Cuckoo: a Language for Implementing Memory- and Thread-safe System
Services

Richard West and Gary T. Wong

Computer Science Department
Boston University
Boston, MA 02215

{richwest,gtw @cs.bu.edu

Abstract generally less expensive than software safety techniques,
they require features such as paging and segmentation that
This paper is centered around the design of a thread- are not common to all architectures, or may be too coarse-
and memory-safe language, primarily for the compilation grained for memory protection of small objects. In con-
of application-specific services for extensible operating sys-trast, software techniques have largely focused on memory
tems. We describe various issues that have influenced th@rotection without considering other needs of service ex-
design of our language, called Cuckoo, that guaranteestensions (e.g., safe management of asynchronous threads
safety of programs with potentially asynchronous flows of of control, fine-grained memory allocation, and predictable
control. Comparisons are drawn between Cuckoo and re- real-time performance).

lated software safety techniques, including Cyclone and Thijs paper, therefore, focuses on a novel language that
software-based fault isolation (SFl), and performance re- provides memory safety, while ensuring controlled access
sults suggest our prototype compiler is capable of gener-tg code and data in the presence of asynchronous threads of
ating safe code that executes with low runtime overheads,control. As with languages such as Cyclone [5], our lan-
even without potential code optimizations. Compared to guage called “Cuckoo” is both syntactically and semanti-
Cyclone, Cuckoo is able to safely guard accesses to memcally similar to C. This has the advantage that legacy code
ory when programs are multithreaded. Similarly, Cuckoo can easily be translated, and new programs may be written

is Capable of enforcing memory safety in situations that are in a manner familiar to many existing app“caﬂon and sys-
potentially troublesome for techniques such as SFI. tem developers.

The significant contributions of this paper include a de-
scription of the key design issues of Cuckoo with attention
given to issues not easily supported by other software safety
techniques. Specifically, we focus on the ability to: (1) en-

1 Introduction sure safe access to memory even when code may be exe-
cuted by multiple threads, (2) provide fine-grained control

In recent times, there has been a trend to employOver memory usage (not easily achieved by languages such
commercial-off-the-shelf (COTS) systems for diverse appli- @s Java), and (3) achieve run-time performance close to that
cations having specific needs (e.g., in terms of real-time re-of untrusted C binaries.
quirements). For this reason, extensible systems have been The rest of the paper is organized as follows: Section fo-
proposed [1, 12, 13], to allow the underlying system to be cuses on the design issues of Cuckoo with respect to mem-
customized with services that are tailored to individual ap- ory safety, while thread safety issues are discussed in Sec-
plication demands. However, various techniques to enforcetion . Section describes the performance of our prototype
system safety have proven necessary, to prevent untruste@€uckoo compiler for a series of applications, some of which
users from deploying potentially dangerous extension codeemploy multiple threads. For applications that are single-
in traditionally trusted protection domains such as the ker- threaded, we compare the performance of Cuckoo to other
nel. Such techniques includeandboxing[14, 11, 12], approaches including Cyclone, software-based fault isola-
type-safe languages [5, 2, 9], proof-carrying codes [7], andtion [11] and C. Related work is described in Section while
hardware-support [3, 6]. While hardware approaches areconclusions and future work are covered in Section .

Keywords: programming languages, memory- and
thread-safety

2 Memory safety source code to another high-level language, Cuckoo gen-
erates native machine code. This enables Cuckoo to accu-
rately track stack usage, based upon its knowledge of reg-
ister versus stack allocation at code generation time. In
Cyclone runtime checks for stack overruns are not possi-
ble, because secondary compilation (e.g., ugttw) on the
system (i.e., library or OS); compiler’'s output may use stack space i-n an unknqvx_/n way.
e It cannot jump to any location which does not contain " Some cases, Cuckoo allows compile-time verification
trusted code (where trusted code is either code which is®f Stack usage when the maximum stack depth can be deter-
generated by a trusted compiler, or accessed via a desmined. In general, we have the potentlal to push up the gall
ignated entry point to the trusted runtime). Note that stack run-tlme_checks to determine stack overruns, to p_qmts
instruction boundaries must be respected when jump_where all ensuing control-flow’s stack_usage can be verified,
ing to a location thatlioescontain trusted code. thereby reducing the number of runtime checks necessary.

These conditions are very similar to traditional definitions Note, however, that conditional branches that may affect

of memory safety (such as those assumed by [4]), except fc)rstack usage ideally require runtime stack checks to avpid
their dependence on a trusted runtime system. We claimthafremature_Iy throwing stack oyerflow exceptions when in
a correct compiler for the language we describe, in combi- act there is enough space available.

nation with such a trusted runtime, will produce only mem- _

ory safe programs. In the remainder of this section we dis-| <™ it at-) {// SUpp?/Sisztggkis <mall
cuss various challenges that have affected the design of our J/ in this block
memory safe language, called Cuckoo.

We describe a program asemory safef it fulfills the
following two conditions:
e It cannot write to nor read from any memory location
which is not reserved for its use by a trusted runtime

Dynamic memory allocation. For dynamic memory allo- char a_local;
cation, we do not allownalloc -style operations. Instead, it ()
we introduce the C++-styleew operator to allocate mem- b();

ory large enough for an object of a specific type. The return
value will be a pointer to an object of the specified type.
The new operator declares a particular space on the heag i ()
to be available for reallocation to objects of either: (1) the c();
same type, or (2) compatible types with the same or smaller, }
storage requirements. Observe that (2) implies a matching Stcar::r 'Qt Ig&[{%s%l_ 1/ stack-allocate
delete operator may allow heap memory to be reassigned - ' /I lots of memory
from one harmless type to another, thereby avoiding unnec+
essary growth in heap usage. Further details about harmless }
types are described in an extended paper [15]. At this point . .
the reader should simply note these semantics do not guard Figure 1. Example to illustrate where stack
against incorrect program behavior but will ensure memory checks must be performed
and type safety.
Stack safety. Stack safety concerns the potential problem Further details can be found in the example shown in
arising from dereferencing pointers to automatic variables Figure 1. In this figure there is a limit on how far up the
after returning from the function in which they were al- call stack we can place runtime checks for stack overflows.
located. Additionally, overflow errors arise when a stack For example, placing a runtime check before the conditional
extends into a region beyond some defined limit. Nor- (if statement) in functiom() may incorrectly presume the
mally, stack overruns are detected by the underlying hard-following code will use as much as 64KB of stack space
ware (e.g., using page-based virtual memory). However, (given functionc() is called) but this may not be the case,
a key design issue of Cuckoo is to detect stack overflow depending on the value of the conditional expression. Also,
within memory regions where hardware protection is not because functioa() has anextern storage class speci-
available. One such example includes support for multiple fier it must perform its own stack checking as it is generally
thread stacksvithin a super-page (e.g., 4MB memory area) unknown which control path has invoked functiaf) . In
on a platform such as the Intel x86 [14, 10]. contrast, because functiob§) andc() arestatic it

The stack overrun problem is, in general, undecidable. is possible to track where they are called from, thereby re-
Hence, the Cuckoo approach involves runtime checks toducing runtime stack overflow checks to locations in calling
throw an exception if stack overflow occurs. Unlike other functions, rather than the static functions themselves. How-
memory-safe languages, such as Cyclone, which compileever, to deal with general and mutual recursion, we must

static void b (...) { // again, have
/I minimal stack usage

perform a runtime stack check every iteration, as it is usu- based dynamic memory allocation, Cuckoo allows heap
ally undecidable how many times the function will be in- memory to be reallocated (afterdelete) to objects of
voked. compatible type. By “compatible” we mean that any aliases
Pointers and array bounds checks.Cuckoo performs ar- ~ created by such an allocation cannot violate type-safety
ray bounds checks at compile-time for cases where the arraythereby leading to potential memory protection problems).
size and index are both compile-time constants. All other For example, Figure 4 shows how a freed heap memory area
cases involve runtime bounds checks. Our prototype imple-is reallocated to an object of a different type, thereby allow-
mentation stores the array size in a memory location imme-ing an arbitrary memory location to be dereferenced. In
diately preceding the first element of each dimension of the Cuckoo, the statemeatnew(char *) is guaranteed to
array stored in row major format. This ensures that the sizereturn an address on the heap that is not incompatible with
of an array is always known at runtime. By comparison, in achar * , soitis impossible for the return value to be the
C, it may be the case that an array is used when its size isSame as previously assignedio
unknown. This has impact on the way Cuckoo treats arrays.
Specifically, the name of an array in Cuckoo is a pointer to 3 Thread safety
an array of some known number of objects of a given type,
whereas in C an array name is a pointer to the first object
in the array. This means that, whereas in C a variable of
type “array of T" can be used interchangeably with a type
“pointer to T”, in Cuckoo the same variable can be used
interchangeably with a “pointer to an array of T". This is
discussed further in Section A7.1 of the Appendix in our
extended paper [15], with respect to “Pointer Generation”.
Figure 2 shows the similarities and differences between C
and Cuckoo for array types.

In Cuckoo, any pointer object?, is either NULL or _
points to storage which can be safely treated as having a o cope with null pointer checks by evaluating all

type of P, while P exists. In order to make automatic ,inter values in registers, so that the value checked is iden-
pointer validity trac}qng easier, Cuc_koo differs from C with e {0 the value dereferenced. Even if the code does not ex-
respect to the lifetime of local variables. In Cuckoo, the ¢ te atomically, the register is guaranteed to be restored, so
lifetime of locals is extended from the scope of a block t0 e e cannot be a null pointer dereference. This does mean
the scope of a function. With respect to stack safety dis-y,; e might dereference a pointer whose value is stale,

cussed earlier, this approach also has the advantage thalg onhosed to a dangling pointer. Observe that Cuckoo im-
stack checks are simplified; only one check at the begin- ,,qeq 1 restrictions on pointer aliases, and non-atomic ma-
hing of a function is necessary, to establish space for all i ation of pointers may lead to violations in program cor-
automatic variables encountered in that function. rectness but, nonetheless, will not violate memory safety as
Dangling pointers. Dangling pointers are problematic in gefined in Section .

two situations: (1) dereferencing pointers to deallocated Tpe key issue here is that languages such as Cyclone
heap memory, and (2) dereferencing pointers into stacksypport the use of fat pointers (i.e., pointers that maintain
space on return from a function. In the latter case, the sjze information about the object they reference), but con-
Cuckoo type system prevents assignment of an automatiGyrrent updates to such pointers can lead to race conditions
object addressy, to a pointer whose lifetime is longer than and, hence, out-of-bounds memory accesses. In Cyclone,
«. Given the above similarities and differences between Cupdates to pointer addresses are not made atomically with
and Cuckoo, Figure 3 compares the two languages in termgegpect to changes (and checks) on the corresponding size
of legal casts. field. For example, a fat pointer shared by two threads
Exception handling. Currently all runtime exceptions trap may initially refer to an array,[20] and later be updated to

to a default handler. A simple extension to this is to allow a refer to a different array;[10]. While the pointer may refer
generic signal (e.gSIGUSRYI) to be raised, thereby allow- to the address of its size field may be inconsistent, hav-
ing application-code to customize the exception handling ing the old value oR0, thereby enabling a potential array
for specific cases. In future work, we plan to extend Cuckoo overflow onb. This situation is not possible with Cuckoo.
with exception-handling capabilities similar to those in C++ Moreover, array bounds checks (as stated earlier) are trivial
and Java. given that size information is embedded in the array objects
Type homogeneity of dynamically allocated memory ob- themselves, rather than carried along with pointers that ref-
jects. As with the LLVM approach [4] to deal with pool- erence them.

Many system services rely on execution models which
are considerably more complicated than the traditional
model of a single synchronous thread of control. The ex-
ecution of concurrent threads and the processing of asyn-
chronous signals and kernel upcalls mean that correctness
guarantees are significantly more difficult to achieve. We
do not (and cannot) prove the correctness of user code with
respect to concurrency, but it is vital to ensure that the
memory safety checks described in the previous section still

char a[5];

char cl = *a; /I valid in C but not Cuckoo
char c2 = a[0]; /I valid in Cuckoo, s.t. c2 is the same as cl in C
char ¢3 = (*a)[0]; // also valid in Cuckoo: c3 is the same as c2

Figure 2. Array types in C versus Cuckoo

struct foo {
int a[5];
char *s;

}

struct foo *p;

int x = *((int *)p); /I legal in C but not in Cuckoo...
int y = *((int (*[5]))p); // this is also illegal in Cuckoo,

/I since we cannot assign an array to an int, but...
int z = ((int (M[5])P)[O];// is legal in Cuckoo, as this assigns z

/I the first element of an array

Figure 3. Example casts in C and Cuckoo

int *p;
char **q;
p = new(int); /I heap-allocate an integer
delete(p); /I release memory referenced by p

q = new(char *); // reuse heap memory freed at address p with
/I incompatible typed object;

*n = 123; /I after freeing p, continue to assign values to its
/Il heap memory area

**q = 45; /[this results in writing the value 45 in address 123,
/I potentially violating memory safety

Figure 4. Potentially unsafe reallocation of freed heap memory

4 Experimental Results assembly code for the 80386 architecture. While we cur-
rently use the GNU linker, it is quite possible for Cuckoo

The implementation details of Cuckoo are outside the source files to be compiled and linked with untrusted ob-

scope of this paper. Currently, we have a version of theJects, whose symbols may be referenced from Cuckoo code.

compiler that leverages thgce preprocessor, linker and While typing rules must be adhered in Cuckoo code that ref-

assembler. After preprocessing a source file, the cuckoogrences external symbols in untrusted code, there is no guar-

compiler performs compile-time checks on types, lifetimes antee of safety within the body of an external object. Future

of objects referenced by pointers, and certain array boundWork includes the development of a trusted_ Imker,_ which
and NULL pointer checks, where the values are compile- checks type-safety across separately compiled objects and

time constants. Run-time checks are inserted for array anodetects attempts to link with untrgst_ed.code. Right now,
pointer accesses, where array indices cannot be determinegycIone suffers from these same limitations.
within bounds at compile time, and pointers cannot be guar- Table 1 shows the performance of our prototype (com-
anteed valid. By valid we mean that a pointer is non-NULL pared togcc 3.2.2 and Cyclone 0.7 running on a 2.8 GHz
and references an object of compatible type (consideringPentium 4 CPU). The first benchmark, SUBSET-SUM,
type information includes the lifetime of objects). Observe is a naive parallel solution to the well-known (and NP-
that determining whether or not a pointer references a com-complete) decision problem of whether a given set of inte-
patible type does not require run-time checks. gers contains a subset which sums to zero. The results listed
To date, we have a Cuckoo compiler that generates targetndicate the times (in seconds) and program size (in bytes)

Table 1. Comparison of execution time and storage requirements

Compiler | Time (user) [Time (system) | Size (code)[Size (data) [Size (BSS)
SUBSET-SUM
Cuckoo 30.96 n/a 2377 288 152
gcc -0O2 17.86 n/a 1833 280 192
gcc 24.75 n/a 1945 280 192
PRODUCER-CONSUMER
Cuckoo 2.50 5.13 2527 308 428
gcec -02 2.46 5.10 2001 300 480
gcc 2.50 5.14 2093 300 480
FIND-PRIMES
Cuckoo 10.17 n/a 1301 260 10016
Optimized Cuckoo 6.78 n/a 1285 260 10016
gcc 9.56 n/a 874 252 10032
gce -02 3.57 n/a 814 252 10032
Cyclone 12.43 n/a 91721 3340 59996
Cyclone-02 5.51 n/a 91669 3340 59996
Cyclone-noregions -nogc 12.43 n/a 51619 2020 11140
Cyclone-noregions -nogc -0O2 5.50 n/a 51567 2020 11140
SFI 10.79 n/a 970 252 10032
SFI-02 431 n/a 858 252 10032
SFI protection 11.10 n/a 1058 252 10032
SFI protectionO2 4.32 n/a 870 252 10032

required to compute the SUBSET-SUM decision for a set based fault isolation [11], that inserts run-time checks on
of 27 random integers (the set was kept identical for eachjumps and stores to memory addresses unknown at compile-
run and the numbers were in the rangel(®,4-10°]), us- time (e.g., those stored in registers). Since no SFI imple-
ing 4 threads. The PRODUCER-CONSUMER test consists mentation exists for the x86 architecture, these benchmarks
of one producer thread and one consumer thread, sharing avere compiled withgcc 3.2.2 and the assembly output of
single memory buffer which is filled by the producer and the compiler was modified by hand to insert the SFI-style
emptied by the consumer. address bound restrictions. The compiler’s register alloca-

The FIND-PRIMES benchmark uses a single-threadedtions were modified by hand where necessary to preserve
implementation of the Sieve of Eratosthenes algorithm to & sufficient number of reserved registers, and then extra in-
compute a list of prime numbers (in our cas@’ iterations structions were added to memory accesses according to the
of the algorithm finding all primes belo@0*). Note that ~ SFI “address sandboxing” procedure. T@2 rows are
an “Optimized Cuckoo” entry has been added to this last the results when the original compiler wasc -O2 , and
result, which simulates the performance of a slightly more the other two rows were compiled with plagtcc. The
sophisticated compiler which honors thegister ~ key- ~ “protection” rows implement full protection (by modifying
word by keeping certain variables in CPU registers insteadboth memory read and write operations), while the other
of main memory. Since our prototype compiler does not two rows implement fault isolation only (where writes are
yet implement this optimization, the “Optimized Cuckoo” sandboxed but no attempt is made to prevent illegal reads).
results were obtained by modifying Cuckoo assembly lan- The results using SFI are slightly better than with
guage output by hand to keep the values of index variablesCuckoo. We conjecture the performance with SFl is partly
in the innermost loop in spare registers. The significant im- due memory access time being the bottleneck, as opposed to
provement in runtime from this small change seems to in- CPU speed. The deep pipelining allows SFI memory checks
dicate that there is substantial room for improvement if an to be performed (to some degree) in para||e| with memory
optimizing compiler were written for our language. Since |oads and stores. However, it should be noted that the hand-
the FIND-PRIMES benchmark is single-threaded, it is also modifications used in the SFI tests do not deal with all safety
compatible with the Cyclone 0.7 compiler. We have listed jssues, such as potential jumps to misaligned addresses in
the results of four tests with Cyclone, with various compiler code segments, or preventing constant data within code seg-
options: -O2 invokes the optimizer in thgcc back-end, ments from being executed. In contrast, Cuckoo prevents
and-noregions -nogc disable Cyclone’s region anal- pointer arithmetic and aliasing of pointers to incompatible
ysis and garbage collector (which are not required in this types (e.g., aliasing to different members of unions). This
benchmark, as no runtime dynamic memory allocation is eliminates the potential unsolved problems with SFI. Also
performed). observe that while SFI performs well for this example, it is

Lastly, the SFI results show the performance of software- quite possible that for many register-intensive applications,

an architecture which is register-limited (e.g., the x86) may thread safety is integral to the design of the language. Of
prove problematic. We plan to study more application ex- the other related works, no other language or compiler pro-
amples in the future. vides this set of characteristics, which we feel is important

For the two CPU-intensive benchmarks (SUBSET-SUM for our target domain, namely, extensible system services.
and FIND-PRIMES), it appears that Cuckoo is on the order For example, Cyclone does not ensure multithreaded mem-
of 15% more expensive (in time and space) than unopti- ory safety, and although Java provides this, it requires re-
mizedgcc . Some of this cost can be attributed to array stricted memory management and corresponding garbage
bound and null pointer checks, which must be performed collection.
at runtime, and therefore contribute to both the execution Of the techniques listed in Table 3, SFI appears to have
time and code size, and part of the expense can be blamethe most similarities. However, SFI provides only partial
on poor compiler implementation, since so far very little ef- memory safety compared to Cuckoo. To illustrate this, Fig-
fort has been spent attempting to make our prototype com-ure 5 shows a situation that SFI cannot easily detect. In this
piler generate efficient code. However, note that in the example, there is a jump to an address thabdibytes from
second (PRODUCER-CONSUMER) benchmark, which is the beginning of functioibad and this may not be the start
data- rather than CPU-intensive, the execution time for of the instruction. Observe that this problem only exists on
the Cuckoo code is comparable to that producedyty. CISC architectures, that allow for variable-length instruc-
Therefore, while we admit that for CPU-intensive or gen- tions. SFI was originally designed for RISC architectures
eral purpose code we cannot realistically expect a Cuckoothat have fixed-length instructions aligned on word bound-
compiler to match the efficiency of C, we hope that for the aries.
type of code in our target domain (low-level, data-intensive
system services), the overheads we require will be minimal,| static void bad(void) {

. . e volatile int x = OxOBADCODE;

and, depending on the environment, worth sacrificing for
the safety guarantees we can provide.

-

To finish this section, we compared Cuckoo vergas extern int main(void) {
for a parallel implementation of the subset-sum problem on “”'O”C;:‘r’ fdata_
a 4x2.2GHz AMD Opteron machine. _Table 2 shows the void (*code)(void):
real-time results. As expectegcc -O2 is the fastest but } bar;

Cuckoo is slightly slower than unoptimizegtc . The dif-

ference is performance is arguably outweighed by the ben- bar.code = bad;

bar.data += 10; // whatever the offset is

efits of extra safety checks being performed by the com- /I to OXOBADCODE
piler and, as stated earlier, there is room for improvement bar.code();
in the Cuckoo compiler’s generated code. Notwithstanding, return 0;

we believe this is evidence that a type-safe language can
efficiently generate safe code with concurrent execution re-

quirements Figure 5. Example jump to a potentially un-

aligned address

Table 2. Execution times for parallel subset-

sum problem Finally, while there has been work on purely static anal-

Compiler | Parallel time (real) ysis of program safety [4], such approaches are made more
Cuckoo 9.45 complicated when there are asynchronous execution paths,
ggE -02 ‘7"28 and have thus far applied control-flow analysis techniques
g : to programs with single threads of execution.

5 Related work 6 Conclusions and Future Work

Table 3 compares Cuckoo to several notable soft- This paper presents an overview of the Cuckoo com-
ware safety techniques. While other approaches includepiler and its design considerations with respect to support-
CCured [8], and Modula-3 [9], we feel characteristics of ing thread and memory safe programs. The specific ap-
these languages are largely captured by those illustrated irplication domain of this compiler is in support of system
the table. With Cuckoo: (1) there is no need for garbage service extensions, where asynchronous control-flow (e.g.,
collection, (2) correctness is not enforced (only safety), (3) using threads and signals) is commonplace. Our insights
runtime checks are allowed, (4) strict compatibility with C gained from research on extensible operating systems [13]
is sacrificed for ease of enforcing safety checks, and (5)using type-safe languages such as Cyclone led us to believe

Table 3. Features offered by various languages and approaches

System C | Cyclone | Java SFI Cuckoo
Efficient memory use v v v v
Memory safe v v partially v
Stack overflow checking v v v
Multithreaded memory safety v v v
Can operate without garbage collection v v v v
Unrestricted allocation without garbage v v v
collection

that multithreaded memory safety was a key issue in ex- [4] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Mem-

tension code. Results show that Cuckoo provides program

safety for both single- and multi-threaded applications with

relatively low runtime overheads compared to comparable

code compiled using unsafe C compilers, such@&s.

Results show that, while techniques such as SFI have the
potential to perform with low runtime overheads, it is ar-
guably difficult to check for references to misaligned ad-
dresses and jumps to instructions embedded in data con-

stants within program text segments. Cuckoo has the ability

(5]

(6]

to check for these issues, using its typing rules at compile [7]

time.

Future work involves studying the costs of dynamic

memory allocation, and its safe usage in the presence of

asyn

chronous control-flow. Specifically, dynamic memory

allocation within a signal handler requires mutually exclu-
sive access to heap data structures, that maintain pools of [g]
free and allocated memory. Using traditional locking mech-
anisms to allocate and update the state of heap memory cari10]
potentially lead to deadlocks between signal handlers and a

program’s main thread of control holding a lock at the time

a sig

nal handler is invoked.

References

(1]

(2]

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fi-
uczynski, and B. E. Chambers. Extensibility, safety, and
performance in the SPIN operating system.Phoceedings

of the 15th ACM Symposium on Operating Systems Princi-
ples pages 267-284, Copper Mountain, Colorado, Decem-
ber 1995.

L. Carnahan and M. Ruark. Requirements for real-
time extensions for the Java platform, September 1999.
http://www.itl.nist.gov/div897/ctg/real-time/rtj-final-
draft.pdf.

(8]

(11]

(12]

(13]

(14]

[3] T. Chiueh, G. Venkitachalam, and P. Pradhan. Integrating [15]

segmentation and paging protection for safe, efficient and
transparent software extensions. 3ymposium on Operat-
ing Systems Principlepages 140-153, 1999.

ory safety without runtime checks or garbage collection. In
Proc. Languages, Compilers and Tools for Embedded Sys-
tems 2003San Diego, CA, June 2003.

T.Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. Proceedings of
the USENIX Annual Technical Conferenpages 275-288,
Monterey, CA, June 2002.

J. Liedtke. On micro-kernel construction. Rroceedings of
the 15th ACM Symposium on Operating System Principles
ACM, December 1995.

G. C. Necula and P. Lee. Safe kernel extensions without run-
time checking. Ir2nd Symposium on Operating Systems De-
sign and Implementation (OSDI '96), October 28-31, 1996.
Seattle, WApages 229-243, Berkeley, CA, USA, 1996.

G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-
safe retrofitting of legacy code. Froceedings of the Prin-
ciples of Programming Language&CM, 2002.

G. Nelson. Systems Programming with Modula-Brentice
Hall, Englewood Cliffs, 1991.

X. Qi, G. Parmer, and R. West. An efficient end-host archi-
tecture for cluster communication services.Proceedings

of the IEEE International Conference on Cluster Computing
(Cluster '04) September 2004.

T. A. R. Wahbe, S. Lucco and S. Graham. Software-based
fault isolation. InProceedings of the 14th SOS&sheuville,

NC, USA, December 1993.

M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Deal-
ing with disaster: Surviving misbehaved kernel extensions.
In Proceedings of the 2nd Symposium on Operating Systems
Design and Implementatiopages 213-227, Seattle, Wash-
ington, 1996.

R. West and J. Gloudon. ‘QoS safe’ kernel extensions for
real-time resource management.tte 14th EuroMicro In-
ternational Conference on Real-Time Systedngse 2002.

R. West and J. Gloudon. User-Level Sandboxing: a safe
and efficient mechanism for extensibility. Technical Report
2003-14, Boston University, 2003. Now revised and submit-
ted for publication.

R. West and G. Wong. Cuckoo: a language for implementing
memory- and thread-safe system services. Technical Report
2005-006, Boston University, February 2005.

