
COLORIS: A Dynamic Cache Partitioning System Using
Page Coloring

Ying Ye, Richard West, Zhuoqun Cheng and Ye Li

Computer Science Department
Boston University

Boston, MA 02215, USA
{yingy,richwest,czq,liye}@cs.bu.edu

ABSTRACT

Shared caches in multicore processors are subject to con-
tention from co-running threads. The resultant interference
can lead to highly-variable performance for individual ap-
plications. This is particularly problematic for real-time
applications, requiring predictable timing guarantees. Pre-
vious work has applied page coloring techniques to parti-
tion a shared cache, so that conflict misses are minimized
amongst co-running workloads. However, prior page color-
ing techniques have not addressed the problem of partition-
ing a cache on over-committed processors where there are
more executable threads than cores. Similarly, page coloring
techniques have not proven efficient at adapting the cache
partition sizes for threads with varying memory demands.
This paper presents a memory management framework

called COLORIS, which provides support for both static and
dynamic cache partitioning using page coloring. COLORIS
supports novel policies to reconfigure the assignment of page
colors amongst application threads in over-committed sys-
tems. For quality-of-service (QoS), COLORIS monitors the
cache miss rates of running applications and triggers re-
partitioning of the cache to prevent miss rates exceeding
applications-specific ranges. This paper presents the design
and evaluation of COLORIS as applied to Linux. We show
the efficiency and effectiveness of COLORIS to color mem-
ory pages for a set of SPEC CPU2006 workloads, thereby
enhancing performance isolation over existing page coloring
techniques.

Categories and Subject Descriptors

D.4.2 [Storage Management]: Main memory

Keywords

Cache and memory management; dynamic page coloring;
multicore; performance isolation

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PACT’14, August 24–27, 2014, Edmonton, AB, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2809-8/14/08 ...$15.00.

http://dx.doi.org/10.1145/2628071.2628104.

1. INTRODUCTION
Multicore platforms are gaining popularity these days,

both in general computing and embedded domains. They
have the ability to support concurrent workloads with less
circuit area, lower power consumption and lower cost. Tightly-
coupled on-chip resources allow faster data sharing between
processing cores, at the same time, suffering from poten-
tially heavy resource contention. Modern processors often
devote the largest fraction of on-chip transistors to caches,
mostly the shared last-level cache (LLC), the performance of
which is crucial for the overall processing capability of pro-
cessors, especially for running memory-bound applications.
Yet, in most commercial off-the-shelf (COTS) systems, only
best effort service is provided for accessing the shared LLC.
Multiple processes run simultaneously on those systems, in-
terfering with one another on cache accesses. Data stored
in a cache line with strong access locality from one process
may be evicted at an arbitrary time due to another process’s
access to different data mapped to the same cache line. In-
terleaving cache accesses can potentially ruin program local-
ity, the fundamental assumption hardware caches are built
upon. Depending on the workload, the degree of interfer-
ence on application performance can vary significantly [13].
Thus, QoS cannot be guaranteed in such systems.

For safety-critical real-time systems, cache-related perfor-
mance variations can lead to task timing violations, and po-
tential life-threatening situations. Therefore, performance
isolation is desirable in these systems. Although private
caches eliminate cache contention for threads mapped to
different caches, they offer a smaller storage capacity than
a single shared cache, and additionally require coherency
protocols to maintain consistency of shared data. Alterna-
tively, shared caches can be used in conjunction with tech-
niques that minimize cache interference, such as page color-
ing, cache-aware scheduling or hardware cache partitioning.

One of the first uses of page coloring was in virtual address
translation in the MIPS system [31]. It was later adopted
by operating system memory subsystems [3, 12] and com-
pilers [4], to reduce application cache self-conflicts. Recent
work [14, 29, 35] applied page coloring on multicore systems
to partition shared caches, and demonstrated enhanced iso-
lation amongst applications. However, the result of previous
work has also revealed some open issues related with page
coloring, especially with respect to dynamic recoloring and,
hence, re-partitioning.

First of all, knowing when to perform re-partitioning is
non-trivial. Dynamic phase changing behaviors 1 of appli-
cations lead to fluctuating resource demands, which may
cause poor cache utilization under static partitioning. To
re-partition the shared cache, we want to clearly capture
program phase transitions on-the-fly. Even without phase
changes, when an application is just started, it is hard to de-
termine its best cache partition size without a-priori knowl-
edge. Existing page coloring techniques either do not adap-
tively adjust partitions, at least not efficiently, or they fail
to identify application phase transitions.
Secondly, finding the optimal partition size to minimize

cache misses for a given workload is difficult. If the goal
is fairness or QoS, proper performance metrics have to be
defined to guide dynamic re-partitioning. For example, some
researchers have attempted to construct cache utility curves,
which capture the miss rates for applications at different
cache occupancies [19, 26, 30, 33, 37], but this is typically
expensive to do in a working system.
Another issue with page coloring is the significant over-

head with re-partitioning, also called recoloring. Recoloring
is cumbersome. It involves allocating new page frames, copy-
ing memory between pages and freeing old page frames as
necessary. To make the matter worse, naive page selection
during recoloring may cause inefficient use of newly allocated
cache space. Altogether, the benefit of dynamic partitioning
can be undermined.
Lastly, in over-committed systems, excessive recoloring

operations may result from the interleaved execution of mul-
tiple processes. A simple example would be a 2-core, 6-page-
color system with two running processes (P1, P2) and one
ready process (P3). The page colors allocated to these three
processes might be {1, 2, 3}, {4, 5, 6} and {1, 2, 3}, respec-
tively. If a scheduler suspends P2 and dispatches P3 to co-
run with P1, two processes will be contending for the same
three page colors. This may result in significant contention
on a subset of the entire cache space. At this point, either
recoloring has to be performed or performance isolation is
compromised.
Our work tries to solve the problems associated with im-

plementing dynamic page coloring in production systems.
Specifically, this paper describes the implementation of an
efficient page recoloring framework in the Linux kernel, called
“COLORIS” (COLOR ISolation). COLORIS attempts to
isolate cache accesses of different applications, thereby re-
ducing their conflict misses compared to a scheme that lacks
cache partitioning. We propose two recoloring policies and
compare their performance, while considering factors such
as when to trigger recoloring and which processes should be
affected. Using the SPEC CPU2006 benchmark, we show
the performance of COLORIS on an over-committed mul-
ticore platform, where there are more schedulable threads
than cores.
The rest of this paper is organized as follows: Section 2

introduces basic page coloring concepts. Section 3 describes
the design of the COLORIS framework, with focus on the
proposed recoloring mechanism. An evaluation of COLORIS
in provided in Section 4. Related work is then described in
Section 5, followed by conclusions and future work.

1Phase changes might be due to switching between locali-
ties such as function loops and procedures within a running
program.

2. BACKGROUND

Figure 1: Page Color Bits

Figure 2: Mapping Between Memory Pages and
Cache Space

On most modern architectures, a shared LLC is physically
indexed and set associative. When a physical address is used
in a cache lookup operation, it is divided into a Tag, an Index
and an Offset as shown in Figure 1. The Offset bits are used
to specify the byte offset location of the desired data within a
specific cache line. Index bits select a cache set. Tag bits are
checked against the current cache line to determine a cache
hit or miss. Operating systems that manage memory at
page granularity use the least significant p bits of a physical
address as a byte offset within a page of memory. These
p bits typically overlap with the least-significant Index bits,
leaving the most significant indexing bits to form the Color
bits (as shown in the shaded area of Figure 1). Two or more
pages of physical memory addressed with different color bits
are guaranteed not to map to the same set of cache lines.

Using color bits, it is possible for an operating system to
implement a color-aware memory allocator to control the
mapping of physical pages to sets of cache lines. This is
illustrated by Figure 2. Pages mapped to the same set of
cache lines are said to have the same page color. The total
number of page colors is derived from the following equation:

number of colors = cache size
number of ways×page size

Limitations. Some recent architectures have now intro-
duced cache slices [36]. This new cache arrangement imposes
a challenge for page coloring techniques since the mapping
between memory and cache slices is made opaque. If the
hash function for mapping physical addresses to cache sets
inside a slice remains the same as above, then it may be pos-
sible to treat each slice as though it were a separate cache.

That way, the problem is equivalent to page coloring on N

separate caches each of size M , where M is the size of a slice
and N ·M is the full capacity of the original cache. We will
show in later experiments that COLORIS is able to effec-
tively partition caches on architectures featuring slices.

3. COLORIS ARCHITECTURE

Figure 3: COLORIS Architecture Overview

COLORIS is comprised of two major components: a Page
Color Manager and a Color-aware Page Allocator. The
Color-aware Page Allocator is capable of allocating page
frames of specific colors. The Page Color Manager is re-
sponsible for assigning initial page colors to processes, mon-
itoring process cache usage metrics, and performing color
assignment adjustment according to system specific objec-
tives (e.g. fairness, QoS, or performance). An architectural
overview of COLORIS is shown in Figure 3.
Though the design of COLORIS is system-agnostic, we

implemented a prototype version inside the Linux kernel to
utilize existing applications and benchmarks for evaluation
purposes.

3.1 Color-aware Page Allocator
The Linux kernel allocates single page frames from the

per-CPU page frame cache. The page frame cache main-
tains a list of free pages 2 allocated from the Buddy System.
Tam et al [29] made the Linux page frame cache color-aware
by splitting the single free list into multiple lists, each corre-
sponding to one particular page color. To refill a list with a
specific color, the Buddy System has to be called repeatedly
until a page of the correct color is returned. This approach
can potentially add significant overhead and compromise the
benefit of page coloring.
Instead of using the existing Linux memory allocation

framework, we decided to replace it with our own efficient
color-aware allocator. In COLORIS, a memory pool is used
to serve all page requests. Inside the pool, free pages of
the same colors are linked together to form multiple lists.
Figure 4 shows the structure of our new page allocator.
In order to reduce the engineering complexity, we decided

to keep the original Linux Buddy System interface in COL-
ORIS. This is achieved by maintaining per-process color as-
signments in the Page Color Manager. Upon receiving an

2Strictly speaking, two lists are used for performance opti-
mization.

Figure 4: Page Allocator

allocation request, the Color-aware Page Allocator commu-
nicates with the Page Color Manager to determine the colors
already assigned to the requesting process. The allocator
then picks one of these colors in a round-robin manner, and
returns a page with that color from the memory pool. If
that color does not exist, the allocator attempts to pick an-
other color assigned to the process. If all currently assigned
colors are unavailable, then the allocator calls the Buddy
System to populate the memory pool with new pages of ar-
bitrary colors. By keeping the memory pool large enough,
communication with the Buddy System is minimized. When
a page is freed, we first try to place it back into the memory
pool and only return it to the Linux page frame cache if the
corresponding list is full.

Additionally, instead of managing only data pages [24],
COLORIS also supports page coloring of program code pages.
This increases cache isolation between processes, except for
cases where code is shared. However, we believe shared code
should be avoided as much as possible, as a trade off between
memory utilization and maximum isolation. For certain li-
braries, such as libc, we acknowledge this is not always prac-
tical. For cases where sharing is practically unavoidable,
COLORIS randomly selects page colors upon request. An
alternative to this is to reserve a dedicated set of page colors
for shared memory usage.

3.2 Page Color Manager
The Page Color Manager manages page color resources

amongst application processes according to specific policies.
In the simplest form, the Page Color Manager statically par-
titions hardware caches according to various color assign-
ment schemes. The most intuitive approach is to strictly as-
sign different page colors to different processes so that they
land on different parts of the shared cache. While this pro-
vides the maximum degree of isolation, it also limits the
maximum number of processes supported. Consider, for ex-
ample, a system with 4 cores, 64 page colors and 16 MB
memory per color – at most 64 processes can be supported
with 1 color each, with the memory footprint of every pro-
cess limited to no more than 16 MB. Additionally, cache
utilization is as low as 6.25% in the worst case when all
cores are active.

To mitigate the problem of cache utilization, we want to
make optimal color assignments for application processes
according to their cache demands. However, this requires
a-priori knowledge that is difficult to acquire for most appli-
cations. Consequently, we decided to adopt a more flexible
color assignment scheme that does not require offline profil-
ing when optimal assignments are not provided.

In this new scheme, the cache is divided into N sections of
contiguous page colors on a platform of N processing cores.

Each section is then assigned to a specific core, which we
call the local core of all the colors within this section. All
the other cores will be referred to as remote cores. When a
new process is created, COLORIS searches for a core with
the lightest workload and assigns the whole cache section
of the core to the process. As a result, in a system with
a total of C page colors, every process will be assigned C

N

colors. This means that N co-running processes can fully
utilize the cache.
For load balancing, process migration can be invoked and

the entire address space needs to be recolored. Migration
may also be applied to reduce memory bus contention, by
placing memory intensive processes to the same cores. How-
ever, since migration incurs prohibitive overhead, it should
be avoided when possible.
Though the previous static partitioning scheme is simple,

it can still potentially lead to low cache utilization for an
under utilized system and when there are dynamic program
phase changes. A more practical way would be to assign
a default-sized partition first, and then gradually approach
the best size through re-partitioning (i.e. recoloring). Thus,
for a page coloring technique to be truly useful in production
systems, dynamic partitioning is essential.
In COLORIS, we extended the Page Color Manager with

dynamic partitioning capabilities, by introducing a compre-
hensive recoloring mechanism. Our primary design focus of
this recoloring mechanism is to make it effective and efficient
even in over-committed systems.

Figure 5: COLORIS Page Coloring Scheme

Starting with the initial color assignments described ear-
lier, the Page Color Manager attempts to make online color
assignment changes based on dynamic application behav-
iors. For applications that do not require the entire local
cache section, some colors can be reclaimed; for applications
that demand more cache space, colors from other sections
can be shared. An example is illustrated in Figure 5. In
this example, the twelve columns represent twelve different
page colors. Every block within a column is an ownership
token denoting that the process having this token (in the
same row) is assigned the corresponding color.
Since the local cache section can now be shared, limited

cache interference between processes may happen. In this
case, a global coordination amongst schedulers on each core
is useful. By sharing the information on page color usages
and scheduling processes accordingly, the likelihood of cache

contention is reduced. While a cache-aware scheduler is not
implemented in COLORIS, we leave it as future work.

We have also considered an alternative design for color
assignment. Instead of re-partitioning at the granularity of
processes, we can adjust the size of a cache section for each
core. Before doing that, we need a mechanism for online
application classification in terms of cache demands. We
want to move applications of the same class to the same
core in order to maintain high cache utilization. For online
classification, there are several useful areas of study [11, 19,
32, 33, 34].

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

m
cf

gcc
gobm

k

om
netpp

hm
m

er

lbm soplex

povray

sphinx3
E

xe
cu

tio
n

T
im

e
O

ve
rh

ea
d

(%
)

100 milliseconds sampling interval

Figure 6: Overhead of Hot Page Identification

Cache Utilization Monitor. The Cache Utilization Mon-
itor is responsible for measuring the cache usage of individ-
ual applications, and making decisions about partition ad-
justments. To start with, we need to introduce the concept
of hotness, which is the key for partition adjustment. In pre-
vious work, page color hotness is defined as the aggregate
access frequency of page frames with the same color [35]. It
was used to help reduce the cost of cache re-partitioning by
only recoloring pages of hot colors. However, hotness identi-
fication requires expensive periodic page table scans, which
may result in worse performance than if hot page identifica-
tion is not used at all. We conducted a preliminary experi-
ment on the proposed approach from this work with SPEC
CPU2006. The results from Figure 6 clearly support our
argument.

Based on this observation, we decided upon a new defini-
tion of hotness. One approach is to define it as a function
of the number of free pages in the target color. A second
approach, which is more appropriate and has been adopted
in COLORIS, is to use the number of processes sharing the
same color as the definition of hotness. This information can
be used to avoid heavy cache contention by assigning cold
colors to newly created processes. Due to its simplicity, we
believe this to be a suitable metric in practical systems.

Following the re-definition of hotness, we now describe
the two recoloring approaches in COLORIS. In the first ap-
proach, ALLOC COLORS(UNIT) is invoked to add UNIT
colors to a process, whenever it runs out of memory with
its pre-existing colors. Here, UNIT is a configurable num-
ber of colors. The second approach triggers recoloring when
a process’s cache demand exceeds its current assignment.
This is determined by monitoring the cache miss rate for a
given process, defined as cache misses with respect to total

Algorithm 1 Cache Utilization Monitor

procedure Monitor(cmr)
assignment = assignment of(current)
if cmr > HighThreshold then

if isCold = False then
isHot← True
return

end if
new = ALLOC COLORS(UNIT)
/* triggers Recoloring Engine */
assignment+ = new
isCold← False

else if cmr < LowThreshold then
if isHot = True then

isHot← False
isCold← True
victims = PICK V ICTIMS(UNIT)
/* triggers Recoloring Engine */
assignment− = victims

end if
end if

end procedure

procedure alloc colors(num)
new ← φ
while num > 0 do

if needRemote() then
new+ = pick coldest remote()

else
new+ = pick coldest local()

end if
num← num− 1

end while
return new

end procedure

procedure pick victims(num)
victims← φ
while num > 0 do

if hasRemote() then
victims+ = pick hottest remote()

else
victims+ = pick hottest local()

end if
num← num− 1

end while
return victims

end procedure

accesses over a sample period, using hardware performance
counters commonly available on modern processors.
We set up two global cache miss rate thresholds when the

system starts up, HighThreshold and LowThreshold. Appli-
cations with miss rates higher than HighThreshold are the
ones needing more cache space; others with miss rates be-
low LowThreshold are willing to provide vacant cache space
for re-partitioning. Procedure MONITOR in Algorithm 1 is
used to trigger recoloring. It takes the cache miss rate (cmr)
of the current process (current) over a period of time (PE-
RIOD) as input. The needRemote() function returns True if
current has already been using the entire local cache section.
The hasRemote() function returns True if current owns col-
ors from remote cache sections. The boolean variable isHot
is used to indicate when the cache miss rate of a process goes
above a specific threshold. It acts as a signal to indicate that
a process needs more page colors. Conversely, isCold is set
when extra page colors are available. Both variables are
global to all processes.

Functions pick coldest remote() and pick hottest remote()
choose a color in a remote cache section belonging to the
current process, with the smallest or largest global hot-
ness value, respectively. Similarly, pick coldest local() and
pick hottest local() return a color from the local cache sec-
tion, owned by current, with the smallest or largest remote
hotness value, respectively. Here, we define global hotness as
the number of owners of a color running on all cores, while
remote hotness is the number of owners of a color running
on remote cores. We also define a local color to be any color
within a local cache section.

The key insight of using remote hotness is that, when
adding or taking away a local color to/from a process, we
do not care about other processes running on the same core.
Since they cannot run simultaneously with one another, there
is no cache interference amongst them for sharing colors. In
Figure 5, we show all four cases where the four functions
above are called respectively. The figure illustrates a state
transition during recoloring. Solid white blocks indicate the
process owns the corresponding color before and after re-
coloring. Dashed white blocks indicate the process has the
color before recoloring. Similarly, dark blocks indicate the
process is assigned the color after recoloring.

Despite the global thresholds, we also allow individual ap-
plications to provide their private threshold pair as part of
QoS specification. When QoS specification is not available,
global thresholds are used.

While dynamic partitioning can benefit from the informa-
tion provided by cache utility curves, such information is not
easily obtainable in a running system. Without this infor-
mation, COLORIS’ objective is to enhance QoS by attempt-
ing to maintain application miss rates below HighThresh-
old, given sufficient capacity. Sufficient capacity here means
there are some other applications, with miss rates lower than
LowThreshold, that are able to provide enough free colors.
If there exists a cache partitioning scheme that guarantees
no application’s miss rate exceeds HighThreshold, COLORIS
attempts to achieve such guarantee.

Notice that the Cache Utilization Monitor takes into ac-
count both cache miss rates and the number of cache ref-
erences. When the number of references is small, miss rate
for a process is set to zero, to indicate the cache is not be-
ing used significantly. Likewise, in situations where frequent
page recoloring is not beneficial to overall performance, it is
possible to disable recoloring for individual processes.

Recoloring Engine. The Recoloring Engine performs two
tasks: (1) shrinkage of color assignments, and (2)expansion
of color assignments. Lazy recoloring [14] is adopted for
shrinking a color assignment. Basically, we look for pages of
specific colors that are going to be taken away and clear the
present bits of their page table entries. At the same time,
an unused bit of every page table entry whose present bit
is cleared is set to identify the page as needing recoloring.
However, we do not set a target color for each page to be
recolored. In the page fault handler, we allocate a new page
from the page allocator and copy the content of the old
page to it. Since round-robin is used in page allocation, as
described in Section 3.1, pages to be recolored are eventually
spread out uniformly across the cache partition assigned to
the process.

Assignment expansion is more complicated than shrink-
age. The major reason being that it is difficult to figure out

which pages should be moved to the new colors. Ideally, we
want memory accesses to be redistributed evenly across the
new cache partition. In COLORIS, we currently consider
two selection policies.

1) Selective Moving – In this policy, we take the set associa-
tivity of the cache into consideration. Assuming an n-way
set associative cache, we know that one page color of the
cache can hold up to n pages at the same time. We there-
fore scan the whole page table of the current process and
recolor one in every n + 1 pages of the same color, trying
to minimize cache evictions when big data structures with
contiguous memory are being accessed. These pages will be
immediately moved to the newly assigned colors in a round-
robin manner.

2) Redistribution – When the expansion is triggered, we first
go through the entire page table of the current process and
clear the access bit of every entry. The access bit is a special
bit in page table entry on x86 platforms; whenever the page
in that entry is accessed, this bit is automatically set by
hardware. After a fixed time window WIN, we scan the
page table again and find all entries with the access bit set.
Pages in those entries have all been accessed during the time
window. Since it is hard to re-balance the cache hotness by
moving selected pages, we let the process itself perform the
redistribution. That is, all accessed pages are recolored using
lazy recoloring as mentioned above.

Comparing these two policies, Selective Moving is simpler
and more light-weight. However, Redistribution is likely to
be more powerful for re-balancing cache hotness. Their ef-
fectiveness is evaluated in the next section.

4. EVALUATION
We conducted a series of experiments to evaluate the per-

formance and effectiveness of the COLORIS page coloring
framework. We implemented a prototype system for a 32-bit
Ubuntu 12.04 Linux OS with kernel version 3.8.8. All the ex-
periments except the last one in Section 4.5 were conducted
using the SPEC CPU2006 benchmark suite on a Dell Pow-
erEdge T410 machine with a quad-core Intel Xeon E5506
2.13GHz processor and 8GB of RAM. A total of 4MB 16-
way set-associative L3 cache was shared amongst the 4 cores
of the processor. As a result, there were 64 page colors avail-
able in the system with 4KB page size. Since we set the size
of the memory pool in our Color-aware Page Allocator to
be 1GB, each color provided up to 16MB of memory for
application use.

4.1 Allocator Implementation Overhead
In the first experiment, we compared the performance of

the original Linux memory allocator with COLORIS’s page
allocator to evaluate the efficiency of our implementation.
In Linux, we ran each SPEC benchmark alone in the sys-
tem without co-runners and recorded their execution times.
In COLORIS, we assigned all colors, effectively the entire
cache, to every program and ran them with the same con-
figuration. In the latter case, COLORIS picked page colors
in round-robin manner for each application page request.
Table 1 shows that our page allocator achieved similar per-
formance as the original Linux Buddy System.

Linux (sec) COLORIS (sec)
gobmk 736 738
gcc 507 495
libquantum 773 778
bzip2 961 956
sphinx3 864 866
omnetpp 476 480
povray 366 367
hmmer 849 850
h264ref 1131 1128
mcf 450 444
soplex 429 428
leslie3d 797 799
gromacs 1386 1384
namd 790 792
milc 671 679
gamess 1503 1510
zeusmp 842 841
soplex 429 428
tonto 977 977
wrf 1328 1323
calculix 1517 1512
sjeng 871 868
astar 777 773
perlbench 569 569
cactusADM 1796 1788
GemsFDTD 725 728
lbm 533 535

Table 1: Allocator Implementation Overhead

4.2 Effectiveness of Page Coloring
The benefit of page coloring is the performance isolation

between running processes. In the following experiments,
we tried to evaluate the effectiveness of page coloring for
applications of different characteristics. We first selected
three groups of benchmarks: {sphinx3, leslie3d, libquan-
tum}, {leslie3d, h264ref, gromacs}, and {povray, h264ref,
gromacs}. According to their memory access intensity, we
call them the heavy background workload (H), the medium
background workload (M) and the light background work-
load (L), respectively. Three foreground benchmarks were
then selected: omnetpp, gobmk and hmmer. omnetpp has a
very large memory footprint and is memory-intensive. gobmk,
with a small footprint, is less memory-intensive but cache-
sensitive. hmmer is similar to gobmk except for cache-
sensitivity, due to its small working set.

For every experiment, we chose one foreground workload
and one background workload. The three background pro-
grams were started first, each pinned to a different core.
The foreground workload started execution after a delay of
one second on the fourth core. The background workload
remained executing during the entire life of the foreground
workload. We denote experiments with page coloring as
P experiments, and experiments with heavy, medium, and
light background workloads as H, M, and L experiments, re-
spectively. For example, an experiment running foreground
and heavy background workloads together with page col-
oring is labeled as H + P. In any experiment with page
coloring, every workload was assigned 16 page colors.

We also had two control groups: the first group, S, ran
only the foreground workloads, with page coloring limiting

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

gobmk hmmer omnetpp

E
xe

cu
tio

n
T

im
e

(s
)

Foreground

H
H+P

M
M+P

L
L+P

S
F

Figure 7: Execution Time of Foreground Workload

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

gobmk hmmer omnetpp

LL
C

 m
is

s
ra

te
 (

%
)

Foreground

H
H+P

M
M+P

L
L+P

S
F

Figure 8: Cache Miss Rate of Foreground Workload

access to a quarter of the last-level cache; the second group,
F, also ran only the foreground workloads but without page
coloring, thereby allowing access to the full cache. We con-
ducted all experiments three times and recorded the aver-
age execution times and LLC miss rates of each foreground
workload. The results are shown in Figure 7 and Figure 8.
As can be seen in Figure 7 (H and H + P), the cache-

sensitive workload gobmk experienced a performance gain
of as much as 13% under the interference of a heavy back-
ground workload with page coloring. For non-cache-sensitive
workload hmmer, page coloring was less effective.
With ideal performance isolation, given the same cache

partition size, a foreground workload running with back-
ground workload should exhibit the same behavior as when
it is running alone in the system (which is represented by
the control group S). As Figure 7 shows, with the presence
of interference, COLORIS was able to constrain the perfor-
mance variations of gobmk, hmmer and omnetpp to within
5%, 0.5% and 55% respectively, as compared to S. Without
page coloring, the variations can be as much as 21%, 2%
and 90%, as compared to F. For omnetpp, a 39% reduction
in variation was achieved.

Notice that omnetpp suffered higher miss rate when page
coloring was enabled (comparing L and L+P). This is mainly
caused by the high self-conflict from limiting its memory
accesses to just 1

4
of the entire cache (as shown in Figure 8).

4.3 Recoloring Evaluation

Configurations LowThreshold (%) HighThreshold (%)

C1 30 65

C2 30 75

C3 0 100

C4 (40, 0, 30, 40) (80, 60, 65, 80)

C5 - -

C6 30 75

Table 2: Experimental Configurations

To demonstrate the benefit of recoloring, we designed a
set of experiments with four benchmarks, povray, tonto, om-
netpp and gamess. Amongst them, only omnetpp is memory-
intensive and cache-hungry, meaning the more cache space
there is, the lower its cache miss rate will be. If the other
three benchmarks are similar to omnetpp in terms of cache
demand, then there will be no possibility for re-partitioning.
Configurations for different experiments are listed in Table 2.
In all the configurations WIN was set to 3ms (except for
C6), UNIT to 4, and PERIOD to 5 seconds. (40, 0, 30, 40)
in C4 means assigning these four LowThresholds to povray,
tonto, omnetpp and gamess, respectively, instead of using
global LowThreshold. Note that the thresholds of configu-
ration C3 prevent page recoloring altogether. Configuration
C5 was used for the special case in which every benchmark
ran alone with full cache space access.

All the experiments were carried out by fixing each bench-
mark to a different core. The four benchmarks were started
at the same time, each with 16 non-overlapping page colors.
Each experiment was run for more than an hour. After the
first minute, we set up the performance counters to collect
LLC miss rates and the numbers of instructions retired from
user-level (to exclude kernel overhead) over a measured 60
minutes interval. At the same time, the Cache Utilization
Monitor was also enabled. For these experiments, the LLC
was fully utilized, which meant colors needed to be removed
from one application before they could be re-assigned to an-
other. The final result was produced by repeating the same
experiments three times and taking the average, which is
shown in Figure 9, Table 3 and Table 4.

With static cache partitioning (C3), the miss rate of om-
netpp reached 77.8%. With the help of recoloring (C1 and
C2), the miss rate was successfully limited to below High-
Threshold thus meeting the system default QoS requirement.
By comparing miss rates of omnetpp between C1 and C2,
we can tell that the degree of improvement for cache-hungry
applications depends on how we set up the thresholds. As
shown in Table 3, despite the recoloring overhead, omnetpp
had received 3.3% − 9.4% performance gain, proving that
our approaches are practical. povray managed to keep the
same miss rate with fewer cache lines since its working set
is small enough to fit into private L2 cache. Although the
other two benchmarks, tonto and gamess, were negatively
affected by reduced cache sizes, the system overall perfor-
mance remained roughly the same.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

povray

tonto
om

netpp

gam
ess

LL
C

 m
is

s
ra

te
 (

%
)

C1

Selective_Moving
Redistribution

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

povray

tonto
om

netpp

gam
ess

LL
C

 m
is

s
ra

te
 (

%
)

C2

Selective_Moving
Redistribution

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

povray

tonto
om

netpp

gam
ess

LL
C

 m
is

s
ra

te
 (

%
)

C3

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

povray

tonto
om

netpp

gam
ess

LL
C

 m
is

s
ra

te
 (

%
)

C4

Selective_Moving
Redistribution

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

povray

tonto
om

netpp

gam
ess

LL
C

 m
is

s
ra

te
 (

%
)

C5

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

povray

tonto
om

netpp

gam
ess

LL
C

 m
is

s
ra

te
 (

%
)

C6

1ms
3ms
5ms

Figure 9: LLC Miss Rates

C1 C2(C6.WIN=3) C3 C4 C6.WIN=1 C6.WIN=5

Selective
Moving

povray 100.1 101.8 102.2 100.7 - -
tonto 88.9 90.7 91.6 91.4 - -
omnetpp 46.2 43.6 42.2 45.8 - -
gamess 120.9 122.8 123.1 119.2 - -
total 356.1 358.9 359.1 357.1 - -

Redistri-
bution

povray 100.2 101.7 - 100.7 101.7 101.8
tonto 90.0 91.4 - 91.4 91.2 89.9
omnetpp 46.0 44.1 - 46.0 43.9 43.8
gamess 121.1 122.3 - 119.3 121.3 122.5
total 357.3 359.5 - 357.4 358.1 358.0

Table 3: Instructions Retired in One Hour (×1011)

Instead of using system default QoS specification, reason-
able individual specifications can also be satisfied by the
COLORIS framework as shown in C4. By setting LowThresh-
old to 0 for tonto, we avoided decreasing its cache space, and
limited its miss rate to below 40%. The result shows that

recoloring is effective for guaranteeing QoS requirements of
individual applications.

Table 4 lists the total number of pages recolored in all the
experiments. It can be seen that Redistribution incurred
higher overhead as compared to Selective Moving. How-

C1 C2(C6.WIN=3) C4 C6.WIN=1 C6.WIN=5
Selective Moving 10746 3845 8791 - -
Redistribution 32749 22243 33547 6476 30174

Table 4: Recoloring Overhead (Total # Pages Recolored)

ever, Redistribution achieved a slightly better overall sys-
tem performance if we look at the total instructions retired
in Table 3. The result indicates that Redistribution is more
effective in utilizing newly assigned cache space.
Following this observation, we then evaluated the impact

of window size WIN on the effectiveness of the Redistribu-
tion policy in C6. omnetpp was the only application that
received an expanded cache space during the experiment. Its
performance under different window sizes stayed the same,
which suggests that larger window size may not help im-
prove performance, as recoloring overhead will increase as
well.
Finally, Table 5 shows the stable color assignments for

each repetition of the above experiments. Within each 4-
element tuple, the numbers are the sizes of color assign-
ments for povray, tonto, omnetpp and gamess respectively.
Across multiple repetitions of the same experiment, stable-
state color assignments are fairly consistent. This indicates
the COLORIS recoloring mechanism is stable.

4.4 Performance in Over-Committed Systems
In these experiments, we tried to evaluate the design of

COLORIS for over-committed systems. We first created
four groups of SPEC benchmarks (G1, G2, G3, G4): {gobmk,
sphinx3}, {gromacs, leslie3d}, {h264ref, omnetpp}, {povray,
gamess}. Programs were started with ten seconds inter-
val in the following order: gobmk, gromacs, h264ref, povray,
sphinx3, leslie3d, omnetpp, gamess. One minute after the
last benchmark program was started, we enabled hardware
performance counters and the Cache Utilization Monitor (if
used). All experiments were then run for an hour, at the
end of which results were collected.
When running experiments in COLORIS, benchmark pro-

grams received their initial color assignments in a round-
robin fashion, since all colors had zero hotness at the be-
ginning. According to their launching order, programs in
group Gx were assigned the cache section belonging to core
x. After assignment, they were pinned automatically to
those cores. For experiments in Linux, we pinned each group
onto the same core similar to the COLORIS experiments.
By doing this, we eliminated the difference of memory bus
contention between the two sets of experiments. The same
experiments were carried out with three different configu-
rations, C7, C8 and C9. In C7, recoloring used the Re-
distribution policy, WIN = 3ms, UNIT = 4, PERIOD =
5s and system-wide thresholds were set to (LowThreshold,
HighThreshold) = (20%, 75%). An individual QoS specifi-
cation (0%, 100%) was also provided to leslie3d, which es-
sentially disabled recoloring. The reason being leslie3d is an
LLC-thrashing [11] application that does not benefit from
assignment expansion (known through offline profiling). In
C8, a static partitioning scheme was used. For C9, appli-
cations were run in Linux without page coloring. Results
from Figure 10 show that COLORIS performs no worse than
Linux in heavy over-committed cases, while at the same time
guaranteeing QoS for applications.

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

gobm
k

grom
acs

h264ref

povray

tonto
leslie3d

om
netpp

gam
ess

In
st

ru
ct

io
ns

 r
et

ire
d

(X
 1

011
)

C7
C8
C9

 10

 20

 30

 40

 50

 60

 70

 80

 90

gobm
k

grom
acs

h264ref

povray

tonto
leslie3d

om
netpp

gam
ess

LL
C

 m
is

s
ra

te
 (

%
)

C7
C8
C9

Figure 10: Over-Committed System Performance

4.5 Page Coloring on Cache Slices
In order to prove that page coloring can work with the

latest cache-slice architecture, we conducted another set of
experiments similar to the ones in Section 4.2, but on an
Intel Core i3-2100 Sandy Bridge dual-core processor. It has
two 1.5MB, 12-way set-associative L3 cache slices. The sys-
tem also features 4GB DDR3 RAM. The three background
workloads were: H = {libquantum}, M = {h264ref }, L =
{povray}. The results are shown in Figure 11. Note that for
omnetpp with a light background workload (case L), the ex-
ecution time is exactly 350 seconds. The performance with
a heavy background workload clearly demonstrates the iso-
lation provided by page coloring.

5. RELATED WORK

5.1 Software Cache Partitioning
Page coloring [31] was first introduced as a way to man-

age shared caches on multicore processors in [23]. Cho and

C1 C2(C6.WIN=3) C4 C6.WIN=1 C6.WIN=5

Selective
Moving

EXP(1) (4,8,44,8) (8,16,28,12) (4,16,40,4) - -
EXP(2) (4,12,40,8) (16,12,24,12) (4,16,40,4) - -
EXP(3) (4,8,44,8) (12,12,28,12) (4,16,40,4) - -

Redistri-
bution

EXP(1) (4,12,40,8) (12,16,28,8) (4,16,40,4) (8,12,28,16) (16,8,28,12)
EXP(2) (4,12,40,8) (8,16,28,12) (4,16,40,4) (12,16,28,8) (16,12,28,8)
EXP(3) (4,12,40,8) (12,12,28,12) (4,16,40,4) (16,16,28,4) (12,12,28,12)

Table 5: Stable-State Color Assignments (povray, tonto, omnetpp, gamess)

 350

 400

 450

 500

 550

 600

gobmk hmmer omnetpp

E
xe

cu
tio

n
T

im
e

(s
)

Foreground

H
H+P

M
M+P

L
L+P

Figure 11: Page Coloring with Cache Slices

Jin [6] applied page coloring to a multicore system with a
distributed shared cache, with the goal to place data in cache
slices that are closer to the CPU running the target appli-
cation. Tam et al [29] implemented static page coloring in
a prototype Linux system.
Lin et al [14] later investigated recoloring policies for fully

committed systems, having the same number of co-running
workloads as cores. While these policies can be applied to
a 2-core platform, their complexity grows exponentially as
the number of cores increases. Moreover, page hotness [35]
is ignored when picking pages for recoloring, leading to inef-
ficient use of newly assigned colors when all recolored pages
are barely accessed. Using hot pages can effectively reduce
the number of pages to be recolored, but it pays additional
overhead from hotness identification.
Recent cache management work has attempted to divide

the cache into different usages. Soares et al [24] determined
cache-unfriendly pages via online profiling and mapped them
to a pollute buffer, which is a small portion of the cache. Lu
et al [16] let a user-level allocator cooperate with a kernel
page allocator to provide object-level cache partitioning, in
which the partitions are decided offline. The basic idea is to
force user-level data structures with weak locality to use a
reserved part of the cache, while other data structures use
the rest.
Another interesting work proposed an SRM-Buffer [7],

which reduces cache interference from kernel address space.
In systems like Linux, the page cache usually occupies a sig-
nificant amount of memory – one burst of accesses to it may
incur large-scale cache evictions, hurting application perfor-
mance. To address this problem, the authors limited the

range of page colors that can be used by the Linux page
cache during a file IO burst.

5.2 Hardware Cache Partitioning
Unlike software partitioning, which divides a shared cache

among applications, hardware partitioning usually assigns
different sections of cache to different cores. Way partition-
ing [5, 21, 28] and block partitioning [27] are the two com-
mon approaches for partitioning a shared cache. Way par-
titioning restricts cache replacement for a core to a specific
set of ways in an n-way set-associative cache. Block parti-
tioning enforces partitions within individual sets. Rafique et
al [20] developed a loose form of block partitioning, which
only limits the total number of cache lines each core can oc-
cupy. Others [10, 22] partitioned cache blocks statistically,
allowing minor interference while retaining cache occupan-
cies. A hybrid approach was proposed by Mancuso et al [17],
which combines page coloring with way partitioning, effec-
tively turning a shared LLC into scratchpad memory [1] for
a fixed set of hot data. Srikantaiah et al [25] argued that
cache partitions should be assigned to CPU sets instead of
individual CPUs, facilitating constructive sharing for multi-
threaded applications. Current trends also favor the design
of configurable or hybrid (private/shared) caches [2, 8, 9,
15, 18, 36], which assign cache slices for different uses.

5.3 Cache Utility Curves
Cache utility curves provide a rich set of information to

determine the optimal-sized cache partitions. Zhou et al [37]
described a software approach to generate miss-rate curves
(MRCs) online. The approach maintains an LRU page list
for each address space. Page accesses are determined by
either periodically scanning page table entries or clearing
present bits of entries and causing page faults. Tam et al [30]
built RapidMRC by using a sampled data address register
(SDAR) available on the PowerPC to record all addresses
of memory requests over sampled periods. In other work on
cache-aware fair and efficient scheduling (CAFÉ [33]), util-
ity curves were generated through online cache occupancy
modeling.

Finally, there has been work focused on the development
of new hardware to construct utility curves. Suh et al [26]
proposed way counters and set counters for computing the
marginal reduction in cache misses as cache space shrinks.
However, their approach requires an application to run on
its own, with access to the entire cache, in order to accu-
mulate utility data. To overcome this limitation, Qureshi
and Patt [19] implemented the UMON monitoring circuit,
which acts like a copy of the cache. UMON collects complete
utility data when only a portion of the cache is allowed for
access, regardless of contention from other cores.

6. CONCLUSIONS AND FUTURE WORK
On multicore platforms, processes compete for a shared

last-level cache, causing conflict misses and performance vari-
ations. COLORIS addresses this problem by extending tra-
ditional OSes with static and dynamic cache partitioning
capabilities. In the static scheme, COLORIS exclusively as-
signs different page colors to processes on different cores. In
the dynamic scheme, a Cache Utilization Monitor measures
application cache usage online and triggers re-partitioning to
satisfy QoS demands of individual applications. To achieve
efficient re-partitioning, two page selection policies are de-
scribed: Selective Moving and Redistribution. When ap-
plied to over-committed systems, COLORIS tries to main-
tain good cache isolation amongst processes, attempting to
minimize cache interference, by carefully managing page col-
ors in a Page Color Manager. Our experimental results show
that COLORIS is able to reduce the performance variation
due to co-running workload interference by up to 39%, and
successfully provides QoS for memory-bound applications.
COLORIS supports dynamic partitioning in systems that

are over-committed. In such cases, COLORIS allows a lim-
ited amount of sharing of page colors with application pro-
cesses on remote cores. The performance of COLORIS is at
least as good as vanilla Linux implementations for heavily
over-committed situations, while significantly outperforming
vanilla Linux for cases where the system is less loaded.
Future work will investigate cache-aware scheduling algo-

rithms that cooperate with COLORIS, as we attempt to
eliminate cache conflict misses by different workloads alto-
gether. In particular, we will investigate ways to provide
hard guarantees on the isolation between workloads, which
is important for real-time applications with deadlines. In
addition to cache contention, we will also consider factors
such as shared memory buses and NUMA interconnects on
multi-socket and manycore architectures 3.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 1117025. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

8. REFERENCES

[1] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan,
and P. Marwedel. Scratchpad memory: Design
alternative for cache on-chip memory in embedded
systems. In Proceedings of the 10th International
Symposium on Hardware/Software Codesign, CODES
’02, pages 73–78, New York, NY, USA, 2002.

[2] N. Beckmann and D. Sanchez. Jigsaw: Scalable
software-defined caches. In Proceedings of the 22nd
International Conference on Parallel Architectures and
Compilation Techniques, pages 213–224, Piscataway,
NJ, USA, 2013.

[3] B. K. Bray, W. L. Lunch, and M. J. Flynn. Page
allocation to reduce access time of physical caches.
Technical report, Stanford, CA, USA, 1990.

3COLORIS source code is available upon request.

[4] E. Bugnion, J. M. Anderson, T. C. Mowry,
M. Rosenblum, and M. S. Lam. Compiler-directed
page coloring for multiprocessors. In Proceedings of the
7th International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 244–255, New York, NY, USA, 1996.

[5] D. Chiou, P. Jain, L. Rudolph, and S. Devadas.
Application-specific memory management for
embedded systems using software-controlled caches. In
Proceedings of the 37th Annual Design Automation
Conference, pages 416–419, New York, NY, USA,
2000.

[6] S. Cho and L. Jin. Managing distributed, shared L2
caches through OS-level page allocation. In
Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
455–468, Washington, DC, USA, 2006.

[7] X. Ding, K. Wang, and X. Zhang. SRM-buffer: an OS
buffer management technique to prevent last level
cache from thrashing in multicores. In Proceedings of
the 6th ACM European Conference on Computer
Systems, pages 243–256, New York, NY, USA, 2011.

[8] H. Dybdahl and P. Stenstrom. An adaptive
shared/private NUCA cache partitioning scheme for
chip multiprocessors. In Proceedings of the 13th
International Symposium on High-Performance
Computer Architecture, pages 2–12, Washington, DC,
USA, 2007.

[9] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and
S. W. Keckler. A NUCA substrate for flexible CMP
cache sharing. In Proceedings of the 19th Annual
International Conference on Supercomputing, pages
31–40, New York, NY, USA, 2005.

[10] R. Iyer. CQoS: A framework for enabling QoS in
shared caches of CMP platforms. In Proceedings of the
18th Annual International Conference on
Supercomputing, pages 257–266, New York, NY, USA,
2004.

[11] A. Jaleel, H. H. Najaf-abadi, S. Subramaniam, S. C.
Steely, and J. Emer. CRUISE: cache replacement and
utility-aware scheduling. In Proceedings of the 17th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
249–260, New York, NY, USA, 2012.

[12] R. E. Kessler and M. D. Hill. Page placement
algorithms for large real-indexed caches. ACM Trans.
Comput. Syst., 10(4):338–359, Nov. 1992.

[13] S. Kim, D. Chandra, and Y. Solihin. Fair cache
sharing and partitioning in a chip multiprocessor
architecture. In Proceedings of the 13th International
Conference on Parallel Architectures and Compilation
Techniques, October 2004.

[14] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Gaining insights into multicore cache
partitioning: Bridging the gap between simulation and
real systems. In Proceedings of the 14th International
Symposium on High-Performance Computer
Architecture, pages 367–378, 2008.

[15] C. Liu, A. Sivasubramaniam, and M. Kandemir.
Organizing the last line of defense before hitting the
memory wall for CMPs. In Proceedings of the 10th

International Symposium on High-Performance
Computer Architecture, pages 176–185, 2004.

[16] Q. Lu, J. Lin, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Soft-OLP: Improving hardware cache
performance through software-controlled object-level
partitioning. In Proceedings of the 18th International
Conference on Parallel Architectures and Compilation
Techniques, pages 246–257, 2009.

[17] R. Mancuso, R. Dudko, E. Betti, M. Cesati,
M. Caccamo, and R. Pellizzoni. Real-time cache
management framework for multi-core architectures.
In Proceedings of the 19th Real-Time and Embedded
Technology and Applications Symposium, pages 45–54,
2013.

[18] R. Manikantan, K. Rajan, and R. Govindarajan.
Nucache: An efficient multicore cache organization
based on next-use distance. In Proceedings of the 17th
International Symposium on High-Performance
Computer Architecture, pages 243–253, Feb 2011.

[19] M. K. Qureshi and Y. N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In
Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
423–432, Washington, DC, USA, 2006.

[20] N. Rafique, W.-T. Lim, and M. Thottethodi.
Architectural support for operating system-driven
CMP cache management. In Proceedings of the 15th
International Conference on Parallel Architectures and
Compilation Techniques, pages 2–12, New York, NY,
USA, 2006.

[21] P. Ranganathan, S. Adve, and N. P. Jouppi.
Reconfigurable caches and their application to media
processing. In Proceedings of the 27th Annual
International Symposium on Computer Architecture,
pages 214–224, New York, NY, USA, 2000.

[22] D. Sanchez and C. Kozyrakis. Vantage: Scalable and
efficient fine-grain cache partitioning. In Proceedings of
the 38th Annual International Symposium on
Computer Architecture, pages 57–68, New York, NY,
USA, 2011.

[23] T. Sherwood, B. Calder, and J. Emer. Reducing cache
misses using hardware and software page placement.
In Proceedings of the 13th International Conference on
Supercomputing, pages 155–164, New York, NY, USA,
1999.

[24] L. Soares, D. Tam, and M. Stumm. Reducing the
harmful effects of last-level cache polluters with an
OS-level, software-only pollute buffer. In Proceedings
of the 41st annual IEEE/ACM International
Symposium on Microarchitecture, pages 258–269,
Washington, DC, USA, 2008.

[25] S. Srikantaiah, R. Das, A. K. Mishra, C. R. Das, and
M. Kandemir. A case for integrated processor-cache
partitioning in chip multiprocessors. In Proceedings of
the Conference on High-Performance Computing
Networking, Storage and Analysis, pages 6:1–6:12,
New York, NY, USA, 2009.

[26] G. E. Suh, S. Devadas, and L. Rudolph. A new
memory monitoring scheme for memory-aware
scheduling and partitioning. In Proceedings of the 8th

International Symposium on High-Performance
Computer Architecture, pages 117–128, 2002.

[27] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic
cache partitioning for simultaneous multithreading
systems. In Proceedings of the IASTED International
Conference on Parallel and Distributed Computing
and Systems, pages 116–127, 2001.

[28] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic
partitioning of shared cache memory. J. Supercomput.,
28(1):7–26, Apr. 2004.

[29] D. Tam, R. Azimi, L. Soares, and M. Stumm.
Managing shared L2 caches on multicore systems in
software. In Proceedings of the Workshop on the
Interaction between Operating Systems and Computer
Architecture, 2007.

[30] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm.
RapidMRC: Approximating L2 miss rate curves on
commodity systems for online optimizations. In
Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 121–132, New York, NY,
USA, 2009.

[31] G. Taylor, P. Davies, and M. Farmwald. The TLB
slice–a low-cost high-speed address translation
mechanism. In Proceedings of the 17th Annual
International Symposium on Computer Architecture,
pages 355–363, New York, NY, USA, 1990.

[32] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang.
Online cache modeling for commodity multicore
processors. SIGOPS Oper. Syst. Rev., 44(4):19–29,
Dec. 2010.

[33] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang.

CAFÉ: Cache-aware fair and efficient scheduling for
CMPs. In Multicore Technology: Architecture,
Reconfiguration and Modeling. CRC Press, 2013.

[34] Y. Xie and G. Loh. Dynamic classification of program
memory behaviors in CMPs. In the 2nd Workshop on
Chip Multiprocessor Memory Systems and
Interconnects, 2008.

[35] X. Zhang, S. Dwarkadas, and K. Shen. Towards
practical page coloring-based multicore cache
management. In Proceedings of the 4th ACM European
Conference on Computer Systems, pages 89–102, New
York, NY, USA, 2009.

[36] L. Zhao, R. Iyer, M. Upton, and D. Newell. Towards
hybrid last level caches for chip-multiprocessors.
SIGARCH Comput. Archit. News, 36(2):56–63, May
2008.

[37] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman,
Y. Zhou, and S. Kumar. Dynamic tracking of page
miss ratio curve for memory management. In
Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 177–188, New York, NY,
USA, 2004.

