
Scalable Overlay Multicast Tree Construction for Media Streaming

Gabriel Parmer, Richard West, Gerald Fry
Computer Science Department

Boston University
Boston, MA 02215

{gabep1,richwest,gfry}@cs.bu.edu

Abstract

Overlay networks have become popular in recent times
for content distribution and end-system multicasting of me-
dia streams. In the latter case, the motivation is based on
the lack of widespread deployment of IP multicast and the
ability to perform end-host processing. However, construct-
ing routes between various end-hosts, so that data can be
streamed from content publishers to many thousands of sub-
scribers is still a challenging problem. First, any routes be-
tween end-hosts using trees built on top of overlay networks
can increase stress on the underlying physical network, due
to multiple instances of the same data traversing a given
physical link. Second, because overlay routes between end-
hosts may traverse physical network links more than once,
they increase the end-to-end latency compared to IP-level
routing. Third, algorithms for constructing efficient, large-
scale trees that reduce link stress and latency are typically
more complex.

This paper therefore compares various methods to con-
struct multicast trees between end-systems, that vary in
terms of implementation costs and their quality of mapping
from logical overlay to physical network. We describe sev-
eral algorithms that make trade-offs between algorithmic
complexity, physical link stress and latency. While no al-
gorithm is best in all three cases we show how it is possi-
ble to efficiently build trees for several thousand subscribers
with latencies within a factor of two of the optimal, and link
stresses comparable to, or better than, existing technolo-
gies.

Keywords: Multicast, Overlays, Scalability

1 Introduction

This work addresses the problem of delivering real-time
media streams on an Internet-scale, from one or more pub-
lishers to potentially many thousands of subscribers, each
having their own service constraints. Such constraints may

be in terms of latency bounds on the transfer of data from
publishers to subscribers, but may also encompass jitter,
loss and bandwidth requirements. Target applications for
this work include multimedia streaming of live video broad-
casts (e.g., Internet television), interactive distance learning
and the exchange of time-critical data sets in large-scale sci-
entific applications.

In recent years, there have been a number of research ef-
forts focused on content distribution using end-system, or
application-level, multicast techniques [4, 12, 15, 7]. Such
work is partly motivated by the lack of widespread deploy-
ment of IP multicast (at the network-level) and the inability
of routers to employ application-specific stream processing
services. In most cases, meshes oroverlaysform a logi-
cal interconnect between end-hosts, providing the basis for
multicast trees or routes to deliver data in a scalable man-
ner [5, 1, 3]. However, the problem with building routes be-
tween end-hosts using logical overlays is that data may be
duplicated at the physical network level, increasingphys-
ical link stress. Similarly, the end-to-end delay of data
transported along a logical overlay path between a pair of
hosts might be significantly larger than an equivalent uni-
cast path at the physical network level, thereby yielding a
correspondingrelative delay penalty1 greater than1.0.

Many approaches attempt to carefully match the overlay
topology to the underlying physical network, to decrease
the relative delay penalty and link stress [13, 12, 1, 11].
Our work differs by focusing on a study of several new and
novel approaches to build trees that vary in terms of their
complexity, and ability to limit both link stress and relative
delay penalties.

The problem addressed by this paper, then, is how to
construct communication paths between end-systems in an
efficient manner while: (1) minimizing both relative delay
penalty and physical link stress, and (2) achieving the ser-

1Some researchers refer to a similar term calledstretchthat is the ratio
of the cost of routing over an overlay tree, to the cost of routing over a
shortest path tree at the network-level, e.g. using IP multicast.

vice requirements of most (if not all) subscribers of a given
published media stream. We compare various methods to
construct multicast trees between end-systems, that vary in
terms of implementation costs and their quality of mapping
from logical overlay to physical network. We describe sev-
eral algorithms that make trade-offs between algorithmic
complexity, physical link stress and latency. While no al-
gorithm is best in all cases we show how it is possible to
efficiently build trees for several thousand subscribers with
latencies within a factor of two of the optimal, and link
stresses comparable to, or better than, existing technologies.

The rest of the paper is organized as follows. In Sec-
tion 2, various methods for multicast tree construction are
discussed. Simulation results and analyses of each tree con-
struction method are described in Section 3. This is fol-
lowed by a brief overview of related work in Section 4. Fi-
nally, conclusions are drawn, and future work is outlined in
Section 5.

2 Multicast Tree Construction

Our approach assumes some method is provided that
allows hosts to find published streams of interest, to lo-
cate their producers, and to advertise streams of their own.
This functionality might, for example, use a regular overlay
topology such as a distributed hash table (DHT). We focus,
then, on multicast tree construction for all subscribers toa
specific stream.

2.1 Methods for Establishing Locality

Each multicast tree is constructed such that the link stress
and relative delay penalties are minimized, with the intent
of using end-systems to produce a routing structure that
closely approximates that of IP multicast. Various metrics
can be used to achieve this goal although in this work we
focus on latency measurements:

Latency, L, which is measured by using ICMP to send
“ping” messages between two hosts to calculate an approx-
imation of distance. This metric has the advantage of being
simple and having a low overhead, both on the hosts and on
the underlying network. Latency is a relation between two
hosts,L(H1,H2) and specifies the time it takes to traverse
the shortest path between them. In [8] we describe other
metrics based on traceroute measurements.

2.2 Channel Subscription Algorithms

When a new host joins the system and wishes to sub-
scribe to a multicast channel, a specific algorithm dictates
the methodology for where this host is placed in the tree,
and how it gets there. We term these policiessubscription

algorithms. Thesubscription algorithm determines the
amount of time between each subscription request and when
the stream is received.Subscription algorithms must make
a difficult compromise: a very complexsubscription al-
gorithm which attempts to place a newly subscribing host
at the optimal location in the tree may take an unaccept-
ably large amount of time to place that host and might im-
pose significant overhead in terms of cost measurements,
whereas an extremely naivesubscription algorithm which
randomly assigns new hosts to positions in the tree could
very quickly place nodes, but the resulting tree would be
quite inefficient.

The first consideration, the subscription delay, is impor-
tant because the system must scale not only in terms of the
amount of hosts currently constituting a multicast tree, but
also in terms of arrival rates of hosts [9]. The second con-
sideration, the quality of the resulting multicast tree, isim-
portant to be able to scale in terms of amount of hosts sup-
ported, and to allow some form of guarantees to be made
regarding bandwidth usage, and latency of delivery of con-
tent. A successfulsubscription algorithm will strike some
balance between subscription complexity and resulting tree
quality.

We present different policies, each of which has dif-
ferent goals and makes different trade-offs. Each of the
subscription algorithms is separated into two parts. First,
the subscription policy which determines, generally, where
in the tree a new host begins searching for its placement, and
where it looks subsequently using a level-by-level traversal
of the tree. Second, at each level of the tree that is exam-
ined, the children are evaluated and compared with the new
subscriber, and conclusions are drawn regarding which sub-
tree should be evaluated next. The policies which evaluate
the children of a certain host are defined by two functions,
best andworst. These functions identify, respectively,
the best and worst child (as defined by the specific policy),
and this information can be used by the subscription policy
to make decisions regarding where to attempt to attach the
next new subscriber.

In what follows, we describe the different policies we
have investigated. Section 2.3 describes the subscription
policy studied in this paper and Section 2.4 covers the dif-
ferent methods for choosing the best and worst children of
a host. Figure 1 illustrates a simple example of how tree
nodes are labeled, and this notation will be used through-
out the rest of the text. The figure depicts a multicast tree
consisting of the parent,P , the set of all ofP ’s children
denoted byCP = {CP1, CP2, CP3}, and a new subscriber,
S. In general, we useCPi to represent theith child of P ,
where i≤MAXFANOUTP for the maximum fanout of
P . Recursively, we then useCPij to denote thejth child of
CPi.

C

C
S

P

C

P1

P2

P3

Figure 1. S attempting to join a tree.

2.3 Subscription Policies

As stated in Section 2.2, the subscription policies govern
where a host which wishes to join a multicast tree will start
looking, and where it will look from there as it progressively
converges on its eventual location. In this paper we focus
on a single policy, “bubble out” which can be seen in Fig-
ure 2. Other subscription policies are reported in [8]. The
policy always begins at the publisher of the data-stream and,
as dictated by the best and worst functions, decides which
child to recursively consider next. In this manner, a new
node will cause a “bubble out” type subscription, whereby
at each level in the tree a child is chosen and the algorithm
is run recursively until a leaf is reached, where the unsub-
scribed host is added. More specifically, a new subscriber,
S, attempts to join the multicast tree by contacting the pub-
lisher,P . The first iteration of the “bubble out” subscription
policy will reflect this. The best and worst children ofP are
chosen via thebest andworst functions, respectively.
These functions consider the existing set ofP ’s children,
CP , as well asS.

If it is possible to addS to the set of children ofP with-
out exceeding the fanout limit of the tree, then theworst
function returnsnil. If the worst isS itself, then it has been
decided thatS is not better than any of the current children.
In this case,S is added to the best child’s (i.e.,B’s) subtree
by recursively calling the “bubble out” subscription policy
with argumentsS and B. However, if it is decided that
the worst host,W , is one ofP ’s current children (such that
W 6=S), the implication is thatS would improve the tree
if it replacedW as one ofP ’s children. Thus, the logical
positions ofW andS are swapped, and the worst child is
recursively bubbled out into the best node’s subtree.

bubble out subscribe(S, P)
B = best(P, S)
W = worst(P, S)

if (W = nil)
addS to P ’s children

else if (W 6= S)
swap(S, W)
bubble out subscribe(W, B)

else
bubble out subscribe(S, B)

Figure 2. “bubble out” subscription policy.

It should be observed that using this subscription pol-
icy, the publisher of the data-stream is always contacted and

measurements are always made starting fromP . The cost
measurements described in Section 2.1 are not particularly
heavy weight, and we will assume for the purposes of this
paper that they do not incur unreasonable overhead.

2.4 Best and Worst Functions

The best and worst functions define if swaps will be
made, and which host will be selected to (recursively) sub-
scribe to a specific subtree, during the execution of the sub-
scription algorithm. Each of the methods for finding the
best and worst hosts abide by a specific goal, and make
trade-offs to achieve that goal. We discuss these goals and
trade-offs for each of the following policies considered in
this paper:

Latency Onehop is based on the idea that hosts which
are closest physically to a publisher (or any subsequent sub-
tree roots), should be logically closest as well. The formal
definition for this method is described in Figure 3. Theone-
hop latency(henceforth calledonehop) policy will choose
as worst, eitherS or one of the hosts inCP prior to S’s ar-
rival, whichever has the largest latency toP . A specific goal
of this policy is to minimize the maximum latency provided
to all hosts in the system, and therefore provide predictable
delay bounds to subscribing hosts. Each host,h, in the mul-
ticast tree maintains it’ssubtree cost, which is the minimum
latency betweenh and any host whose fanout is less than
the maximum fanout in the tree rooted ath. The formal
definition is shown in Figure 3. Using thissubtree cost, the
onehoppolicy decides the best child amongst a given set.
The child with the lowest subtree cost, thus the lowest tree
overhead for any host inserted into that subtree, is the child
that is returned by theonehopbest method.

The onehopmethod has several advantages. Latencies
between the tree root and its children are minimized, which
in turn has the potential to minimize latencies between the
root and hosts further down the tree. Moreover, the onehop
method is relatively simple, requiring only one round-trip
time measurement to find the latency between the root of
the current subtree and the new subscriber for each level in
the tree. The amount of time it takes for a new subscriber to
actually be added to the tree is relatively small. However,
theonehopmethod does not take link stress into account at
all, and the amount of physical links that are concurrently
used between multiple different subtrees will contribute to
link stress. Further, it is possible that when we swap a cur-
rent child with a new subscriber, latencies through the cor-
responding subtree may be increased. For example, ifCPi

is very close to all of it’s children, and it is found thatCPi

is the worst ofP ’s children,S will take CPi’s place; how-
ever, it is possible that even thoughS could be close toP ,
it might be very far from all of its children which it recently

best(P, S) = CPi | subtreeCost(P, CPi) = min
∀j

(subtreeCost(P, CPj))

subtreeCost(P, CPi) =



0 if | CP |< MAXFANOUTP

L(CPi, P) + min∀j(subtreeCost(CPi, CPij)) otherwise

worst(P, S) =



nil if | CP |< MAXFANOUTP

CPi | L(CPi, P) = max∀j(L(CPj , P)) otherwise

Figure 3. Methods for finding the best and worst children usin g the latency onehoppolicy.

inherited.

Latency Twohop attempts to avoid negative effects a
swap inonehopcan have on the subtree rooted at the lo-
cation of the swap. Figure 4 contains the formal definition
of this policy. Thetwohoppolicy not only measures ifS
is closer toP than any hosts inCP , but also measures how
much the subtree rooted at each child,CPi, would be af-
fected ifS were swapped in toCPi’s position. If the overall
latency to children ofCPi is decreased after swappingCPi

with S, thenCPi is considered as a candidate for the worst
child. The child with the largest decrease in latency to its
subtree is returned as the worst child. IfS does not improve
any subtrees, then it is the worst. The best child is found in
the same way as inonehop. It should be noticed that while
onehoptakes measurements between hosts that are one hop
away fromP , twohoptakes measurements which consider
hosts that are up to two hops away fromP . The main de-
ficiency of this policy is that it must make an extremely
large amount of cost measurements. Whereasonehophas
to make one cost measurement per level in the tree,twohop
must make one toP , and one to all of the grandchildren of
P , or O(fanout2) per level in the tree.

Closest Latencytakes an opposite approach to building
multicast trees. Instead of attempting to put physically close
hosts logically close to the roots of the subtrees,closest la-
tencyattempts to place a new host,S, logically close to chil-
dren that are physically close toS. Therefore, the worst is
alwaysS, and the best is that child,CPi, which is physically
closest toS. In this way,S will be recursively subscribed to
CPi’s subtree, and physically close hosts will become log-
ically close. This policy of multicast tree construction is
similar to the method in Host Multicast [15].

This policy has the benefit that it attempts to minimize
the link stress implicitly by making a correspondence be-
tween children’s logical and physical locations in relation
to each other. Unfortunately,closest latencydoes require
more cost measurements and more time per-level thanone-
hop. Not only will S have to communicate withP to get a
list of children, it will also need to make cost measurements
to each of those children. The number of cost measure-
ments per level in the tree isO(fanout). The amount of
time taken for measurements at a level consists of a round
trip time to contact the root of the subtree, and time taken
for cost measurements to all of that host’s children. Because

onehoprequires only a cost measurement to the subtree’s
root, the amount of time taken at each level is less.

Closest Latency Swapattempts to combineonehopand
closest latencyand can be seen in Figure 6. The closest
child, CPi, to the subscriber,S, is found in the same way
as in theclosest latencypolicy. If S is closer in terms
of latency toP thanCPi, then the two hosts are logically
swapped, with the swapped out host then subscribed to the
swapped in host’s subtree. In all other cases, the normal
closest latencypolicy is utilized. This method has little
more overhead thanclosest latency, and produces a better
tree.

3 Results and Analysis

In this section, we compare the different subscription al-
gorithms, using simulations involving the GT-ITM software
for generating transit-stub physical topologies [14]. Unless
otherwise specified, each physical network is created with
5050 routers, 10 transit domains, 10 transit nodes per tran-
sit domain, 5 stub domains attached to each transit node,
and 10 nodes in each stub domain. All hosts in the system
are assigned to a random router, with the possibility that
multiple hosts are assigned to the same router. One of the
hosts is chosen to be the publisher. A set of subscribing
hosts run the chosen subscription algorithm in a random or-
der, which is indicative of a real application scenario where
hosts may subscribe to published streams at arbitrary times.
The properties of the resulting tree are measured and re-
ported. Though the tree fanout (or maximum number of
children) can be configured on a per-host basis, we choose
a value of 12 for all hosts unless otherwise specified. All
results are averaged over experiments run on three transit-
stub graphs, with each graph being used twice for randomly
chosen publishers and subscribers.

3.1 Comparison of Different Subscription Algo-
rithms

One of the most important metrics, to compare the per-
formance of different subscription algorithms, is therelative
delay penaltyfor each subscriber in the resultant multicast
tree. The relative delay penalty (or, simply, delay penalty)
for each subscriber host,S, is the ratio of the latency of

best(P, S) = same as in F igure 3.

onehopFurther(P, CPi, H) = L(P, H) + Σ∀j(L(H, CPij) + L(P, H))

worst(P, S) =

8

>

>

>

<

>

>

>

:

nil if | CP |< MAXFANOUTP

CPi | onehopFurther(P, CPi, CPi)−
onehopFurther(P, CPi, S) =

max∀j(onehopFurther(P, CPj , CPj)−
onehopFurther(P, CPj , S)) otherwise

Figure 4. Methods for finding the best and worst children usin g the latency twohoppolicy.
best(P, S) = CPi | L(CPi, S) = min

∀j
(L(CPj , S))

worst(P, S) =



nil if | CP |< MAXFANOUTP

S otherwise

Figure 5. Methods for finding the best and worst children usin g the latency closestpolicy.

best(P, S) =



CPi ifL(P, S) ≥ L(P, CPi) | L(CPi, S) = min∀j(L(CPj , S))
S otherwise

worst(P, S) =

8

<

:

nil if | CP |< MAXFANOUTP

S ifL(P, S) ≥ L(P, CPi) | L(CPi, S) = min∀j(L(CPj , S))
CPi otherwise

Figure 6. Methods for finding the best and worst children usin g the latency closest swappolicy. Notice
that best and worst are opposites, with the addition of the nil case for worst.

the tree path between the publisher,P , andS to the latency
of the shortest unicast path betweenP andS (using, e.g.,
IP unicast). A delay penalty of1.0 would imply the tree
latency betweenP andS is the same as the latency of uni-
cast routing. Although this would be ideal, it is unrealistic
in practice, due to trees being constructed at the end-host
level rather than physical network level. Figure 7(a) shows
the cumulative distribution function of the delay penalty for
each of the subscription algorithms for a population of5000
hosts. The values on they-axis represent the percentage of
subscribers with a delay penalty of no more than the corre-
sponding value on thex-axis.

Efficient use of network bandwidth is also an important
metric for end-system multicast, particularly for the pur-
poses of multimedia streaming to potentially many thou-
sands of subscribers. We measure the impact of a multicast
tree on link bandwidth by computing itslink stress. The
link stress is a measure of the average number of times a
physical network link is traversed when delivering content
along the tree paths from a publisher to each and every sub-
scriber. A link stress of1.0 is perfect and means that each
network link is used only once in the dissemination of the
data-stream. As with the relative delay penalty, an efficient
end-system multicast tree should attempt to minimize the
link stress. Figure 7(b) shows the cumulative distribution
function of the link stress for each subscription algorithm.

In addition to link stress and relative delay penalty, it
is also important to consider the number of cost measure-
ments needed to construct a scalable end-system multicast
tree. This is particularly important when a tree needs to be
built or modified quickly in the presence of flash crowds (or

bursts of subscriptions). The number of cost measurements
taken per host in the system, after all5000 hosts have sub-
scribed, is represented as a cumulative distribution function
in Figure 7(c).

Discussion:We see that thetwohopmethod, which takes
a large amount of cost measurements does not achieve sig-
nificantly better delay penalties thanonehop, which takes
very few cost measurements. It appears that the complexity
added to maketwohopdoes not translate into better perfor-
mance. This confirms that the relatively simple heuristic
which is the basis foronehop– that swapping in hosts that
are closer to the publisher – is valid. that thecloser la-
tencypolicy benefits by swapping nodes that are closer to
the subtree root with the closest child. With this optimiza-
tion, closer latency swapis able to not only put physically
close children near each other in the resultant tree, but is
also able to make a physical correspondence between the
subtree roots and their children.

The policies which requireO(fanout) cost measure-
ments per level (such ascloser latency) in the tree demon-
strate a significant increase in the number of cost measure-
ments over methods such asonehop. Recall that this will
affect not only the stress on the system induced by cost mea-
surements, but also on the amount of time it takes for a new
host to complete its subscription request. These methods,
however, do incur significantly less link stress on the sys-
tem thanonehop.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 H

os
ts

Relative delay penalty (Multicast/Unicast)

Using bubbleOut/onehop
Using bubbleOut/twohop

Using bubbleOut/closest latency
Using bubbleOut/closest latency swap

(a) Relative Delay Penalty

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64 128 256

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 H

os
ts

Link Stress

Using bubbleOut/onehop
Using bubbleOut/twohop

Using bubbleOut/closest latency
Using bubbleOut/closest latency swap

(b) Link Stress

 0

 20

 40

 60

 80

 100

 1 4 16 64 256 1024 4096 16384

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 H

os
ts

Number of Cost Measurements Involving a Host

Using bubbleOut/onehop
Using bubbleOut/twohop

Using bubbleOut/closest latency
Using bubbleOut/closest latency swap

(c) Number of Cost Measurements

Figure 7. Subscription algorithm comparison.

3.2 Scalability

To understand the scalability of each of the subscription
algorithms, simulations are run on population sizes ranging
from 1000 to 10000. It is important that each of the policies
scale in terms of latency of delivery to each host and also
in terms of the bandwidth consumed. The delay penalty
results for the different populations sizes are shown in Fig-
ure 8(a). All of the policies seem to increase slowly enough
to imply scalability in terms of population size. Some of
the delay penalties seem to decrease as the host size grows
past6000. It appears that as the amount of subscribed hosts
exceeds the amount of routers in a system, the quality of
the tree improves for some policies. This has implications
for deployment in corporate environments where the num-
ber of employees might overshadow the number of routers.
Theonehopandclosest latency swappolicies demonstrate
an extremely low delay penalty which is consistent across
population sizes. All conclusions drawn in Section 3.1 are
reinforced, and we can see that the delay penalty of many
of the policies appears to scale well in terms of population
size.

Figure 8(b) illustrates the link stress. All the methods
which attempt to map physically close children to logically
close positions (i.e., within a few logical hops) in the tree,
demonstrate extremely low link stress. However,onehop,
which only attempts to make a correlation between sub-
tree roots and their children has significant link stress. This
is due to the “cross-talk” between different subtrees. That
is, different subtrees might utilize common physical links.
This “cross-talk” is limited in the policies which cluster
children together because each subtree will ideally repre-
sent non-overlapping subsections of the entire network.

3.3 Variation of Fanout

As mentioned before, the fanout of the tree is, for sim-
plicity, set to 12 in all of the preceding experiments. It is im-
portant, however, to understand the effect of fanout on the

efficiency of the multicast tree. Figure 9 demonstrates this
effect. Multicast trees are constructed using both a fanoutof
6 and a fanout of 12, and the cumulative distribution func-
tions for both delay penalty (Figure 9(a)) and link stress
(Figure 9(b)) are measured. In these graphs, only a subset
of the original subscription policies are tested, which are
deemed most interesting.

The delay penalty plots indicate that a larger fanout is
more beneficial to the construction of trees with better la-
tency characteristics. This is due to two reasons: (1) as the
fanout increases, thebest andworst functions can see
more children and can therefore make more informed de-
cisions regarding which child is the best and which is the
worst, and (2) because the depth of the tree is less (log12N

instead oflog6N for a population size,N). The change
in fanout does not seem to significantly impact the link
stress. This is perhaps non-intuitive because as the fanout
increases, it would seem that the link stress around that root
would also increase. However, both of the methods that at-
tempt to attach the subscriber,S, to a close child will simply
have more information about which child to connect toS.
In the case ofonehop, the same “cross-talk” between sub-
trees will exist regardless of how many children each node
has, and this is the primary contributor to its link stress.

3.4 Variation of Physical Topology

So as to ensure that results obtained here are not depen-
dent on the size or shape of the physical topology used,
we re-run the experiments from Section 3.2 on a different
graph with 10100 routers. The graph consists of 25 transit
domains, five transit nodes per transit domain, four stub do-
mains attached to each transit node, and 20 nodes in each
stub domain. Further, we wish to compare our results with
the RITA [12] tree generation method which approaches the
problem in a completely different manner. RITA uses land-
marking information and a peer-to-peer network to place
nodes into the multicast tree. The evaluation of RITA uti-
lizes a physical graph with the same properties and the tests

 1

 1.5

 2

 2.5

 3

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 R
el

at
iv

e
de

la
y

pe
na

lty
 (

M
ul

tic
as

t/U
ni

ca
st

)

Number of hosts in the system

Using bubbleOut/onehop
Using bubbleOut/closest latency

Using bubbleOut/closest latency swap

(a) Relative Delay Penalty

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 L
in

k
S

tr
es

s

Number of hosts in the system

Using bubbleOut/onehop
Using bubbleOut/closest latency

Using bubbleOut/closest latency swap

(b) Link Stress

Figure 8. Scalability of the different subscription algori thms.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 H

os
ts

Relative delay penalty (Multicast/Unicast)

Using bubbleOut/onehop, fanout 6
Using bubbleOut/onehop, fanout 12

Using bubbleOut/closest latency swap, fanout 6
Using bubbleOut/closest latency swap, fanout 12

(a) Relative Delay Penalty

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64 128 256

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 H

os
ts

Link Stress

Using bubbleOut/onehop, fanout 6
Using bubbleOut/onehop, fanout 12

Using bubbleOut/closest latency swap, fanout 6
Using bubbleOut/closest latency swap, fanout 12

(b) Link Stress

Figure 9. Comparison of the effect of different fanout value s.

are run for smaller numbers of hosts, with a maximum pop-
ulation size of2000. It is important to note that RITA mea-
sures thestretchin latency of the end-system multicast tree
compared to the latency of an equivalent shortest path tree
at the network-level. This is a slightly different metric than
our notion of relative delay penalty. We compare against
unicast latency so that we will be measured against the best
possible delivery latency for each subscriber.

Figure 10(a) shows the delay penalty from a population
size of 100 to 2000. Though the delay penalties cannot be
compared directly, the values forclosest latency swapand
onehopseem to compare favorably to those reported in the
work on RITA [12]. Figure 10(b) illustrates the link stress.
The onehopmethod seems to achieve a comparable link
stress to RITA at2000 nodes. However, both other poli-
cies demonstrate a significantly better average link stress
of approximately two. Results show that in terms of delay
penalty and link stress,closest latency swapachieves aver-

age delay penalties comparable to RITA, and link stresses
which are better.onehopis competitive in terms of delay
penalty and link stress (though the authors believe that af-
ter 2000 hosts,onehops link stress will be larger than that
demonstrated by RITA.)

4 Related Work

There have been several recent methods for building end-
system multicast trees and graphs [4, 12, 15, 7, 2] that at-
tempt to reduce delay penalties and link stress. Some sys-
tems, such as Pastry/Scribe[10, 2] implicitly form distribu-
tion trees using logical links that comprise a structured over-
lay. The advantage of this approach is that it is scalable in
the sense that individual participating hosts must only store
routing state that is logarithmic in the number of hosts in
the system. In addition, many such regular overlay struc-
tures can route a message between any pair of hosts in an

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 500 1000 1500 2000
 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

A
ve

ra
ge

 R
el

at
iv

e
de

la
y

pe
na

lty
 (

M
ul

tic
as

t/U
ni

ca
st

)

A
ve

ra
ge

 L
in

k
S

tr
es

s

Number of hosts in the system

bubbleOut/onehop Link Stress
bubbleOut/closest latency swap Link Stress

bubbleOut/onehop RDP
bubbleOut/closest latency swap RDP

Figure 10. Multicast tree for smaller popula-
tion sizes and larger physical topology.

asymptotically logarithmic number of hops with respect to
the number of participants, thus ensuring reasonable routing
latencies.

Other related work, such as RITA [12], HMTP [15],
NARADA [4], and Bullet [6], present approaches that at-
tempt to form multicast trees, without being strictly limited
to a fixed logical topology. In these systems a number of
methods are proposed for inserting newly subscribing hosts
into the tree at positions that result in low-cost data distri-
bution. Some systems, such as OMNI [1], use a set of pre-
selected service nodes to form a low-cost distribution tree
that connects subscriber hosts. Our approach differs from
OMNI in that all hosts are peers, rather than being arranged
in a two-tier hierarchy, thereby allowing for greater flexi-
bility in the placement of hosts in a tree structure. Of all
the bodies of work mentioned above, none have provided a
comparative study of different tree construction algorithms
that emphasize the trade-offs in cost, link stress, and delay
penalty.

5 Conclusions and Future Work

This paper describes several end-system multicast tree
construction algorithms, that vary in terms of cost, relative
delay penalty and link stress. We show how it is possible to
efficiently build trees that support many thousands of sub-
scribers each with their own QoS constraints. While no
algorithm is best in all cases, we show how it is possible
to efficiently build large-scale trees with latencies within a
factor of two of the optimal, and link stresses comparable
to, or better than, existing technologies such as RITA and
HMTP. Several of our approaches support the swapping of
hosts into different tree positions, to adaptively improvethe
overall tree quality without incurring significant overhead.

Theclosest latency swappolicy arguably offers the best all-
round performance. Experimental results suggest that in-
creasing tree fanout improves the overall latency character-
istics without significantly impacting the link stress.

References

[1] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller. Con-
struction of an efficient overlay multicast infrastructure for real-time applica-
tions. InIEEE INFOCOM, San Francisco, CA, April 2003.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. SCRIBE: A large-
scale and decentralized application-level multicast infrastructure.IEEE Journal
on Selected Areas in Communications (JSAC) – Special issue on Network Sup-
port for Multicast Communications, 2002.

[3] Y. Chawathe.Scattercast: An Architecture for Internet Broadcast Distribution
as an Infrastructure Service. PhD thesis, University of California, Berkeley,
December 2000.

[4] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system multicast. InACM
SIGMETRICS 2000, pages 1–12, June 2000.

[5] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’Toole. Overcast:
Reliable multicasting with an overlay network. InProceedings of the 4th Sym-
posium on Operating Systems Design and Implementation, October 2000.

[6] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: high bandwidth
data dissemination using an overlay mesh. InProceedings of the nineteenth
ACM symposium on Operating systems principles, volume 37, 5 ofOperating
Systems Review, pages 282–297, New York, Oct. 19–22 2003. ACM Press.

[7] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai. Distributing
streaming media content using cooperative networking. InProceedings of the
12th International Workshop on Network and Operating Systems for Digital
Audio and Video (NOSSDAV), May 2002.

[8] G. Parmer, R. West, and G. Fry. Scalable overlay multicast tree construction
for qos-constrained media streaming. Technical Report UCB/CSD-01-1141,
Computer Science Department, Boston University, August 2006.

[9] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a DHT.
In Proceedings of the 2004 USENIX Technical Conference, Boston, MA, USA,
June 2004.

[10] A. Rowstron and P. Druschel. Pastry: scalable, decentralized object location
and routing for large-scale peer-to-peer systems. InProceedings of the 18th
IFIP/ACM International Conference on Distributed Systems Platforms (Mid-
dleware), Nov. 2001.

[11] D. Tran, K. Hua, and T. Do. ZIGZAG: an efficient peer-to-peer scheme for
media streaming. InProceedings of the IEEE Conference on Computer Com-
munications (INFOCOM), April 2003.

[12] Z. Xu, C. Tang, S. Banerjee, and S.-J. Lee. RITA: receiver initiated just-in-
time tree adaptation for rich media distribution. InProceedings of the 13th
International Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV), June 2003.

[13] Z. Xu, C. Tang, and Z. Zhang. Building topology-aware overlays using global
soft-stat. InThe 23th International Conference on Distributed Computing Sys-
tems, ICDCS, pages 500–508, 2003.

[14] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to model an inter-
network. InIEEE INFOCOM, volume 2, pages 594–602, San Francisco, CA,
March 1996.

[15] B. Zhang, S. Jamin, and L. Zhang. Host multicast: A framework for delivering
multicast to end-users. InProceedings of the IEEE Conference on Computer
Communications (INFOCOM), June 2002.

