Rather than using separate microcontroller hard-
ware to run individual tasks, embedded systems designers are
looking to consolidate functionality on a centralized com-
puting platform. This is true of automotive systems, which
aim to replace the abundance of ECUs with software tasks
running on a more powerful centralized machine [17], [26].
This potentially saves costs, reduces wiring, and simplifies
packaging in space-limited situations.

Embedded system tasks have varying temporal and spatial
constraints. For example, timing-critical tasks in automotive
systems must complete within tight timing bounds for the
system to remain operational, and they must be sufficiently
isolated from other tasks to ensure appropriate safety integrity

levels are maintained [28]. In the absence of separate hardware
to isolate tasks, a centralized platform must provide other
mechanisms to avoid spatial interference. One approach is to
use hardware virtualization.

PC-class hardware is a low-cost approach to satisfy the
requirements of a centralized embedded system. Modern PCs
feature multicore CPUs with hardware virtualization capab-
ilities (e.g., Intel VT-x, and AMD-V). An embedded PC
supporting a partitioning hypervisor [18], [42], [50] is then
able to assign tasks of different criticality (or integrity) levels
to different guest domains. Unlike traditional consolidating
hypervisors, which share a physical machine among all guests,
a partitioning hypervisor divides machine resources among
separate guests. Each guest then accesses its own processing
cores, physical memory and subset of I/O devices. Tasks
operating in one domain are isolated both temporally and
spatially from tasks in another domain (because they cannot
directly access the same cores, memory and I/O devices).

In this paper, we first introduce our real-time partitioning
hypervisor, called Quest-V [50]. Our hypervisor is being used
to build a centralized automotive system, DriveOS [45], for an
electric vehicle being developed with a partner company. This
system combines the Quest RTOS [19] with Linux to manage
the functional requirements of the vehicle. Separate ECUs are
replaced with a collection of simpler CAN-bus transceivers
that link sensors and actuators to a central PC. Software tasks
are assigned to different RTOS and Linux instances, depending
on their timing and safety requirements.

The major challenge addressed in this paper is the reduction
of startup latency for a partitioning hypervisor running on
PC-class hardware, in the context of an automotive system.
Whereas traditional embedded microcontrollers would be op-
erational within milliseconds of receiving power, a PC takes
tens of seconds to boot an OS and instantiate a task. Current
vehicle users would find the added boot-time latency of a PC-
class system unacceptable, given they are used to vehicles
being operational within milliseconds to a few seconds of
being started. Moreover, critical functions that communicate
with a CAN bus must be operational with low latency to ensure
the vehicle starts in a safe state. The bound on this latency is
dictated by a programmed delay that determines when CAN
networks are active and generating traffic.

While a PC-class system has the overhead of a firmware
power-on-self-test (POST) and the loading of an OS from

bootable storage into RAM, we show how to mitigate much
of this latency using modern power-management techniques
in the context of a partitioning hypervisor. In this paper, we
describe Jumpstart, which enables our vehicle management
system to execute its critical real-time services in several
hundred milliseconds of starting the vehicle.

The contributions of this paper are: (1) a brief explanation
of the partitioning hypervisor used in our vehicle management
system, (2) a power management-aware version of our system,
called Jumpstart, which replaces shutdown and cold boot
operations of our system with suspend-to-RAM (S2R) and
resume operations, in response to a vehicle’s stop and start
events, (3) a portable method for partitioning and safeguarding
the power management features of PC-class hardware in our
hypervisor, (4) a description of the challenges and techniques
to orchestrate S2R and resume operations among our hy-
pervisor, RTOS and Linux, while incurring lower overheads
than a non-virtualized Linux system, and (5) an empirical
demonstration of how Jumpstart prioritizes the resumption
of timing-critical tasks in preference to less-critical services
running in Linux.

We compare Jumpstart with a standalone Linux system
and show that while both consume similar power, Jumpstart
resumes critical tasks with lower latency, despite the overheads
of our partitioning hypervisor. Jumpstart is able to resume
a system more than 20 times faster than one requiring a
cold boot. Our approach is the first to support low-latency
resumption of critical services, which are isolated from less
important tasks, in a partitioning hypervisor running on PC-
class hardware.

The next section describes further motivation behind our
system design. Section IV then describes Jumpstart. This is
followed by Section V, which compares the performance of
Jumpstart to standalone Linux and the Slim bootloader [4].
Slim is a firmware developed by Intel to reduce startup latency
for PCs. Related work is described in Section VI, followed by
conclusions and future work in Section VII.

II. MOTIVATION

Our work is focused on the design of complex next-
generation embedded systems. We envision such systems
providing support for hundreds of software threads executing
on multiple cores, and requiring both temporal and spatial isol-
ation according to different criticality or integrity levels [28].
Our vehicle management system, depicted in Figure 1 and
further described in Section IV-A, is designed with this philo-
sophy. It uses relatively low-cost PC hardware to consolidate
ECU functions as software threads on a centralized platform.
Threads are assigned to different sandbox (or guest) domains
according to functional, timing and safety requirements. The
approach allows for automotive systems to be easily upgraded
or extended with new functionality, without the need for
additional ECUs or other hardware components.

Next-generation vehicle management systems are not only
faced with the challenge of ensuring functional, timing and
safety requirements. They are required to startup and shutdown

Real-time Control Tasks and
Sensor Data Processing
e.g., Torque Vectoring,
Battery Management

Quest Kernel

Monitor (Ring -1)

CPU 0, ... , M

Memory

USB-CAN Interface

Serial Port

GUI Applications
e.g., Instrument Cluster,
In-Vehicle Infotainment,

ADAS

Jumpstart
Power

Management

Linux Kernel

Monitor (Ring -1)

CPU M+1, ..., N-1

Memory

GPU

Bluetooth WiFiAudio

Secure
Shared
Memory

R
in

g
3

H
ar

dw
ar

e

Ring 0

Sandbox 0 Sandbox S-1

Jumpstart
Power

Management

Figure 1. Structure of the Jumpstart vehicle management system

when the vehicle is running or parked, respectively. The (cold)
boot-time latency of a PC-class OS is far greater than what
is acceptable in an automotive system. Owners of modern
vehicles accustomed to minimal startup latency after pressing
a dashboard start button or unlocking a door would not accept
the boot delay of a PC-based OS before being able to drive.
CAN buses, sensors and actuators would also need delayed
activation until the system is properly initialized. In a drive-
by-wire system, for example, CAN messages convey steering,
throttle and braking values to actuators, to control vehicle
movement. It would be potentially disastrous to allow un-
initialized communication within a vehicle before the central
management system is bootstrapped.

The boot delays of a PC-class vehicle management system
are made worse in the context of a partitioning hypervisor,
which hosts multiple guest OSes. These startup delays are
avoided if the system is kept running, even when a vehicle is
not in use. However, this consumes unnecessary power from
the finite capacity battery within the vehicle. It is therefore
preferable to shutdown or suspend a system when not in use.
A parked vehicle then only needs to consume enough power
to keep peripheral circuits alive, such as for an alarm.

Fortunately, modern PCs have Advanced Configuration and
Power Interface (ACPI) compliant firmwares that enable the
machine to switch into different global (G#), and correspond-
ing sleep (S#) power states. While a working PC operates in
global ACPI state G0 (or, equivalently, sleep state S0), it is
possible to take advantage of low power sleep states when the
machine is inactive. A PC-class vehicle management system is
able to transition to sleep state S3, to conserve power, when
not in use. The sleep state S3 suspends a system to RAM.
Transition from S3 to S0 enables faster resumption of services
when the vehicle is restarted.

In the context of a vehicle management system, low latency
activation of timing-critical services to manage chassis and
powertrain functions is essential. This is achieved by allowing
real-time services to resume in parallel with legacy services
provided by a system such as Linux.

Figure 2 shows the power consumption in Watts for a
Cincoze DX1100 industrial PC for different ACPI sleep power
states. A DX1100 running our vehicle management system is
being tested in the Drako Motors GTE electric car [20]. ACPI
sleep state S5 is the soft-off state, where the PC uses very little
power but requires a full system reboot on restart. However,
the suspend-to-RAM state, S3, uses almost identical power to
S5 but allows the system to be resumed in a way that bypasses
the firmware POST and bootloading stages. In Jumpstart,
the partitioning hypervisor and guest OSes are suspended to
RAM, enabling critical services to be subsequently resumed
in hundreds of milliseconds.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000

P
o
w

e
r

(W
a
tt
s
)

Time (Seconds)

S0
S3
S5

Figure 2. Cincoze DX1100 power consumption in different ACPI S-states

III. BACKGROUND

A. PC Power Management

The power management capabilities of an Intel-Architecture
PC (as well as modern ARM platforms) are divided between
the Advanced Configuration and Power Interface (ACPI) [7]
and PCI [38] standards. PCI provides the PCI-PM [39] con-
figuration interface to observe and control power states of PCI
devices and buses. PCI-PM follows a set of standard power
states defined by ACPI for devices (D-States) and PCI-BUS
links (B-States). ACPI also defines system-wide power states
such as shutdown, suspend-to-RAM, and suspend-to-disk, as
well as power states for processors. It also specifies a number
of special devices such as an embedded controller (EC), power
button, battery, laptop lid and so forth, and provides a uniform
interface to them. Every IA-PC must implement one EC device
that provides, through ACPI, a programmatic interface to the
glue logic of the motherboard in order to relay electricity
to CPU sockets and buses, and sense wake-up signals such
as from the power button and real-time clock (RTC) alarm.
Figure 3 provides an overview of the ACPI-defined CPU
and system-wide power states as well as allowable transitions
between them. Each allowable transition is depicted as an
arrow. For example, it is possible to reach the G3 state from
G0, G1, and G2, while a transition from G3 to G1 is not
allowed.

The G-states are abstract system-wide power states that
specify what CPU (C) and Device (D) states are available.

G0/S0 - System Working G1 - System Sleeping

C0 - CPU ExecutingC1
CPU Halted

C2
CPU Idle

C3
CPU Idle

S1 - Standby

S3 - Suspend to RAM

S4 - Suspend to Disk
Px States
(DVFS)

Tx States

G2/S5 - Soft Off

G3 - Mechanical Off

Figure 3. ACPI power states

For example, CPU states are only valid in G0 and G1/S1.
CPUs are not powered in higher G-states. While in G1/S3,
only some peripheral devices and buses may be on. In the
G2/S5 shutdown or “soft-off” state, the system consumes a
minimal amount of electricity to keep the EC and a few devices
in standby mode. This enables the PC to power on in response
to events such as pressing the power button, the RTC alarm
expiring, or arrival of a Ethernet packet (for Wake-on-LAN
operation). The G3 “mechanical off” state, on the other hand,
refers to the situation where the PC is unplugged from an
electrical power source.

In the G0 state, each CPU exposes several sub-states, C0
to Cn. CPUs execute in C0, and halt in C1 and deeper
C states. These states differ in power saving and entry/exit
latency. The deeper the C-state, the potentially greater power
saving but longer delay to bring the CPU into an executing
state. C1 is entered whenever the CPU executes an HLT
instruction. Deeper C-states are accessible through Model-
Specific Registers (MSRs). The C0 state is divided into sub-
states called CPU performance states (P-States). In P-states,
the CPU is working, but the CPU voltage and frequency vary.
Again, system software controls P-states through MSRs while
the CPU is in C0. P-states are implemented by the dynamic
voltage/frequency circuitry (DVFS) of the CPU. Similar to
P-states, T-states are sub-states of C0. They save power by
only changing CPU frequency, and are usually used to handle
thermal events. Guest kernels manage their CPU power states
using MSRs granted access by the hypervisor.

As for power management of peripheral devices, ACPI
specifies four D-states, D0 to D3. D0 is the working state
in which the device is fully powered and operational. D3
is the power-off state. Depending on device capabilities, D3
sometimes has two sub-states: Hot-D3 and Cold-D3, with
the latter being equivalent to a complete power-down of the
device. In this case, there is no voltage provided to the device
by the bus. Naturally, all devices support Cold-D3 as when
a PCI bus link is powered down, the devices attached to the
bus will lose power and transition to Cold-D3. D-states differ
in power saving, device context preservation, and entry/exit
latencies. Deeper D-states (D3-cold is the deepest state) lose
more device context information, take longer to resume to D0
and save more power. System software controls the transition

between D-states by accessing PCI-PM capability registers of
PCI devices. The power states of devices are also accessible
through ACPI functions written in ACPI Machine Language
(AML). Firmware developers utilize AML to port such func-
tionalities to different hardware platforms at a higher level of
abstraction. Jumpstart’s partitioning hypervisor uses an open
source implementation of the ACPI Component Architecture
(ACPICA [8]) to interpret AML functions.

The G1 sleeping state consists of three sub-states we refer
to as the ACPI S1, S3 and S4 states. Deeper S-states provide
more power saving at the cost of longer resumption delay. S1
is the lightweight sleep state, with only CPU caches discarded.
S2 is not currently supported by the ACPI standard. S3 has
all system context lost except main memory. In S3, there
is electrical current running into the memory controller in
addition to the EC and wake-up signal sources. All devices
except wake-up sources must be in D3 before transitioning
into S3. S4 saves system context to disk and then discards
non-persistent memory state. The system software manages
S-state transitions via special I/O ports of the EC that are
enumerable through ACPI.

Power management techniques are often categorized into
runtime (a.k.a. Dynamic) and system-wide (a.k.a. Static) meth-
ods. Runtime power management involves transitioning CPUs
and devices into lower power states while the system is run-
ning. For example, Linux provides device usage notification
APIs in the kernel as a way for drivers to help the Operating
System Power Management (OSPM) make opportunistic de-
cisions about switching D-states of the devices. CPU power
and performance states (notably, C and P-states) are usually
manipulated by the kernel, and based on workload and selected
scheduling policies. Unlike runtime power management that
only affects parts of the system, system-wide methods (G1,
G2, and G3), as the name suggests, concern the system as
a whole. Therefore, they cannot be employed by the OSPM
as frequently as runtime methods, but they offer more power-
saving properties.

B. Challenges of Real Power Management

In the context of virtualized environments, power methods
are divided into real versus virtual [47] depending on whether
or not they are passed through to the actual hardware when
issued by a guest operating system.

Performing real power methods in virtualized environments
leads to several challenges when more than one guest OS
has access to underlying host-physical resources. Our vehicle
management system’s ACPI S3 power method is influenced
by the following challenges: (1) The hypervisor must deny
access to the EC by unauthorized guest OSes to prevent
untrusted software from performing system shutdown, reboot
or suspend, thus disrupting the execution of the vehicle’s
critical services when it is not safe to do so. Section IV-B1
describes how Jumpstart provides this capability for its hyper-
visor. (2) The hypervisor must orchestrate system-wide power
transitions to ensure all guest OSes and their services are in
the proper state before entering and after leaving the target

power state. Section IV-B2 elaborates our solution in the case
of the ACPI S3 power method. (3) Resuming the RTOS from
RAM affects the behavior of real-time tasks involved in the
reading and processing of sensors, and producing actuator
values, both in terms of timing and validity of their results.
Section IV-B3 explains how Jumpstart addressed this issue. (4)
Upon resuming from RAM, the vehicle management system
should prioritize the startup of the RTOS over Linux, while
taking advantage of the parallelism offered by the underlying
multicore processing hardware.

As explained in Section IV-A, the Quest RTOS shares
the boot logic of our hypervisor. This design results in the
RTOS being operational in milliseconds after the hypervisor’s
initialization.

IV. JUMPSTART SYSTEM DESIGN

A. Quest-V Partitioning Hypervisor

Jumpstart is an extension to the DriveOS [45] centralized
automotive system, which uses Quest-V to consolidate both
timing-sensitive and non-critical tasks of an electric vehicle
onto an embedded PC. Jumpstart adds power management cap-
abilities to DriveOS, to ensure that critical tasks are resumed
with low latency when a vehicle is started. 1 Example critical
tasks include torque vectoring and battery management, while
less critical tasks include those that manage the Instrument
Cluster (IC) and In-Vehicle Infotainment (IVI).

The Quest-V partitioning hypervisor employs Intel’s virtu-
alization technology (VT-x) to partition hardware resources
such as processor cores, physical memory, and I/O devices
between two or more sandboxes (i.e., guest OS domains). Each
sandbox manages its physical resources independently of other
sandboxes, and without the involvement of the hypervisor.

The hypervisor’s logic (a.k.a. the virtual machine monitor)
is cloned for each sandbox and is only used to bootstrap the
guest kernel, establish secure inter-sandbox communication
channels (ISBC) via extended page tables (EPTs) 2, and on
rare occasions process privileged operations such as guest
faults. Unlike consolidating hypervisors, the virtual machine
monitors are removed from runtime management of physical
machine resources, keeping the trusted code base very small.
A monitor has a text segment of less than 4KB.

Due to the reasons above and given the replication of monit-
ors for each sandbox, the system’s most privileged component
is less susceptible to security attacks than a conventional OS
image running directly on hardware. In the latter case, system
calls must pass control to the host kernel, whereas in our
partitioning hypervisor, these are restricted to the local guest.

Hypervisors such as Xen [11] and KVM [24] rely on Linux
acting as a “Dom0” privileged domain, while ACRN [30] uses
a similar “ServiceOS” to start a guest. In contrast, Quest-
V shares much of its code with the Quest RTOS, which is
paravirtualized for use as a guest. As Quest is responsible for

1 In this paper, we refer to the Jumpstart vehicle management system as
an instance of DriveOS extended with power management capabilities.

2Intel processors with VT-x capabilities refer to these tables as EPTs. AMD-
V processors have similar nested page tables (NPTs).

a relatively small number of critical tasks and devices (e.g., a
USB-CAN interface), its startup latency within Quest-V is far
less than either standalone Linux, or a Linux guest running in
hypervisors such as Xen, KVM and ACRN.

Quest-V combines one or more instances of the Quest RTOS
with one or more instances of Linux to form a mutually
beneficial symbiotic system [22] of S sandboxes. Each RTOS
gains access to legacy functionality that would take many
years to develop, while each legacy Linux system gains real-
time capabilities without significant modification. At the same
time, a small footprint RTOS such as Quest is more easily
verified [23], [32] and certified for timing and functional
correctness than a large system such as Linux adapted for
use in safety-critical domains.

In our vehicle management system, legacy Linux services
provide drivers for accelerators, touchscreens and graphics
controllers, to display IC readings and IVI controls. Linux
services are able to read and adjust vehicle settings via secure
and predictable shared memory channels to the RTOS, which
provides real-time control over a USB-CAN interface. This
interface connects sensors and actuators to the central PC, via
a series of CAN transceivers that replace more complex ECUs.

The potential failure of a single hardware platform is
addressed by introducing backup hardware, albeit with fewer
replicas than ECUs found in current vehicles. Memory bit
errors are addressed by replicating software functions using
techniques such as Triple-Modular Redundancy [33], or N-
versioning [10]. Hypervisor-based fault tolerance ensures one
sandboxed guest is able to recover from failure [14].

As mentioned earlier, the focus of this paper is on Jumpstart,
which provides fast resumption of critical services in the
context of our (automotive) partitioning hypervisor. Jumpstart
uses ACPI-based power management to quickly wakeup the
system from a suspended state.

B. Jumpstart Power Management

As we explained in Section II, the cold boot delay of a PC-
based vehicle management system is unacceptable. Jumpstart
shortens this delay by taking advantage of the low exit-latency
of the ACPI S3 state. Our experiments show that jumpstarting
our vehicle management system with one Quest RTOS and
Linux pair of sandboxes takes about 1 second to resume
both guests, whereas it takes about 25 seconds if the system
undergoes a cold boot. Cold booting a system means starting
it from the ACPI G2/S5 or G3 states. In contrast, a wakeup
from S3 resumes the system from RAM. Figure 4 summarizes
the steps involved in the cold boot and resumption from S3 of
our vehicle management system with color-coded blocks. In
each case, the blocks that are aligned vertically run in parallel.

Upon a cold boot, the firmware performs a Power-On-Self-
Test (POST) sequence, finds the preferred bootable media and
loads the first stage of the bootloader into a conventional
memory location. The duration of POST has a direct correla-
tion with the number of CPU cores and devices of the platform.
More CPUs and devices require more initialization and test
procedures for the firmware to follow. Once the bootloader

starts executing, it bootstraps its second stage from the boot
media. The second stage of the bootloader prepares the state
of the bootstrap processor (BSP or CPU-0), loads the kernel
and initial disk images from the disk into RAM, and calls the
startup routine of the monitor.

Monitor code starts its execution on the BSP, which later
will be assigned to the first sandbox, i.e., Quest in our
case. It then sets up proper paging and memory protection
structures in RAM, enables symmetric multiprocessing (SMP),
and activates necessary processor features to partition the
system hardware resources between our Quest RTOS and
Linux sandboxes. Once the partitioning is done, the monitor
clones itself to run on processors belonging to other sandboxes,
i.e., Linux in this paper. Then each sandbox, in parallel to
others, bootstraps its guest kernel. Both kernels initialize their
paging structures and CPU features and then initialize their
built-in modules. These are indicated by “Setup CPU” and
“Initialize Built-in Modules” labels in Figure 4.

Quest only supports built-in modules and uses a ramdisk
image loaded by its monitor. Once these are loaded and
initialized, the RTOS starts its userspace initialization by
launching an initial process. Linux, on the other hand, must
also load external modules once the filesystem is operational
(at the end of the “Mount Filesystem” block in the figure). This
is followed by Linux loading the initial services and scripts
from the root partition, and finally presenting the user with a
graphical user interface.

During a resume from S3 sequence, different software
components only reload hardware features that do not reside
in memory (such as CPU or device registers), or re-adjust
memory states (such as timers and events) that were affected
by suspending the system. This usually does not include
accessing disk or any media slower than the main memory,
hence, reducing the startup delay. More precisely, upon resum-
ing from the ACPI S3 state, the firmware executes a warm boot
procedure (marked as “WB” in Figure 4) that transitions the
system into a standard initial state, and calls the waking vector
of the software entity responsible for suspending the system to
RAM in the first place. We observed in our experiments that
the system spends less than one-tenth of the time it would
have spent in firmware for a cold boot.

The system entity whose waking vector is called by the
firmware is the monitor of the first sandbox (the Quest RTOS),
which we call the power master. The power master ensures
orderly suspension and resumption of all sandboxes in our
vehicle management system. The waking vector of the power
master recovers the states of the monitors and signals them
to resume their guests. Each guest, in parallel to others,
restores their CPU contexts and re-adjusts their timekeeping
and scheduling structures to account for the time spent in
the suspended state. The guest kernels then recover the last
state of their device drivers (the “Resume Modules” blocks),
and enqueue tasks and pending scheduling events as part of
the “Unfreeze” stage. At this time, only a context switch is
required to resume the userspace programs as their process
address spaces are already in main memory.

Legends

POST Initialize
Boot Media

Load OS
Images

Mount
Filesystem

Initialize External
Modules

Launch System
Services

Firmware Bootloader

Kernel User Space

Setup CPUPartition
Hardware

Initialize Built-in
Modules

Launch
Processes

Monitor

S
3

R
es

um
e

C
ol

d-
B

oo
t

WB

Setup CPU

Unfreeze
ProcessesSetup CPUEnable

SMP

Resume
Modules

Switch
Context

Resume
Modules

BSP (Quest)

BSP (Quest)

AP (Linux)Unfreeze
Processes

Swtich
Context

Restore
Sandbox

Restore
Sandbox

Enable
SMP

Initialize
Sandbox

Partition
Hardware

Initialize
Sandbox Setup CPU Initialize Built-in

Modules
Launch GUI &

User Processes AP (Linux)Bootstrap
Linux

CPU Startup Signal

Figure 4. Sequence of events in cold boot and resuming from S3 in our vehicle management system

1) ACPI Virtualization: Unlike consolidating hypervisors
that present to guests a customized ACPI interface linked to
a virtual device interface model managed by the hypervisor,
Jumpstart modifies the view of the guests into the host physical
memory. All ACPI features (such as devices and their AML
functions) that a guest is authorized to access will be identity-
mapped through EPTs to the guest’s physical memory space,
hence removing the monitor from unnecessary ACPI-related
activities at runtime. However, in the case of AML objects and
functions related to system-wide power methods and runtime
methods of devices allocated to a different sandbox, Jumpstart
maps a modified copy of those memory pages to the guest’s
physical memory. This ensures that a guest cannot see/execute
runtime power management of devices on behalf of another
sandbox, and only the power master accesses the system-
wide power management. In addition to protecting the ACPI
memory-resident objects and functions, Jumpstart enumerates
the I/O ports (such as those of the EC’s or device PCI-PM
ports) during boot time, and registers trap handlers in the
monitor to prevent unauthorized guests from accessing them.
Although Jumpstart’s method for ACPI virtualization comes
at the cost of a full ACPI and PCI enumeration during a
cold boot, it is portable across new hardware platforms and
minimizes hypervisor involvement at runtime.

2) Jumpstart Data and Control Flow: Jumpstart power
management logic is a collection of userspace APIs, kernel
modules, and a hypervisor monitor module. At the userspace
level, it provides alternative system calls to perform system-
wide power state transitions. Although Jumpstart does not
require the guest kernel to natively support the ACPI S3 state,
it requires the guest kernel to export a native kernel API to
handle system calls, suspend and resume tasks, services, and
device drivers. The monitor module then registers a hypercall
handler in order to save and restore the state of the guest and
the host, before and after power-state transitions of physical
CPUs. Finally, the monitor module also adds the proper warm
boot procedure to the monitor logic of the hypervisor.

Figure 5 depicts control and data flow using Jumpstart, for
a full ACPI S3 suspend and resume cycle. Upon cold boot of
our vehicle management system, Jumpstart selects the Quest
RTOS 3 as the authorized entity capable of issuing system-
wide power state transition requests. However, we would like
to allow low-criticality vehicle functions running in Linux

3Or a specific RTOS when there is more than one.

Jumpstart Vehicle Management System
Quest Sandbox

 Jumpstart Syscall

Enter S3

Native Quest Suspend

Suspend Other VMs

Jumpstart Hypercall

Ring 0

Native Quest Resume

Ring 3

ISB
IPC

2

3

4

7

16

6

Linux Sandbox

Enter S3

Vehicle Power Off Request

Save Guest State

Restore Guest State

Ring -1

ACPI S3 Suspend
ACPI S3 Resume

Native Linux Suspend

Jumpstart Hypercall

Native Linux Resume

ISB
IPC

Ring 0

Restore Host State

Warm Boot Vector

Wake-up
Event

VMExitVMExit

VMResumeVMResume

5

10

12

16

7

11

1ISB
IPC

Save Host State

User-Space Jumpstart Kernel Module Jumpstart Monitor Module

Inter-sandbox IPC Sync. PointHardware SignalH/W & F/W

9

13

14

15

8

Figure 5. Jumpstart suspend and resume control and data flow

to issue requests for system-wide power state changes. In
our case, such a request is required to be initiated via a
user interface (e.g., a touchscreen or physical button). This
request is then forwarded by Jumpstart to Quest via a secure
shared memory channel set up by Quest-V. A power state
change request cannot be initiated by software that runs in a
sandbox accessible to outside (vehicle) access, except when
communication with that sandbox is authenticated. This is to
prevent unwanted system suspension attacks.

Now, let us assume that the vehicle’s user interface receives
a command (e.g., enter park mode) that necessitates the
suspension of our vehicle management system into RAM. The
Linux software sends the request to Quest using an inter-
sandbox shared-memory command. This is marked by the
step 1 in Figure 5 and the dashed arrow labeled “ISB IPC”

(Inter-Sandbox Inter-Process Communication) originating in
Linux userspace. 2 Quest prepares the vehicle for a power-
down and sends a suspend-to-RAM request to the Jumpstart
module in the RTOS kernel. 3 Jumpstart uses the native
power management of the RTOS to suspend tasks, services,
and real-time device drivers. 4 It then sends inter-sandbox
messages to the Jumpstart kernel module resident in Linux to
perform effectively the same steps, but in Linux (i.e., the step
5). This is followed by step 6 , which ensures both sandboxes

have suspended their drivers and processes. 7 Then, all
CPUs trap into their monitors using a VMCALL instruction
to Jumpstart’s hypercall handler. 8 The VMExit caused by
this VMCALL instruction saves the state of each guest CPU
into its respective Virtual Machine Control Structure (VMCS)
in RAM. 9 Then the hypercall handler saves the context of
each monitor instance. 10 The monitor of the power master
(the Quest RTOS) enters S3 and halts, while other monitors
just perform an HLT instruction. It is noteworthy that since
our partitioning hypervisor does not need to manage devices
or tasks on behalf guests, the overheads of saving the context
is limited to a few CPU registers used by the monitor logic.

11 When the embedded controller receives a wake-up
signal, it powers the system on and into the ACPI S0 state.
12 The bootstrap processor (BSP) starts executing the warm
boot procedure of the firmware. 13 The firmware then yields
to Jumpstart’s “Warm Boot Vector”, which in turn restores
the context of the power master’s monitor (step 14), sends
initialization inter-processor interrupts (IPIs) to other CPUs,
and 15 returns from the hypercall handler to the guest kernel
using VMResume instructions. Upon reception of the IPIs,
other CPUs perform steps 14 and 15 . 16 At this point, all
CPUs resume the execution of their Jumpstart kernel code that
leads to the resumption of devices and tasks managed by the
respective guest OS. Algorithm 1 provides the pseudocode of
steps 8 to 15 , which every CPU executes in the context
of their corresponding monitor’s hypercall handler. Symbols
prefixed by isb, arch and VM access inter-sandbox objects
visible to all monitor instances, perform architecture-specific
functions and call VT-x specific instructions, respectively.

3) Time management: One of the challenges of resuming
a partitioning hypervisor from RAM is the corruption of
each guest’s temporal events. When the system warm boots,
the timestamp counters of the CPUs are reset to zero. If
not addressed, this could lead to the freezing of the guest
schedulers until the timestamp counter reaches its last value
before the suspension. Normally, in a standalone OS, this is
taken care of by the warm boot vector of the OS, which
is now bypassed by Jumpstart. Moreover, in a symbiotic
system like ours, the Quest RTOS and Linux domains require
timely exchanges of data and control flow. Therefore, not only
must guest timelines be restored, but they also must be re-
synchronized by Jumpstart. For this reason, Jumpstart requires
guest kernels to expose routines to update their timekeeping
via a delta value. This delta value is derived from the last
timestamp counter value before suspension, plus the time spent

in the ACPI S3 state. Fortunately, both our RTOS and Linux
provide such functionality in their kernel.

Specific to Quest is a real-time pipeline scheduling
model [22]. Each pipeline consists of an ordered sequence of
tasks with periods and budgets scheduled on sporadic servers
according to Rate Monotonic Scheduling [31]. A pipeline
represents a vehicle control function with tasks dedicated to
reading and processing sensor values, and generating output
commands. Each task is organized into two stages: an initial-
ization stage and a processing loop. Once a task ensures that
the stream of input data is stable and valid in the first stage, it
enters the loop stage, and produces a predetermined number
of outputs during each period.

When the system suspends to RAM, each pipeline will have
a mixture of raw and processed data in different tasks, which
will not correspond to the physical state of the vehicle when a
subsequent warm boot (WB) operation is performed, leading
to unpredictable behavior. The Jumpstart module in our Quest
RTOS addresses this issue by marking pipeline tasks with a
reset-on-WB flag and resetting their state (i.e., instruction and
stack pointer registers) before performing S2R. Moreover, the
replenishment lists of such tasks in the sporadic server of the
scheduler are reinitialized during WB to avoid initial deadline
misses. Non-pipelined tasks simply continue from where they
were suspended.

Algorithm 1 Jumpstart Hypercall Handler
if event = FINISHED COLD BOOT then

Jumpstart.Nup ← |Jumpstart.pcpu| // num. of running CPUs
return

end if
if event = SUSPEND then

sb← Jumpstart.sandbox[curSB]
∀G ∈ sb.guest state : sb.saved vmcs[curCPU]←VMREAD(G)
∀H ∈ sb.host state : sb.saved vmcs[curCPU]←VMREAD(H)
if curCPU = Jumpstart.BSP then

// Notify other physical CPUs to hypercall this handler
∀C ∈ Jumpstart.pcpu \ curCPU : sendIPI(C, SUSPEND)
isbWaitWhile(Jumpstart.Nup > 1)

end if
VMXOFF(curCPU) // Switches virtualization off on the current CPU

archSaveCPUState(Jumpstart.lowMemBuf [curCPU])
isbAtomicDec(Jumpstart.Nup)
if curCPU = Jumpstart.BSP then

acpiRegisterWakingVector(addr of (wbv))
acpiEnterS3(Jumpstart.wakup events)

end if
archCall(HLT)
wbv: // Warm Boot Vector
archRestoreCPUState(Jumpstart.lowMemBuf [curCPU])
if curCPU = Jumpstart.BSP then
∀C ∈ sb.cpu \ curCPU : sendStartupIPI(C, addr of (wbv))

end if
VMXON(curCPU)
∀H ∈ sb.host state : VMWRITE(H, sb.saved vmcs[curCPU])
∀G ∈ sb.guest state : VMWRITE(G, sb.saved vmcs[curCPU])
isbAtomicInc(Jumpstart.Nup)

end if
return

V. EVALUATION

We evaluated Jumpstart on a Cincoze DX1100 industrial
embedded PC, featuring a 9th generation Intel Core-i7 hexa-
core processor. Our platform features two USB3.1 Host Con-
trollers. One is allocated to the Quest RTOS to communicate
with the vehicle’s sensory inputs and actuation outputs, using
a USB-CAN interface. The other host controller is assigned
to Linux for USB Bluetooth and infotainment services (e.g.,
for smartphone integration). Other physical resources were
partitioned between Quest and Linux according to Figure 1.

We used four cores with hyperthreading disabled but with
VT-x enabled. We also used a specialized Linux based on
kernel version 4.19 to run the IC and IVI applications de-
veloped by our industrial partner. As our Advanced Driver
Assistance System (ADAS) software was not yet implemented
in our vehicle management system when performing these ex-
periments, we ran the open-source opengl-glxcontexts
benchmark to represent a high power demand for the PC.
opengl-glxcontexts creates additional graphical con-
texts to fully utilize the DX1100 integrated GPU. Quest acts
as the power master and exchanges CAN messages through a
Kvaser USBCan Pro 2xHS CAN bus interface connected to
a USB3.1 host controller. The following experiments report
the power usage of our system in various ACPI S-states, as
well as delays involved in switching between these states.
Figure 6 summarizes those delays when booting the system
using different methods investigated in this paper.

A. Jumpstart Power Consumption

For this experiment, we attached a Keithley DMM6500
digital multimeter to the power supply inputs of the DX1100.
The multimeter measured both current and voltage drawn by
the PC, from which we could derive power consumption. After
an initial boot up, we switched the vehicle management system
between running (S0) and sleep states S3 and S5 at 5 minute
intervals. Table I reports the power consumption in each state
of this test, over a total of 10 iterations.

Table I
VEHICLE MANAGEMENT SYSTEM POWER CONSUMPTION IN WATTS OF

ACPI S0, S3 AND S5 STATES

State/Power(Watts) Average Median Standard Deviation
S0 (Running) 22.250 24.106 4.696
S3 (Suspend-to-RAM) 2.473 2.431 0.225
S5 (Shut Down) 2.643 2.690 0.234

As the results suggest, suspending the system into RAM
(S3) achieves as much power-saving as placing the system into
the shutdown state (S5). Moreover, we are able to save more
power in S3 by disabling all unnecessary wake-up sources
such as Ethernet and USB, before transitioning from S0.

Peripheral circuits that control the wakeup capabilities of
the machine are either on or off in S5, depending on the
profile chosen by the UEFI firmware for the EC. Normally,
UEFI firmware allows system administrators to configure what
peripherals stay on while the system is in S5. However, in
the ACPI S3 state, it is possible for software to control

which peripheral circuits maintain power for the purpose of
responding to later wakeup events. In our case, the system
maintains power to the memory, the EC, and the power button
when in S3. However, the UEFI firmware on the DX1100 does
not allow a full shutdown of the USB ports in S5, which to the
best of our knowledge is why the system consumes slightly
less power on average in S3. Note that S5 is in many ways
worse that a mechanical off G3 state in this case, as the latter
consumes no power but both G3 and S5 require a full system
reboot when the system is reactivated.

B. Cold Boot Delays

To better understand the impact of different layers - from
firmware and bootloader to userspace programs - we con-
figured the DX1100 to run Quest and Linux, both independ-
ently and as Jumpstart vehicle management system sand-
boxes. In each case, we measured the time it takes for the
DX1100 to cold boot from the ACPI S5 (shutdown) state
to the first moment that Quest or Linux userspace software
becomes runnable. For Quest, userspace software is required
to handle critical USB-CAN messages, while Linux is required
to run IC, IVI and other non-time-critical services. Hence,
we measure to the point where the RTOS initiates USB-CAN
messaging, and Linux initializes the graphical user interface
(GUI).

We made sure the bootloader (in our case, GRUB) automat-
ically chooses a test system, which runs a series of scripts to
collect measurement data at specific times. The UEFI firmware
uses the timestamp counter of the bootstrap processor (BSP),
which runs at 2.4 GHz in our case, to report the following
times: (1) the start of the UEFI firmware code, (2) the time at
which UEFI finishes loading the bootloader, (3) the start time
of the bootloader, and (4) the launch time of the corresponding
kernel code. We read these values from the ACPI Firmware
Performance Data Table (FPDT).

We instrumented Quest and Quest-V to read the CPU
timestamp values at various points during the initialization of
the hypervisor, kernel, drivers, and userspace programs. As for
Linux, we used the systemd-analyze tool to gather data
regarding the time to initialize the kernel, drivers, userspace,
and the graphical user interface.

We also investigated the cold boot delay of the Slim boot-
loader [4] as an alternative solution that does not rely on ACPI.
Slim provides a highly optimized firmware for faster startup.
It also embeds a lightweight bootloader in the system’s flash
memory to eliminate the need for handling a boot partition
that is usually different from the partition containing the root
filesystem. Unlike Jumpstart, Slim is not portable and supports
only a few hardware platforms, among which, we chose UP2
as it exposes cold boot delay times similar to that of DX1100.
We ran our experiments on an UP2 platform with both the
original firmware and the Slim firmware. Unfortunately, Slim
is not fully compliant with the Multiboot standard, which
is required for our Jumpstart vehicle management system.
Therefore, we only booted Ubilinux 4 on UP2.

 0

 5

 10

 15

 20

 25

 30

Quest (Standalone)

Linux (Standalone)

Quest (Jumpstart)

Linux (Jumpstart)

T
im

e
 (

s
e

c
o

n
d

s
)

Platform: DX1100

 0

 5

 10

 15

 20

 25

 30

Original Firmware

The Slim Firmware

T
im

e
 (

s
e

c
o

n
d

s
)

Platform: UP2

Firmware
Bootloader
Hypervisor
Sandboxes Forked
RTOS Kernel & Userspace
Linux Image Relocated
Linux Kernel
Linux Userspace
Linux GUI

(a) Cold boot overheads

 0

 200

 400

 600

 800

 1000

 1200

 1400

Quest (Standalone)

Linux (Standalone)

Quest (Jumpstart)

Linux (Jumpstart)

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Platform: DX1100

Firmware Warm Boot
Hypervisor Warm Boot
Quest Guest Resumed
Linux Guest Resumed

(b) Resumption (Warm boot) overheads

Figure 6. Summary of startup delays in all scenarios

Each experimental run consists of one hundred power-
on/off cycles for the system under test. We repeated the
experiments until the impact of the last one hundred records
on the average values fell below 0.1%. Figure 6a illustrates
the average latency (in seconds) of each stage for the different
configurations. Tables II and III provide the statistics of each
stage of cold booting Quest and Linux, both as standalone
OSes and as Jumpstart vehicle management system sandboxed
guests on the DX1100, respectively. The startup latency of
Quest, from the moment the kernel starts execution to the
point the first userspace program is launched, is labeled
“Kernel to Userspace” in the tables. For Linux, the “Kernel”
overhead includes the time to initialize the Linux kernel and
all system modules. The “Userspace” delay includes loading
(from the root filesystem) and launching initial systemd
services. Likewise, the “GUI” delay accounts for the time to
start the X11 graphical environment and our vehicle’s user
interface software. Table IV shows the startup delay of UP2
with and without the Slim firmware.

Table II
COLD BOOT DELAYS OF QUEST AND LINUX AS STANDALONE SYSTEMS

(SECONDS)

Stage/Duration (s) Average Median Std. Dev.
Common to Both Configurations

Firmware 7.317 7.314 0.431
Bootloader 0.935 0.907 0.314

Standalone Quest
Kernel to Userspace 5.042 5.033 0.126
Total from Power-On 13.294 13.278 0.379

Standalone Linux
Kernel 7.864 7.826 0.135
Userspace 2.879 2.888 0.045
GUI Initialization 2.662 2.737 0.116
Total from Power-On 21.658 - -

Comparing the load time of Quest in the two configurations
reported in Tables II and III, we see the added overhead
of Quest-V. The cold boot delay of Quest running as a
sandboxed guest is 3.373s more than the standalone boot
delay (16.667 − 13.294s). Unfortunately, Linux 4.19 does

Table III
COLD BOOT DELAYS OF VARIOUS STAGES OF OUR VEHICLE MANAGEMENT

SYSTEM (SECONDS)

Stage/Duration (s) Average Median Std. Dev.
Common to Both Sandboxes

Firmware 7.148 7.101 0.409
Bootloader 1.374 1.333 0.389
Hypervisor Initialization 2.225 2.226 0.001
Sandboxes Forked 2.505 2.506 0.002
Specific to Quest, after Fork and in Parallel to Other Sandboxes
Kernel to Userspace 3.415 3.416 0.003
Total from Power-On 16.667 16.528 0.297
Specific to Linux, after Fork and in Parallel to Other Sandboxes
Kernel Image Loaded 0.476 0.476 0.001
Kernel 7.181 7.162 0.092
Userspace 1.922 1.916 0.027
GUI Initialization 1.690 1.600 0.025
Total from Power-On 24.523 24.422 0.336

Table IV
COLD BOOT DELAYS USING THE UP2 WITH AND WITHOUT SLIM

Stage/Duration (s) Average Median Std. Dev.
Original Firmware with GRUB

Firmware 9.664 9.659 0.074
Bootloader 2.535 2.448 0.189
Kernel 5.322 5.311 0.384
Userspace 9.370 9.430 0.416
Total from Power-On 26.891 26.745 0.455

Slim Firmware and Bootloader
Firmware 2.023 2.045 0.053
Bootloader 0.345 0.344 0.003
Kernel 5.323 5.261 0.277
Userspace 7.661 7.640 0.273
Total from Power-On 15.353 15.293 0.407

not incorporate the use of ACPI FPDT to report firmware
and bootloader delays, and therefore, we could not present
the exact total cold boot delay for the standalone Linux.
However, it is safe to assume that the delay for the firmware
and GRUB to load Linux must be at least the same as that
of the RTOS, since Quest has smaller kernel and ramdisk
image files. Therefore, there is an average added delay of no
more than 2.865s (24.523− 21.658s) when running Linux in
our Jumpstart vehicle management system. The added delays

caused by Quest-V are due to loading both kernels by the
bootloader, partitioning physical resources, and initializing the
sandboxes. Finally, in Table IV, we observed 42.9% reduction
in the system startup time using Slim on the UP2.

C. Warm Boot Resumption Delays

To show the benefits of Jumpstart, we ran another set of
experiments that measure the duration of the resumption path
of Quest and Linux. As before, measurements were taken up to
the point where the RTOS and Linux start user-level services.
These results are then compared with the cold boot delays
reported earlier. Each experiment involves a hundred iterations,
in which we let the OS run normally (in S0) for five seconds,
suspend the system into RAM for five seconds, and collect the
statistics. We performed the experiment for each OS, both in
the standalone and sandboxed configurations. Each experiment
was repeated until the changes made to the average values by
the last run of the experiment - i.e., last one hundred power
cycles - were less than 0.1%.

Figure 6b shows the overheads of different stages to resume
the operation of each system configuration. Tables V and VI
show the time it takes to suspend and resume the OSes to and
from RAM, respectively, as independent OSes and Jumpstart
guest sandboxes.

Table V
SUSPEND AND RESUME DELAYS OF QUEST AND LINUX RUNNING

STANDALONE (MILLISECONDS)

Stage/Duration (ms) Average Median Std. Dev.
Common to Both OSes

Firmware Resume 512.21 512.23 4.40
Quest

Total Quest Suspend 5.69 5.90 0.51
Kernel Resume 32.78 32.81 0.06
Drivers Resume 62.37 62.37 0.01
Userspace Resume 0.59 0.59 0
Total Quest Resume 607.95 607.96 4.45

Linux
Total Linux Suspend 1406.94 1414.92 44.19
Kernel Resume 66.63 66.59 0.63
Drivers Resume 654.24 654.24 5.49
Userspace Resume 7.08 5.78 2.45
Total Linux Resume 1240.16 - -

Table VI
JUMPSTART SUSPEND AND RESUME DELAYS (MILLISECONDS)

Stage/Duration (ms) Average Median Std. Dev.
Common to Both Sandboxes

Total Jumpstart Suspend 218.80 190.36 39.94
Firmware Resume 508.21 508.22 3.55
Hypervisor Resume 33.11 33.03 0.07
Specific to Quest: After Hypervisor Resume and in Parallel to Linux
Quest Guest Resume 62.50 62.50 1.52
Total Quest Resume 603.64 603.66 3.65
Specific to Linux: After Hypervisor Resume and in Parallel to Quest
Linux Guest Resume 507.58 507.23 3.66
Total Jumpstart/Linux Resume 1048.90 1048.81 5.10

Comparing Table V against Table II, we see that the startup
time of Quest decreases from 13.294s to 0.607s. This is more
than 95% decrease in delay and includes firmware latency.
Considering only the RTOS itself, the startup time decreases

from 5.042s (cold boot) to 0.096s (resume), which is a 98%
reduction. This comes at a small 5.69ms cost that we pay to
suspend Quest. For Linux, the startup delay decreases by 94%,
i.e., from 21.658s to 1.240s at the cost of spending 1.407s to
suspend the system to RAM.

To see the impact of Jumpstart, we refer to Tables III and VI.
Based on this comparison, we observe that the startup time of
our vehicle management system has changed from 24.523s to
1.049s, when the Linux sandbox is finally operational. In this
case, Jumpstart reduces the startup time by a factor of more
than 23 (conservatively, a factor of more than 20).

A closer look at Tables V and VI reveals that although
adding Jumpstart capabilities to the Quest-V hypervisor im-
poses a negligible overhead of 33.11ms during resumption, the
Quest sandbox experiences a delay similar to when it resumes
from RAM as a standalone RTOS. The sum of delays to
resume the kernel, drivers and the userspace of the standalone
RTOS reported in Table V is 95.74ms, while the corresponding
delay as a sandboxed guest is 62.50ms. The reason is that our
vehicle management system uses the startup routine of Quest
up to the point of switching to hypervisor mode, and the RTOS
avoids duplicating this stage of initialization.

In the case of Linux, both resumption and suspension
times improve when used as a Jumpstart sandbox. This due
to fewer number of devices that Linux handles, and also
because Jumpstart implements the ACPI S3 power transition
of the whole system in a slightly more efficient manner.
Our standalone Linux takes 1.407s to suspend, while the full
Jumpstart system takes only 0.219s. Again, if we assume
firmware resume delays for Linux that are similar to that of
the standalone RTOS and Jumpstart, Linux takes about 1.240s
to resume from RAM, while Jumpstart takes 1.049s to resume
both sandboxes from main memory.

Summary: The take-home message is that a Jumpstart
vehicle management system resumes faster than a standalone
Linux system and a highly optimized firmware solution such
as Slim, despite the underlying hypervisor and additional
RTOS. Similarly, critical services related to tasks such as
USB-CAN bus initialization complete in Jumpstart’s RTOS
in just over 600 milliseconds, as shown in Figure 6b. USB-
CAN services become operational while less critical IC and
IVI graphical software is still being initialized in Linux.
As Jumpstart’s hypervisor uses the same boot logic as the
standalone RTOS, the boot time delay of our RTOS running
as a guest and standalone is similar. There are several reasons
why suspending and resuming Linux with Jumpstart takes less
time than that of the standalone configuration:

1) In a Jumpstart system, some of the devices are managed
by our RTOS and not Linux. Due to its lightweight nature,
our Quest RTOS handles suspension and resumption more
efficiently. Since the RTOS runs independently and in parallel
to Linux, the time it spends to initialize such devices will not
affect the total system-wide resumption latency.

2) Although the ACPI specification requires OSes to save
and restore the ACPI_NVS memory regions for hiberna-
tion in the ACPI S4 suspend-to-disk state, Linux performs

nvs_save and nvs_restore for ACPI S3 as well. To the
best of our knowledge, this is a work-around for faulty ACPI
firmwares. Jumpstart can be configured to perform this extra
step only for platforms that require that. The DX1100 PC has
a 4MB ACPI_NVS region, and fortunately does not require
OS help to preserve that when suspending the system to RAM.

3) Some platforms require the ACPI functions _PTS (pre-
pare to sleep) and _WAK (wake-up) before and after any
power transition. These ACPI functions help set the state
of the embedded controller within the PC. However, in our
experience, many modern platforms, including the DX1100,
do not require the invocation of _PTS and _WAK, and we omit
these steps in Jumpstart. Moreover, executing these functions
on some platforms such as the DX1100 leads to ACPI runtime
errors [15] that must be contained by the kernel.

VI. RELATED WORK

In this section we describe work related to Jumpstart, which
encompasses partitioning hypervisors, power management,
firmware and bootloaders.

A. Partitioning Hypervisors

Most work on virtualization and power management [27],
[29], [47] approaches the problem of suspending a guest while
the machine maintains operation. For traditional consolidating
hypervisors, which share machine resources among guests,
it is often impossible to power down or suspend a shared
machine unless all guests are able to suspend at the same time.
However, in partitioning hypervisors such as the one used by
Jumpstart, all guests cooperate to achieve one system-wide
goal. Specifically, they work together to implement a vehicle
management system. When a vehicle is not in use, it is possible
to suspend all guests and save power.

Jumpstart uses the Quest-V [50] partitioning hypervisor,
which is similar to Bao [34], Xtratum [18], ACRN [30], and
Jailhouse [42]. As with Quest-V, guests are able to interact
with one another through secure shared memory channels.
However, Jumpstart’s focus is on the use of power manage-
ment for low latency suspending and resuming of guests,
which can be reactivated from a low power state in parallel.

Bao [34] is a static partitioning hypervisor, aimed at mixed-
criticality applications requiring spatial and temporal isolation
in modern multi-core platforms. It is ported to the ARMv8
and RISC-V platforms. Bao implements ARM’s Power State
Coordination Interface (PSCI) [1], which is mainly used for
runtime power management. As with Quest-V, Bao does
not address fast resumption of critical services using power
management techniques. However, it implements a relatively
small footprint hypervisor and uses page coloring techniques
to enable last-level cache partitioning, further isolating tasks
in separate guest domains. Results with Bao show full system
boot-times to be good but far in excess of the resumption
delays using Jumpstart.

Xtratum [18] is another type-1 partitiong hypervisor built
for timing and safety-critical aviation applications that need to
be ARINC-653 [25] compliant. Onaindia et al [41] extended

Xtratum with runtime power monitoring and management to
dynamically reduce power consumption of peripherals and
CPUs without compromising RTOS guests.

Jailhouse [42] uses Linux to bootstrap a system that
provides cells for other guest OSes. Jailhouse relies on Linux
runtime power management to switch power states of devices
that are not shared by more than one inmate. ACRN [30]
functions as both a Type-1 consolidating and a partitioning
hypervisor. As a consolidating hypervisor, ACRN uses a
special Linux ServiceOS to bootstrap other guests referred to
as UserOSes. ACRN presents every launched UserOS with a
fake ACPI firmware and a set of predefined devices that are
managed by the ServiceOS. When running as a partitioning
hypervisor, ACRN is able to launch a UserOS as a UEFI
program, instead of requiring the ServiceOS. In this case,
ACRN grants the UserOS direct access to its resources.
Although ACRN supports system-wide power management, it
is only available when running as a consolidating hypervisor.

For the situations where ACRN is capable of suspending-
to-RAM, its ServiceOS notifies all guests via a virtual UART
communication device. All guests then save their state and trap
into the hypervisor, which performs an ACPI S3 invocation to
suspend the system. Upon resumption, the hypervisor starts
the ServiceOS, which in turn launches the guests from their
previous state. The ServiceOS must start first, as other guests
rely on its drivers to access physical devices using ACRN’s
virtual device interface.

Similar to ACRN, the Xen hypervisor [6] supports suspend-
to-RAM in consolidation mode. However, the interaction with
the power-management interface of the system is performed
by Dom0, rather than the hypervisor itself. The resumption
of unprivileged guest OSes is also carried out once Dom0
is completed. As is the case with Jumpstart and ACRN, all
guests must support suspend-to-RAM and resume-from-RAM
to be able to properly save and restore their state. Dom0 will
wait for a specific amount of time after triggering the full
system suspension for unprivileged guests to save their state.
Otherwise, the system will be suspended, and the unprivileged
guests should be launched again after Dom0 resumes.

The QNX micro-kernel [12] supports runtime power man-
agement of CPU and peripheral devices. The QNX hypervisor
follows the same goal as our work, i.e., consolidating safety
and timing critical vehicle programs into a modern PC plat-
form with multiple CPU cores. However, it does not support
power management at the hypervisor level.

The COQOS Type-1 Hypervisor [5] is designed for ARMv8
SoCs. Similar to Jumpstart’s hypervisor, COQOS supports the
orchestration of guest OSes for suspend-to-RAM. COQOS
is not open source and lacks published documentation about
its implementation or performance details. We are therefore
unable to compare it to Jumpstart.

All the hypervisors mentioned above as well as those
from Windriver [46] and MentorGraphics [35] are suitable
for mixed-criticality application domains. However, none have
focused on the problem of mitigating the long startup delays
inherent with PC-class hardware.

B. Power Management

Brown and Wysocki [15] provide a detailed view of the
suspend-to-RAM implementation in Linux, and discuss ways
to improve the suspend and wake up latency in software. Tian
et al [47] present an overview of ACPI power management and
the implications of using ACPI in virtualized environments for
the system software. They also discuss how system software
should pass ACPI features through to the guests to implement
real power management in such environments. Rush [43] also
argues the benefits of using ACPI S3 to reduce the startup
time of automotive software using standalone Linux.

Jiang et al [29] identified the challenges posed by virtual-
ization on power management in large-scale server systems
that employ consolidating hypervisors. In such environments,
hardware resources are shared among different guests through
a standard virtual device interface. Policies are then needed to
coordinate the suspension of all guests; if one guest remains
active and needs machine resources, then the system cannot
be placed into a low power state.

Other works have investigated dynamic voltage and fre-
quency scaling (DVFS) [40], device power management [49],
and energy-aware real-time scheduling [44]. These techniques
provide potential benefit to our work, but they do not address
power management in a virtualized environment.

C. Systems, Firmware and Bootloaders

Closely related to Jumpstart is work that aims to mitigate
system startup delays. Many such approaches resort to replace-
ment firmware and bootloaders [2], [3], [13], [37].

Minich et al [37] argue that there are at least two and a
half kernels between a Linux guest kernel and Intel-based
PC hardware. These include a UEFI firmware [48], a System
Management Mode (SMM) layer, and a Minix system running
as part of Intel’s Management Engine. Consequently, multiple
layers of device drivers and initialization logic sit beneath
a host OS. The authors propose reducing the UEFI ROM
image of several megabytes to its bare minimum, disabling
SMM or vectoring it to Linux, and then having Linux exclus-
ively performing system initialization. This resultant project
is LinuxBoot [2], which was formerly known as the Non-
extensible Reduced Firmware (NERF) [3]. The main aim of
LinuxBoot is to secure the system from exploitations targeting
firmware, by keeping its footprint small. The precursor to
LinuxBoot is the Coreboot project [13], which aimed at
reducing cold boot latencies of PCs using lightweight open-
source firmware. Unlike Jumpstart, these methods are tightly-
coupled to the hardware platform they run on.

Cloud computing is another domain that requires fast reboot
of virtual machines where short-lived and migratory serverless
applications are commonplace. For example, Agache et al
present Firecracker [9], a virtual machine monitor aimed at
reducing the overheads of launching serverless workloads.
Firecracker achieves a startup delay as low as 150ms by
reducing the memory footprint of VMs and launching them
in the userspace of an already booted Linux. This method is
not suitable for our use cases, because it would require the

hypervisor to be active at all times to start new guest sand-
boxes. Keeping the hypervisor running mitigates the energy
saving benefits when the system is not in use.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents Jumpstart, a method to quickly resume
a suspended PC-class vehicle management system based on
a partitioning hypervisor. While it relies on ACPI power
management techniques it is, to our knowledge, the first
system to report the use of system-wide ACPI S3 capab-
ilities in a partitioning hypervisor. It also does not require
modification to the PC-class firmware, although this would
potentially reduce the startup delay of Jumpstart further at
the cost of limited portability. This paper shows how Jump-
start avoids the costly overheads of cold boot delays on a
PC-class machine. These delays result from firmware-based
machine initialization, bootloading guest OSes and launching
application-specific services. Jumpstart is able to suspend a
system comprising an RTOS and Linux, yielding an order of
magnitude power reduction when a vehicle is not in use. At
the same time, the system is able to restart critical USB-
CAN services in the context of the RTOS within several
hundred milliseconds. Less critical Linux services that manage
graphical tasks are able to execute within approximately 1.0
second of system resumption. Overall, Jumpstart is more than
20 times faster at reactivating a system from a suspended state,
compared to a powered off state.

With Jumpstart, a Linux guest is able to resume execution
faster than an equivalent host Linux on the same physical
machine. This is due in part to the efficiency of Jumpstart’s
resume-from-RAM logic, and the need for Linux to manage
fewer devices when not running as a standalone OS. When
running in the context of Jumpstart, some devices are assigned
to the RTOS, which is able to wakeup in parallel with Linux.
As the RTOS is relatively lightweight, it is able to resume
critical services before Linux is fully operational.

Future work will study activation delays using suspend-to-
disk (ACPI S4) power management for partitioning hyper-
visors, and fast non-volatile memory (e.g., Intel Optane) to
eliminate all power usage during system suspension.

VIII. ACKNOWLEDGEMENTS

Thanks to the shepherd and reviewers for their help improv-
ing this work, which is funded in part by the National Science
Foundation (NSF) Grant # 2007707. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the NSF. Special thanks also to our colleagues at
Drako Motors and Celenum, without whose support this work
would not be possible.

REFERENCES

[1] “ARM Power State Coordination Interface,” 2021, ht-
tps://developer.arm.com/documentation/den0022/latest/.

[2] “LinuxBoot,” 2021, https://www.linuxboot.org/.
[3] “Non-extensible Reduced Firmware,” 2021, https://trmm.net/NERF/.
[4] “Slim Bootloader Project,” 2021, https://slimbootloader.github.io/.

[5] “COQOS Automotive Hypervisor,” 2022. [Online]. Available: https:
//www.opensynergy.com/automotive-hypervisor/

[6] “Xen Hypervisor,” 2022, https://xenproject.org/.
[7] ACPI, “Advanced Configuration and Power Interface - Ver6.0,” April

2015.
[8] ACPICA, “ACPI Component Architecture User Guide and Programmer

Reference - Revision 6.2,” May 2017.
[9] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,

P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight Virtualization
for Serverless Applications,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). Santa Clara, CA:
USENIX Association, Feb. 2020, pp. 419–434. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/agache

[10] A. Avizienis, “The N-version Approach to Fault-tolerant Software,”
Software Engineering, IEEE Transactions on, no. 12, pp. 1491–1501,
1985.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
ACM SIGOPS OSR, 2003.

[12] BlackBerry, “BlackBerry QNX Hypervisor,” 2021, ht-
tps://blackberry.qnx.com/en/.

[13] A. Borisov, “Coreboot at Your Service!” Linux Journal, vol. 2009, no.
186, p. 1, 2009.

[14] T. C. Bressoud and F. B. Schneider, “Hypervisor-based Fault Tolerance,”
ACM SIGOPS Operating Systems Review, vol. 29, no. 5, pp. 1–11, 1995.

[15] A. L. Brown and R. J. Wysocki, “Suspend-to-RAM in Linux,” in
Proceedings of the Linux Symposium, vol. 1, 2008, pp. 39–52.

[16] O. Burkacky, J. Deichmann, G. Doll, and C. Knochenhauer, “Rethinking
Car Software and Electronics Architecture,” McKinsey & Company,
2018.

[17] O. Burkacky, J. Deichmann, and J. P. Stein, “Automotive Software and
Electronics 2030: Mapping the Sector’s Future Landscape,” McKinsey
& Company, 2019.

[18] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned Embedded Archi-
tecture Based on Hypervisor: The XtratuM Approach,” in EDCC, 2010,
pp. 67–72.

[19] M. Danish, Y. Li, and R. West, “Virtual-CPU Scheduling in the Quest
Operating System,” in 2011 17th IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE, 2011, pp. 169–179.

[20] Drako Motors, https://www.drakomotors.com/.
[21] W. J. Fleming, “Overview of Automotive Sensors,” IEEE Sensors

Journal, vol. 1, no. 4, December 2001.
[22] A. Golchin, S. Sinha, and R. West, “Boomerang: Real-Time I/O Meets

Legacy Systems,” in 2020 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 2020, pp. 390–402.

[23] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo,
“CertiKOS: An Extensible Architecture for Building Certified Concur-
rent OS Kernels,” in Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2016, pp. 653–
669.

[24] I. Habib, “Virtualization with KVM,” Linux Journal, vol. 2008, no. 166,
p. 8, 2008.

[25] A. R. Inc., “Avionics Application Software Standard Interface: ARINC
Specification 653,” 2010.

[26] Intel, “Benefits of ECU Consolidation,” 2020.
[27] C. Isci, S. McIntosh, J. Kephart, R. Das, J. Hanson, S. Piper,

R. Wolford, T. Brey, R. Kantner, A. Ng, J. Norris, A. Traore,
and M. Frissora, “Agile, Efficient Virtualization Power Management
with Low-Latency Server Power States,” SIGARCH Comput. Archit.
News, vol. 41, no. 3, pp. 96 – 107, Jun. 2013. [Online]. Available:
https://doi.org/10.1145/2508148.2485931

[28] ISO, “ISO 26262-3: Road Vehicles - Functional Safety - Part 3: Concept
Phase ,” 2011.

[29] C. Jiang, J. Wan, X. Xu, Y. Li, and X. You, “Power Management Chal-
lenges in Virtualization Environments,” in Systems and Virtualization

Management. Standards and the Cloud. Springer Berlin Heidelberg,
2010, pp. 1–12.

[30] H. Li, X. Xu, J. Ren, and Y. Dong, “ACRN: A Big Little Hypervisor for
IoT Development,” in Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, 2019, pp.
31–44.

[31] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[32] M. Liu, L. Rieg, Z. Shao, R. Gu, D. Costanzo, J.-E. Kim, and M.-K.
Yoon, “Virtual Timeline: A Formal Abstraction for Verifying Preemptive
Schedulers with Temporal Isolation,” POPL, vol. 4, p. 31, 2020.

[33] R. E. Lyons and W. Vanderkulk, “The Use of Triple-Modular Redund-
ancy to Improve Computer Reliability,” IBM Journal of Research and
Development, vol. 6, no. 2, pp. 200–209, 1962.

[34] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao:
A Lightweight Static Partitioning Hypervisor for Modern Multi-Core
Embedded Systems,” in Workshop on Next Generation Real-Time Em-
bedded Systems (NG-RES 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

[35] Mentor, “Mentor Embedded Hypervisor,” 2021,
https://www.mentor.com/embedded-software/hypervisor/.

[36] C. Miller and C. Valasek, “Adventures in Automotive Networks and
Control Units,” Def Con, vol. 21, pp. 260–264, 2013.

[37] R. Minnich, G. shun Lim, R. O’Leary, C. Koch, and X. Chen, “Replace
Your Exploit-ridden Firmware with a Linux Kernel,” 2017.

[38] PCI, “PCI Express Base Specification - Revision 2.0,” December 2006.
[39] PCI-PM, “PCI Bus Power Management Interface Specification, Rev 1.2,”

2004.
[40] P. Pillai and K. G. Shin, “Real-time Dynamic Voltage Scaling for Low-

power Embedded Operating Systems,” in Proceedings of the eighteenth
ACM symposium on Operating systems principles, 2001, pp. 89–102.

[41] T. Poggi, P. Onaindia, M. Azkarate-askatsua, K. Grüttner, M. Fakih,
S. Peiró, and P. Balbastre, “A Hypervisor Architecture for Low-Power
Real-Time Embedded Systems,” in 2018 21st Euromicro Conference on
Digital System Design (DSD), 2018, pp. 252–259.

[42] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look Mum,
No VM exits! (Almost),” arXiv preprint arXiv:1705.06932, 2017.

[43] S. A. Rush, “Application of Suspend Mode to Automotive ECUs,” in
SAE International WCX World Congress Experience, 2018.

[44] C. Scordino, L. Abeni, and J. Lelli, “Energy-aware Real-time Scheduling
in the Linux Kernel,” in Proceedings of the 33rd Annual ACM Sym-
posium on Applied Computing, 2018, pp. 601–608.

[45] S. Sinha and R. West, “Towards an Integrated Vehicle Management
System in DriveOS,” in Proceedings of the ACM SIGBED International
Conference on Embedded Software (EMSOFT). Jointly published in
ACM Transactions on Embedded Computing Systems (TECS), Volume
20, Issue 5s, October 2021, Article No.: 82, October 8-15 2021.

[46] W. R. Systems, “Wind River Hypervisor,” 2021,
https://www.windriver.com/products/operating-systems/virtualization/.

[47] K. Tian, K. Yu, J. Nakajima, and W. Wang, “How Virtualization makes
Power Management Different,” in Linux Symposium, 2007, p. 205.

[48] UEFI, “Unified Extensible Firmware Interface Forum,” 2021, ht-
tps://uefi.org/specifications.

[49] A. Weissel, B. Beutel, and F. Bellosa, “Cooperative I/O: A Novel I/O
Semantics for Energy-aware Applications,” ACM SIGOPS Operating
Systems Review, vol. 36, no. SI, pp. 117–129, 2002.

[50] R. West, Y. Li, E. Missimer, and M. Danish, “A Virtualized Separation
Kernel for Mixed-Criticality Systems,” ACM Transactions on Computer
Systems, vol. 34, no. 3, pp. 8:1–8:41, Jun. 2016.

[51] A. Winning, “Number of Automotive ECUs Continues to Rise,” May
15, 2019,
https://www.eenewsautomotive.com/news/number-automotive-ecus-
continues-rise.

https://www.opensynergy.com/automotive-hypervisor/
https://www.opensynergy.com/automotive-hypervisor/
https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1145/2508148.2485931

	Introduction
	Motivation
	Background
	PC Power Management
	Challenges of Real Power Management

	Jumpstart System Design
	Quest-V Partitioning Hypervisor
	Jumpstart Power Management
	ACPI Virtualization
	Jumpstart Data and Control Flow
	Time management

	Evaluation
	Jumpstart Power Consumption
	Cold Boot Delays
	Warm Boot Resumption Delays

	Related Work
	Partitioning Hypervisors
	Power Management
	Systems, Firmware and Bootloaders

	Conclusions and Future Work
	Acknowledgements
	References

