
Process-Aware Interrupt Scheduling and Accounting ∗

Yuting Zhang and Richard West

Computer Science Department
Boston University
Boston, MA 02215

{danazh,richwest}@cs.bu.edu

Abstract

In most operating systems, the handling of interrupts is
typically performed within the address space of the kernel.
Moreover, interrupt handlers are invoked asynchronously
during the execution of arbitrary processes. Unfortunately,
this allows for a process’s time quantum to be consumed by
arbitrary interrupt handling. To avoid significant impact to
process execution and also to respond quickly enough to in-
terrupts, interrupt servicing is usually split into two parts:
a “top” and “bottom” half. The top half executes at inter-
rupt time and is meant to be short enough to complete all
necessary actions at the time of the interrupt. In contrast,
the bottom half can be deferred to a more suitable point
in time to complete servicing of a prior interrupt. Systems
such as Linux may defer bottom half handling to a schedu-
lable thread that may be arbitrarily delayed until there are
no other processes to execute. A better approach would be
to schedule bottom halves in accordance with the priorities
of processes that are affected by their execution. Likewise,
bottom half processing should be charged to the CPU-time
usage of the affected process, or processes, where possi-
ble, to ensure fairer and more predictable resource manage-
ment. This paper describes some of our approaches, both
algorithmically and in terms of implementation on a Linux
system, to combine interrupt scheduling and accountabil-
ity. We show significant improvements in predictability of a
Linux system by modifying the kernel to more accurately ac-
count for interrupt servicing costs and more precisely con-
trol when and to what extent interrupts can be serviced.

∗This material is based upon work supported by the National Science
Foundation under Grant No. 0615153. Any opinions, findings,and con-
clusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

1 Introduction

Over the years there have been numerous operating sys-
tems specifically tailored for the predictability requirements
of real-time computing. System such as LynxOS [18],
QNX [4] and VxWorks as well as many others have been
developed for various real-time and embedded computing
applications, often demanding low latency and predictable
task execution, along with small memory demands. How-
ever, part of our work is motivated by the desire to add
predictable service management features for application-
specific services to off-the-shelf systems that are widely-
used, and have relatively low development and maintenance
costs. Our current and prior work on “user-level sandbox-
ing” [22] and safe kernel extensions [21] specifically ad-
dressed the issue of how to add safe, predictable and ef-
ficient application-specific services to commodity OSes, so
they could be tailored to the real-time requirements of target
applications.

Other research efforts have also investigated the use of
commodity operating systems, such as Linux, in real-time
environments [10, 11, 12, 15, 16, 19]. RTLinux Free, for
example, provides low-latency and predictable execution of
kernel-level real-time tasks. It can support tasks with hard
real-time guarantees by enforcing bounds on the overheads
associated with interrupt processing. This is achieved by
modifying the interrupt-handling code within the Linux ker-
nel, so that non-real-time tasks are deferred when there are
hard real-time tasks awaiting service. In fact, one of the
key observations in RTLinux is that general-purpose sys-
tems suffer unpredictability due to potentially unbounded
delays caused by interrupt-disabling. Lengthy periods in
which interrupts are disabled is a common problem in the
critical sections of poorly-written device drivers. However,
two other significant problems with general-purpose sys-
tems are: (1) interrupt servicing is largely independent of
process scheduling, and (2) interrupt accountability is often
misrepresented. In the latter case, the time spent servicing
an interrupt is usually charged to the process that was ac-

tive at the time the interrupt occurred. The consequence of
this is that a process’ timeslice is arbitrarily consumed by
system-level activities rather than useful work for the real-
time task at hand.

The primary goals of this work are essentially two-fold:
(1) how to properly account for interrupt processing, so that
the time spent in kernel control paths due to interrupts from
I/O devices is charged to the appropriate process, where
possible, and (2) how to schedule deferrable interrupt han-
dling so that predictable task execution is guaranteed. In
addressing these goals, it is important to understand how
interrupt processing is dealt with on typical general purpose
systems in use today. Systems such as Linux split inter-
rupt service routines into “top” and “bottom” halves, with
only the top half requiring execution at the time of the inter-
rupt. Further interrupts may be disabled during a top half,
which performs only the basic service requirements at the
time of the interrupt (e.g., saving device data to a device-
specific buffer and then scheduling a bottom half). Bottom
half handling may then be assigned to a schedulable thread,
and possibly deferred until there are no other processes to
execute. A better approach would be to schedule bottom
halves in accordance with the priorities of processes that are
affected by their execution. Likewise, bottom half process-
ing should be charged to the CPU-time usage of the affected
process, or processes, where possible, to ensure fairer and
more predictable resource management.

It should be clear that not all interrupt processing occurs
as a result of a specific process request. For example, a
hardware timer interrupt may be generated, irrespective of
any processes, to update the system clock. However, for I/O
devices and corresponding I/O requests (e.g., viaread()
andwrite() system calls on a POSIX system) it is clear
that device interrupts are generated on behalf of a specific
process. It is for such interrupts that we attempt to priori-
tize the importance of corresponding bottom half handling.
In effect, a bottom half will have a priority consistent with
that of the process for which it is performing some service
request. Given that we need to determine the target process
associated with a given device interrupt, we need to care-
fully account for the bottom half execution time and then
charge that time to the proper process, which may not be
the one active at the time of the interrupt.

This paper, therefore, describes some of our methods,
both algorithmically and in terms of implementation on a
Linux system, to combine interrupt scheduling and account-
ability. We show significant improvements in predictability
of a Linux system by modifying the kernel to more accu-
rately account for interrupt servicing costs and more pre-
cisely control when and to what extent interrupts can be ser-
viced. We show how to prioritize interrupt servicing so that
the most important real-time processes are assured of mak-
ing the necessary progress, without suffering system-level

CPU time penalties to process interrupts for lower-priority
processes.
The remainder of the paper is organized as follows: Sec-
tion 2 presents the general framework for predictable inter-
rupt accounting and scheduling. The corresponding algo-
rithms for scheduling and accountability are then described
in detail in Section 3. Section 4 introduces a simple pro-
totype implementation of our approach in Linux, which is
then evaluated experimentally in Section 5. Related work is
described in Section 6, after which we discuss conclusions
and future work in Section 7.

2 Interrupt Servicing and Accountability
Framework

Interrupts are events that can be either synchronous or asyn-
chronous in nature. They are generated by both hardware
devices and also by program conditions (i.e., faults, sys-
tem calls, and traps used for, e.g., debugging purposes). In
dual-mode systems such as Linux, that separate the kernel
from user-space, it is typical for interrupt-handling to take
place in the kernel. Moreover, because interrupts can oc-
cur at arbitrary times and usually require at least some basic
handling to be performed with “immediate”1 effect, most
systems allow them to be serviced in the context of what-
ever process is active at the time of their occurrence. How-
ever, because many interrupts (e.g., those relating to I/O
service requests) occur on behalf of specific processes, it
makes sense to service them in accordance with the impor-
tance of the corresponding process, or processes. Likewise,
proper accounting of CPU usage to handle a specific inter-
rupt should be charged to the process(es) receiving service
as a result of the interrupt, not necessarily the process that
happens to be executing at the time of interrupt occurrence.
With this in mind, we describe our general approach to ser-
vice interrupts in a “process-aware” manner, showing how
it differs from that of the traditional “process-independent”
approach typical of general-purpose systems.

Traditional process-independent interrupt service: Fig-
ure 1 shows the typical flow of control in general-purposes
operating systems resulting from I/O service requests that
trigger device interrupts. In this figure, a process issues
an I/O request, via a system call (step (1)). The OS then
sends the request to the corresponding device via a device
driver. At some time later, the hardware device responds
by generating an interrupt (step (2)), which is handled by
the top half. The deferrable bottom half then completes
the necessary service requirements on behalf of the prior
interrupt (step (3)), and wakes up the corresponding pro-

1In reality, there is a small amount of interrupt dispatch latency to actu-
ally save the current execution state and switch to the interrupt handler in
question.

cess(es). Since bottom halves may run for a relatively long
time (compared to top halves), interrupts are usually en-
abled during their execution. Therefore, bottom halves can
be preempted by the top halves for handling newly occur-
ring interrupts, to ensure fast interrupt responsiveness.Ob-
serve that after completion of interrupt handling, a process
that is awoken can be rescheduled. Control can then pass
back to the user-level process on return from an earlier sys-
tem call (step (4)).

Processes

OS

Interrupt handler

Top Halves

Bottom Halves

P1 P2 P3 P4

Hardware
interrupts

1

2

3

4

Figure 1. Interrupt handling control path in
general purpose systems such as Linux.

Frequently occurring interrupts and, hence, the execu-
tion of corresponding top and bottom half handlers may
unduly impact the CPU time of a running process. To
deal with this scenario, systems such as Linux execute a
finite number of pending bottom halves after top half ex-
ecution, and then defer any subsequently pending bottom
halves to a scheduled thread (or until another interrupt oc-
curs, whichever comes first). For example, Linux 2.6 it-
erates through a function calleddo softirq() up to 10
times if there are pending “bottom halves” before deferring
their execution. Note that we use the term “bottom half” to
refer to any deferrable function whose execution is a con-
sequence of a prior interrupt. Linux 2.6 has deprecated the
term “bottom half” but still retains deferrable functions in
the form of “softirqs” and “tasklets”. The deferrable servic-
ing of softirqs andtasklets in Linux takes place in
the context of a task, calledksoftirqd CPUxxx (where
xxx is a CPU number). However, each of these tasks on
different CPUs are given the lowest priority amongst all
schedulable tasks and may therefore delay servicing on be-
half of another important waiting thread or process. Ob-
serve that bottom halves (and, equivalently, softirqs and
tasklets) complete the work originated by an interrupt, that
may have been generated as a consequence of an I/O request
from a process. That process may be blocked, waiting for
the completion of the I/O request and, hence, bottom half.

If the bottom half’s priority does not correspond to that of
the blocked process, then the process may wake up too late.
This could lead to missed deadlines in a real-time system.
Moreover, since interrupts are handled in the context of an
arbitrary process, the wrong process may be charged for the
time spent handling the interrupt. For the purposes of more
accurate CPU accounting, we need to determine the process
that is to be awoken, or which is related to the interrupt, and
charge its CPU time accordingly.

General-purpose systems such as Linux neglect the re-
lationship between interrupts and corresponding processes,
do not properly integrate the scheduling of bottom halves
with other processes, and do not accurately account for CPU
time usage as a consequence of interrupt servicing.

Process-aware interrupt service: With current hardware
support and OS design, we argue that it is reasonable for
top halves to execute immediately in order to release I/O
devices, since their execution times are meant to be short.
However, our approach explores the dependency between
interrupts (notably their bottom halves) and corresponding
processes, for more predictable service execution and re-
source accounting. Figure 2 shows the framework of our
approach. An interrupt accounting component is added af-
ter the execution of bottom halves, to keep track of the pro-
cessing time of interrupt handlers and to charge this time to
the appropriate process(es). An interrupt scheduler is added
between the execution of top halves and bottom halves to
predict the requesting process and determine exactlywhen
bottom halves should execute. We will use the term “in-
terrupt scheduler” to refer to the scheduling of deferrable
functions such as bottom halves (or, equivalently, softirqs
and tasklets).

BH schedulerOS

Interrupt handler

Top Halves

Bottom Halves

BH accounter

Figure 2. Process-aware interrupt scheduling
and accounting framework.

One major challenge is to determine the process asso-
ciated with a given interrupt and, hence, bottom half. In
many cases, the requesting process can only be known at
the end of bottom half execution. It is not trivial to find the
requesting process before the completion of interrupt pro-
cessing. For example, consider an interrupt from a network
device such as an Ethernet card that indicates the arrival
of a packet; on arrival, the packet is processed by a bot-

tom half interrupt handler, to find the proper socket, from
which the target process can be determined. Unfortunately,
by the time the bottom half completes we may have con-
sumed CPU time in the context of the wrong process and we
may have prevented a more important real-time task from
executing.

Our approach attempts topredict, before the execution
of a bottom half, whether or not the corresponding interrupt
is for a more important process than the one currently ac-
tive. If this is the case, we should execute the bottom half
immediately after completion of the top half, rather than de-
ferring it in preference for other tasks. Similarly, we need
to account for the time spent executing in the bottom half
and, once we know the process associated with this bottom
half, we should charge it with the CPU time expended in
the bottom half. If the target process is not the one active
at the time of bottom half processing, then we need to re-
plenish the available CPU time in the current timeslice of
the preempted process and deduct the CPU time of the next
timeslice from the proper process.

3 Interrupt Servicing and Accountability Al-
gorithms

In this section, we describe the interrupt accounting and
scheduling algorithms in detail.

3.1. Interrupt Accounting Algorithm

Based on the current process accounting mechanism, we
propose a compensation algorithm for more accurate inter-
rupt and process accounting.

Overview of process accounting mechanism: In most
general-purpose systems, such as Linux, time keeping and
process accounting is at the granularity of the system clock
tick, which is updated according to a hardware timer inter-
rupt. In the timer interrupt handler, the clock time is in-
creased by one tick (i.e., onejiffy). On Linux x86 systems,
a clock tick typically ranges from1 − 10ms, and this one
unit of time is charged to the executing process at the cur-
rent time. It is possible to increase the frequency of timer
interrupts and, hence, the precision of the system clock tick,
but this comes at the cost of increased interrupt handling
overheads [19].

Usually, the execution time of an I/O interrupt handler is
less than one clock tick. Fortunately, systems such as Linux
leverage hardware support to accurately account for time at
granularities smaller than a clock tick. For example, on the
x86 architecture there is therdtsc instruction to access the
timestamp counter, which is updated at the frequency of the
processor and therefore measures time in CPU clock cycles.
We use the x86 timestamp counter to measure the time spent

executing bottom halves. Knowing the execution time of
bottom halves allows us tocompensatefor CPU time usage
charged to the wrong process, which just so happens to be
preempted while interrupt handling is taking place. Once
we determine the process associated with a given interrupt
we charge its CPU time usage for the cost of bottom half
execution.

Compensation algorithm: There are three steps in the
compensation algorithm: (1) measurement of the execution
time of a bottom half handler in CPU cycles taken from
the average time across multiple bottom halves, (2) mea-
surement of the total number of interrupts processed, and
the number processed on behalf of each process, in each
clock tick, and (3) adjustment of the system time charged to
each process in the timer handler as a result of mischarged
interrupt costs. In what follows, we assume that any ref-
erence to processing and accounting for interrupts actually
applies to bottom half processing on behalf of interrupts.
Also, for simplicity, we assume all interrupts and, hence, all
bottom halves are for the same device. In practice, the com-
pensation algorithm accounts for the numbers and costs of
interrupts for different devices (e.g., interrupts for network
devices versus disks).

At system clock time,t, let N(t) be the number of inter-
rupts whose total (bottom half) execution time is one clock
tick 2. Let m(t) be the number of interrupts processed in
the last clock tick, and letxk(t) be the number of unac-
counted interrupts for processPk. Whenever an interrupt
is processed, increasem by 1. If processPj is the process
associated with the interrupt, increasexj(t) by 1. As stated
earlier, we determinePj by the time the bottom half has
finished execution.

Suppose the current clock tick is charged to the system
execution time of processPi which is active at time,t. At
this point,m(t) is the number of interrupts handled in the
context ofPi in the last clock tick. The execution time
of thesem(t) interrupts is included in this one clock tick,
which is possibly mischarged toPi. Therefore, the differ-
encem(t) − xi(t) (if positive) is the number of interrupts
that have been over-charged toPi. At each system clock
tick, we update the process accounting information in the
timer handler as follows:

xi(t) = xi(t) − m(t);
sign = sign of(xi(t));
while (abs(xi(t)) >= N(t))

systemtime(Pi) + = 1 ∗ sign;
timeslice(Pi) − = 1 ∗ sign;
xi(t) = xi(t) − N(t);

m(t) = 0;

2We actually round offN(t) to the nearest integer for cases where the
total execution time ofN(t) interrupts is not exactly one clock tick.

In the above, systemtime(Pi) is the time spent executing
at the kernel-level for processPi in clock ticks. Similarly,
timeslice(Pi) is the timeslice of processPi. To smooth out
the short term variabilities ofN(t) in each measurement,
the current value ofN(t) is estimated as an average value
N(t) at time t using an Exponentially-Weighted Moving
Average (EWMA) with parameterγ (0 < γ < 1) on the
instantaneous values ofN(t) as follows:

N(t) = (1 − γ) · N(t − 1) + γ · N(t) (1)

Example: Figure 3 gives a simple example to show how
the compensation algorithm works.Ii is the interrupt pro-
cessed on behalf of processPi. The number of interrupts
that need to be compensated on behalf of processPi at time
t is m(t) − xi(t). Looking at timet = 1 in the figure,3
interrupts have been processed and2 are for processP1, so
the cost of1 interrupt should be deducted from the system
time charged toP1. Looking ahead to timet = 7, 2 in-
terrupts are charged toP1 in the last clock tick, although
neither were actually forP1. At this point,4 interrupts have
occurred forP1 since its last execution and accounting took
place. Previously, it was observed thatP1 was over-charged
by the cost of1 interrupt. Consequently, at timet = 7, we
havex1(7) = −2+4−1 = 1 unaccounted interrupts. When
the absolute value of the number of unaccounted interrupts
is greater than or equal toN(t) we update the system time
and timeslice of the process accordingly.

t0 1 2 3 4 5 6 7 8P1

P1 P3 P4 P2 P1 P3

I1 I2 I1 I3 I2 I3 I1 I1 I4 I3 I2I1 I1 I4 I3 I2 I1 I1 I3I3

P2

x1(1): -3 + 2 = -1, x2(2): -1 + 1= 0,
x3(3): -2 + 2 = 0, x4(4) : -3 + 1 =-2,
x4(5): -2 + -4+ 0= -6, x2(6): 0 + -2 + 2 = 0,
x1(7): -1 + -2+ 4= 1, x3(8): 0 + -3 + 4 = 1

Figure 3. Compensation algorithm example.

3.2. Interrupt Scheduling Algorithm

We propose a process-aware interrupt scheduling algorithm
to provide more predictable service execution by scheduling
bottom halves. Specifically, the importance of executing a
bottom half is dictated by the priority of the corresponding
process. The challenge is to identify the corresponding pro-
cess without having to first execute the bottom half. There
are three steps to the algorithm:

• Finding the candidates: At the time top half inter-
rupt processing completes, information about the I/O
device that raised the interrupt is available. It therefore
makes sense that the process which issued a service

request that resulted in the interrupt is one of the pro-
cesses waiting on the corresponding I/O device. This
is certainly the case for blocking I/O system calls (e.g.,
blockingread() requests). Moreover, non-blocking
requests are not a problem because the process is able
to continue its execution and is probably running when
the interrupt occurs, unless its timeslice has expired.
Notwithstanding, to reduce the overhead of finding
candidate processes that could be associated with the
interrupt, we require all I/O requests to register the pri-
ority of the calling process, and process IDs, with the
corresponding device.

• Predicting the process associated with the inter-
rupt: With the knowledge of all the candidates, the
next step is to infer the process that issued the I/O re-
quest and decide the corresponding priority that will
be assigned to the bottom half for the interrupt. There
are several different prediction schemes we can use. In
this paper, we use a simple priority-based predication
scheme, in which the bottom half’s priority is set to the
highest priority of all processes waiting on the corre-
sponding I/O device for a given interrupt. It may be
the case that the highest priority process is not the one
associated with a specific interrupt occurrence. For ex-
ample, a packet arriving on an Ethernet device causes
an interrupt which is ultimately associated with a low-
priority process waiting on a corresponding socket.
At the time of the interrupt a higher priority process
is also waiting on another socket associated with the
same Ethernet device. The justification for our simple
highest priority assignment approach is that we typi-
cally do no worse than a traditional interrupt process-
ing scheme, in which interrupts are effectively given
precedence over all processes, but more often do better
at avoiding issues such as priority inversion and incor-
rect interrupt accounting. Notwithstanding, in the fu-
ture we will look at more complex predictability mod-
els that assess the likelihood of an interrupt being for
a given process e.g., by monitoring the history of past
interrupts and I/O requests from processes, as well as
considering the distribution of priorities of processes
waiting on a given device.

• Scheduling the bottom half: After predicting the pri-
ority of the process associated with the device inter-
rupt, the interrupt-level scheduler decides whether it is
more important to service the bottom half or the pro-
cess active at the time of the interrupt. The bottom
half is given the priority of the process associated with
the interrupt for the purposes of scheduling decisions.
If deemed more important, the bottom half executes
without delay, otherwise it is deferred until the next
scheduling point.

In our approach, the interrupt scheduler is executed
whenever the bottom halves are activated and ready to be
executed. To avoid unnecessary context switch overhead,
we also invoke the interrupt scheduler in the process sched-
uler. Before an actual context switch to a newly selected
process, the interrupt scheduler compares the priority of the
next process to that of the bottom halves. If next process
has higher priority, the actual context switch is performed.
If any bottom halves have higher priority, they are executed
instead without the process context-switch taking place.

Example: Figure 4(a) shows an example time-line for
scheduling a bottom half in the presence of 2 background
processes in Linux. At timet1, P1 sends an I/O request, and
is blocked while waiting for the request to complete. At this
point, the process scheduler selectsP2 for execution. In the
context ofP2, at timet2, the I/O device responds to the I/O
request byP1 , and raises an interrupt. The corresponding
top half (labeledIt1) is activated and later finishes at time
t3. At some time,t4, the bottom half (labeledIB1) is exe-
cuted, and it finishes at timet5. Finally,P1 is woken up and
eventually scheduled at timet6. Both the execution time of
top and bottom halves is charged toP2. However, with our
compensation algorithm, we will be able to charge the ex-
ecution time of the bottom half to processP1 as shown in
Figure 4(b).

In this paper, we focus on the delay time betweent3 and
t4 which is affected by the interrupt scheduler. Observe that
if the time betweent4 andt3 is smallP2’s progress may be
unduly affected. Moreover, ifP2 happens to be more im-
portant thanP1 we end up delaying the progress ofP2 on
behalf of a bottom half for a lower priority process. Worse
still, if P2 happens to be a real-time process with a dead-
line, the execution of a bottom half could causeP2 to miss
that deadline. If the opposite action is taken, so that the bot-
tom half is deferred until no other processes are ready to
execute, we may unduly impact the progress made byP1

awaiting the outcome of its I/O request. In our approach,
if P1 has higher priority, we want its bottom half to be ex-
ecuted as soon as possible as in Figure 4(b). However, if
P2 has higher priority, we wantP2 to continue to execute
until it finishes, then to executeP1’s bottom half as shown
in Figure 4(c).

4 System Implementation

Our prototype implementation only requires a few minor
modifications to the base Linux kernel. As a case study, we
focus on interrupt handling associated with network packet
reception, and implement the scheduling and accounting
component of our framework on top of the existing bottom
half mechanism in Linux. Linux usessoftirqs to rep-
resent bottom halves. To be consistent, we refer to softirqs

Interrupt Handler

Process

Hardware

P1 P2

It1 IB1

P1

t1

t2 t3

t6

t4

t5

(a)

Interrupt Handler

Process

Hardware

P1 P2

It1 IB1

P1

t2 t3 t4

t1 t6t5

(b)

Interrupt Handler

Process

Hardware

P1

It1 IB1

P1

t1

t2 t3 t4

t5

P2

(c)

Figure 4. Alternative approaches to schedul-
ing bottom halves versus processes.

and bottom halves interchangeably in the following text.

Control path for packet reception in the Linux kernel:
Figure 5 shows the control path of system calls for receiving
UDP packets in Linux. A socket structure is used to send or
receive packets in Linux, and each socket can be associated
with a specific IP address and port number usingbind()
andconnect() system call semantics. Other system calls
such asread(), recvmsg() andrecv() can be made
by applications to receive data on a given socket. The kernel
checks whether there are any packets in the receiving queue
for the specified socket and, if so, they are copied to a target
user-level process. Since the kernel cannot predict when a
packet will arrive on a network interface, the networking
code that takes care of packet reception is executed in top
and bottom half interrupt handlers.

At some future time, when a packet carrying the right
hardware address arrives at the network device, it is stored
in a device buffer and then the device raises an inter-
rupt. The device-specific interrupt handler (i.e., the top
half “irq handler”) copies the packet from device mem-
ory to a kernel socket buffer, does other necessary op-
erations, and then enables theNET RX SOFTIRQ (bot-
tom half for network packet reception) to be scheduled
at some convenient time. Whendo softirq() is
executed to schedule bottom halves, it checks whether
there are pendingNET RX SOFTIRQs, and calls the cor-
responding bottom half handlernet rx action() to
receive all arrived packets if there are any. The func-
tion netif receive skb() is the main code to re-

ceive a packet. It in turn ultimately invokes a suit-
able function for the network layer protocol in opera-
tion, such asudp rcv() to receive UDP packets. The
target socket is determined, and any received packets
are appended to that socket’s receiving queue. Finally,
sock def readable() is invoked to essentially wake
up a process sleeping in the socket’s wait queue. When the
application process is woken up it continues the path of a
particular protocol (here,udp recvmsg()), which copies
each packet payload into a user-space buffer [1].

bind()
connect()

sys_ bind()
sys_ connect()

read()
recv()

recvfrom()

sock_recvmsg()

sock_common_recvmsg()

udp_recvmsg()

skb_recv_datagram()

wait_for_packet()
(block)

(device specific irq handler)

netif_rx_schedule(dev)

__raise_softirq_irqoff

net_rx_action()

(device specific poll fn)

netif_receive_skb()

do_softirq()

udp_rcv()

udp_queue_rcv_skb()

sock_def_readable()

wake_up_interruptible()

wait_for_packet()
(wake up)

skb_copy_datagram_iovec()

read()
recv()

recvfrom()User

Kernel

Hardware

skb_recv_datagram()

Figure 5. Control path for receiving UDP
packets in the Linux kernel.

Implementation of the interrupt accounting algo-
rithm: The execution time of the softirq handler
net rx action() is measured for each invocation, us-
ing the high-precision Pentium-based Timestamp Counter
(TSC). More than one packet may be received in each han-
dler invocation. By measuring the number of packets re-
ceived, and the total time to process these packets in bot-
tom halves, we are able to calculate the number of packets,
N , whose total execution time is up to one clock tick. The
EWMA value of N(t), N(t) (as defined in Section 3) is
used to compensate processes whose system time is con-
sumed by handling interrupts for other processes. We use
a γ value of0.3 to calculate the EWMA. When the proper
socket is found for the packet (e.g. inudp rcv()), the
right process for the packet is known. This enables us to
keep track of the number of packets received for each pro-
cess, as well as the total number of packets received from
the network device in each clock tick. We also keep track of
the number of orphan packets whose requesting processes
are unknown. The essential part of service time compen-
sation is implemented in the timer handler. Specifically,
we modify theaccount system time() kernel func-
tion to update the system time accounting and timeslice of
the current process at the granularity of one clock tick, ac-
cording to the algorithm in Section 3.1.

Implementation of the interrupt scheduling algorithm:
The interrupt (bottom half) scheduler is mainly imple-
mented in thedo softirq() function. Before the cor-
responding softirq handler (e.g.net rx action() for
NET RX SOFTIRQ) is invoked, it checks the eligibility of
each softirq, and decides whether to schedule it based on
the priority of the softirq versus the priority of the current
process. From the control path in Figure 5, we can see
that before the softirq is executed, the right device for the
current softirq is known. Thus all related sockets for the
network device, and all processes sleeping on the sockets,
are known. These relationships can be established explic-
itly when the processes issuebind()/connect() and
read()/recv() system calls, so the overhead of find-
ing this information in the bottom half scheduler is reduced.
Then, based on the priority of the candidate processes wait-
ing for a network device interrupt, along with the prediction
algorithm used to determine which process the current in-
terrupt is likely to be for, we can determine the priority of
each softirq at each scheduling point.

5 Experiments

Using our prototype implementation, we conducted a se-
ries of experiments to evaluate the performance of the pro-
posed approach for interrupt scheduling and accountability,
focusing on network packet reception interrupts. We used
a UDP-server process running on an experimental machine,
which simply binds to a port, and receives arriving pack-
ets for the specified port. A UDP-client process on another
machine keeps sending UDP packets to the port of the ex-
perimental machine specified by the UDP-server process.
The interrupt arrival rate is adjusted by varying the packet
sending rate of the UDP-client. To evaluate the interrupt ef-
fect on other processes, we run another CPU-bound process
on the experimental machine concurrently with the UDP-
server process.

Both UDP-server and UDP-client machines have
2.4GHz Pentium IV processors with1.2GB of RAM. They
are connected by gigabit Ethernet cards, and each machine
runs Linux-2.6.14 with100 Hz timer resolution. We com-
pare the performance of interrupt and process servicing in
the original Linux-2.6.14 kernel with that of a modified
Linux-2.6.14 kernel, patched with our process-aware inter-
rupt scheduling and accounting components on the server
machine.

Accounting accuracy: In this set of experiments, we set
the CPU-bound process to be a real-time process with pri-
ority 50 in theSCHED FIFO class, while the UDP-server
is a non-real-time process. Therefore, the CPU-bound pro-
cess always preempts the UDP-server process, and runs for
its entire timeslice when it is ready to execute. The CPU-

bound process simply loops through a series of arithmetic
operations, without making any system calls, so that its
execution time should be spent at user-level. We record
the number ofjiffies that each process spends executing at
user-level versus system- (or kernel-) level, by reading from
/proc/pid/stat for each process with a specificpid.
Each jiffy represents10ms. The results are averaged over5
trials of each experiment. In each trial, the CPU-bound pro-
cess runs for100s and then sleeps for10s. During the whole
110s period, the UDP-client keeps sending packets of512
bytes data to the UDP-server at a constant rate. Since the
CPU-bound process has a relatively high priority, the UDP-
server can only run after each period of100s when the CPU-
bound process goes to sleep. Thus, network interrupts are
processed in the context of the CPU-bound process in the
first 100s of each110s period (unless they are deferred to
their own threads, which is not the case in our experiments).

Figure 6(a) compares the accounted execution time of
the CPU-bound process in Linux (labeled “Linux”) against
the accounted time in our modified Linux system (labeled
“Linux-IA” for Interrupt Accounting). For completeness,
we also show the optimal value (labeled “Opt”), which rep-
resents how much time should be accounted for the CPU-
bound process executing entirely at user-level every100s.
Any system-level time charged to the CPU-bound process
is due to interference from interrupts such as those asso-
ciated with the the network interface. Ideally, we do not
want any interference from network interrupts associated
with the UDP-server process, because that process is set to
a distinctly lower priority so that we can guarantee the pre-
dictability of the real-time CPU-bound process. However,
given that we have to account for system-level interrupt han-
dling somewhere, we wish to ensure that the CPU-bound
process is not unduly charged for unrelated system-level ac-
tivities.

In Figure 6(a), thex-axis is the packet sending rate from
the UDP-client. As the sending rate increases, the UDP-
server machine observes a correspondingly higher rate of
network interrupts and, hence, more time spent servicing
top and bottom halves. Thus, the user-level CPU time con-
sumed by the CPU-bound process decreases significantly,
as shown by theOpt value. However, in the original Linux
case, all100s of time during which the CPU-bound process
is active are charged to the CPU-bound process, along with
time spent handling network interrupts. In contrast, with
our interrupt accounting component, the time consumed
by interrupt handling is more accurately compensated to
the CPU-bound process and, instead, charged to the UDP-
server process. As can be seen, the accounted time in the
Linux-IA case is very close to the optimal value.

Figure 6(b) shows the ratio between the accounting er-
ror and the optimal value, calculated ast−to

to

, wheret is the
actual accounted time for the execution of the CPU-bound

process every100s, whileto is the equivalent optimal value
discarding the interrupt servicing time. As can be seen, the
error in accounting accuracy is as high as60% in the origi-
nal Linux kernel, while it is less than20% (and more often
less than5%) in ourLinux-IA approach.

Figure 6(c) shows the absolute value of compensated
time for both the CPU-bound process and the UDP-server
in ourLinux-IA approach. The bars for the “UDP-server
(a)” case represent the time charged (due to interrupts) to
the UDP-server in the first100s of every110s period, when
the CPU-bound process is running, while the bars for the
“UDP-server(b)” case represent the time charged (again,
due to interrupts) over the whole110s period. We can see
that the time compensated to the CPU-bound process is ac-
curately charged to the UDP-server process in the first100s
period. In the last ten seconds of each period, the high pri-
ority CPU-bound process is sleeping, allowing the UDP-
server to execute and be correctly charged for interrupt han-
dling.

Bottom half scheduling effects: Using the same scenario
as above, we evaluate the scheduling impact of bottom
halves on the CPU-bound process and the UDP-server pro-
cess using our modified Linux kernel versus an unmodified
kernel. In this case, our modified kernel is patched with
both interrupt accounting and scheduling components.

Figure 7(a) compares the user-time consumed by the
CPU-bound process running on a vanilla Linux system (la-
beled “Linux”) versus our patched system (labeled “Linux-
ISA” for Interrupt Scheduling and Accounting). As ex-
plained before, for the original Linux kernel, the user-time
consumed by the CPU-bound process in a given real-time
period (here,100s) decreases when the packet sending rate
from the UDP-client machine increases. However, for the
Linux-ISA case, the CPU-bound process is not affected
by network interrupt handling. In fact, the CPU-bound pro-
cess can still use up to 100% of time during the first100s of
each period when it is running. In theLinux-ISA case,
the priority of the interrupt is set to that of the requesting
process, which is the UDP-server. Since the UDP-server
has lower priority than the CPU-bound process, the net-
work bottom half handler cannot preempt the CPU-bound
process. Therefore, the predictable execution of the CPU-
bound process is guaranteed.

Figure 7(b) shows the time consumed by interrupt han-
dling on behalf of the UDP-server over each110s inter-
val. In theLinux-ISA case, network bottom half han-
dling only starts to consume CPU time after the CPU-bound
process goes to sleep, whereas theLinux case incurs sig-
nificant interrupt handling costs during the time the CPU-
bound process is runnable. Figure 7(c) shows the packet re-
ception rate of the UDP-server, which is the ratio between
the number of packets received in UDP-server to the num-
ber of packets sent by the client. It can be seen that the

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

2000

4000

6000

8000

10000

12000

14000

Packet Sending Rate (103 pkt/s))

Ji

ffi
es

 A
cc

ou
nt

ed
 fo

r
C

P
U

−
bo

un
d

P
ro

ce
ss

Linux
Linux−IA
Opt

(a)

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218

10

20

30

40

50

60

Packet Sending Rate (103 pkt/s))

A
cc

ou
nt

in
g

E
rr

or
 (

%
)

Linux
Linux−IA

(b)

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

1000

2000

3000

4000

Packet Sending Rate (103 pkt/s))

A
bs

(C
om

pe
ns

at
ed

 T
im

e)
 (

jif
fie

s)

CPU−bound
UDP−Server(a)
UDP−Server(b)

(c)

Figure 6. CPU time accounting accuracy.

receiving rate in theLinux-ISA case is very close to that
of the original Linux kernel. Both are less than10%. In
the unpatched Linux case, most packets cannot be received
by the user-level UDP-server until the CPU-bound process
sleeps, due to their relative priorities. Therefore, the time
spent receiving packets into kernel socket buffers during
bottom half handling in the unpatched Linux case is largely
wasted. This is partly because they may be over-written be-
fore the UDP-server reads them. Consequently, our Linux
interrupt scheduling and accounting framework can guaran-
tee the predictable execution of processes with high priori-
ties, while not degrading the service of processes with lower
priorities.

As a final experiment, the UDP-client sends bursts of
packets according to a two-state Markov Modulated Pois-
son Process (MMPP-2), with average geometric burst sizes
of 5000 packets, and different average exponential burst
inter-arrival times. The CPU-bound process is set as a peri-
odic real-time process with a constant period of1s in which
it must execute for0.95s. The end of each1s period acts
as a deadline. From Figure 8(a), there are no missed dead-
lines inLinux-ISA. The service of the real-time process
is guaranteed, and the interrupt handling is deferred until
the CPU-bound process finishes execution in its current pe-
riod. This contrasts with the high deadline miss rate in the
Linux case as the packet sending rate increases. As can
be seen from Figure8(b), interrupts consume a lot of time
during the execution of the CPU-bound process. However,
the time spent handling the packet reception interrupts does
not help the performance of the UDP-server in the original
Linux case, as shown in Figure 8(c). The packet reception
rate is even less than inLinux-ISA, and down to 0% when
the sending rate is high. This is because the CPU-bound
process cannot finish its execution before the start of its next
period due to the costs of interrupt handling, and thus is al-
ways competing for CPU cycles. As the lower priority pro-
cess, the UDP-server never has the opportunity to wake up
and read its packet data. The unpredictable interrupt ser-
vice not only affects the CPU-bound process, but also the

UDP-server. However, inLinux-ISA, the packet recep-
tion rate is pretty constant. With guaranteed service of the
CPU-bound process, the UDP-server is able to be scheduled
to receive packets after the CPU-bound process finishes its
execution in each period.Linux-ISA improves service to
all processes on account of its interrupt scheduling.

6 Related Work

A number of systems have added real-time capabilities
to off-the-shelf time-sharing kernels to provide both pre-
dictability and applicability for a large application base[19,
10, 20, 16, 15]. Some researchers have focused on the struc-
ture of systems and the use of micro-kernels in real-time ap-
plication domains, showing how the communication costs
between separate address spaces is often less than the over-
heads associated with interrupt processing [9]. Other re-
search efforts such as RTLinux and RTAI, for example, pro-
vide support for hard real-time tasks by modifying a base
Linux kernel to essentially intercept the delivery of inter-
rupts. Such approaches ensure that legacy device drivers
cannot disable interrupts for lengthy periods that affect the
predictability of the system. None of these systems, how-
ever, have focused on the scheduling and accounting of de-
ferrable bottom halves in an integrated manner, to ensure
predictable service guarantees on commercial off-the-shelf
systems.

The traditional interrupt-handling mechanism in exist-
ing off-the-shelf operating systems is largely independent
of process management, which can compromise the tem-
poral predictability of the system. The idea of integrating
interrupt handling with the scheduling and accountability
of processes has been investigated to different degrees in
several research works. Kleiman and Eykholt [6] treat in-
terrupts as threads, which allows a single synchronization
model to be used throughout the kernel. However, interrupt
threads still use a separate rank of priority levels separate
from those of processes, whereas we associate the prior-
ities of bottom halves with corresponding processes. By

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

2000

4000

6000

8000

10000

12000

Packet Sending Rate (103 pkt/s))

Ji

ffi
es

 C
on

su
m

ed
 b

y
C

P
U

−
bo

un
d

P
ro

ce
ss

Linux
Linux−ISA

(a)

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

1000

2000

3000

4000

5000

Packet Sending Rate (103 pkt/s))

Ji

ffi
es

 C
on

su
m

ed
 b

y
In

te
rr

up
ts

Linux
Linux−ISA

(b)

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

2

4

6

8

10

12

Packet Sending Rate (103 pkt/s))

%
 P

kt
s

R
ec

ei
ve

d
by

 U
D

P
−

se
rv

er

Linux
Linux−ISA

(c)

Figure 7. Network bottom half scheduling effects.

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

20

40

60

80

100

Packet Sending Rate (103 pkt/s))

D
ea

dl
in

e
M

is
s

R
at

e
(%

)

Linux
Linux−IA

(a)

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

500

1000

1500

2000

2500

Packet Sending Rate (103 pkt/s))

Ji

ffi
es

 C
on

su
m

ed
 b

y
In

te
rr

up
ts

Linux
Linux−ISA

(b)

4.2 8.6 16.6 31.1 54.1 87.3 124.9 218
0

2

4

6

8

10

12

Packet Sending Rate (103 pkt/s))

%
 P

kt
s

R
ec

ei
ve

d
by

 U
D

P
−

se
rv

er

Linux
Linux−ISA

(c)

Figure 8. Deadline miss rates and other performance charact eristics under bursty traffic conditions.

contrast, Leyva-del-Foyo et al proposed a unified mecha-
nism for synchronization and scheduling of both interrupts
and processes [8]. In this work, interrupts are assigned
dynamic priorities and scheduled like processes (or tasks)
within their own contexts. In the absence of special hard-
ware support, to integrate the scheduling of tasks and inter-
rupts, a software-based abstraction layer must strategically
mask the delivery of certain interrupts to ensure task pre-
dictability. This whole approach may, however, yield in-
creased context-switching overheads to service interrupts.

There are other alternative techniques to integrate inter-
rupt and process scheduling without introducing a separate
context for interrupt handling. Regehr et al[13, 14] describe
a hierarchy of software and hardware schedulers to handle
the overload caused by interrupts. By using well-known
scheduling techniques such as sporadic servers, the ser-
vice for interrupts is constrained to prevent overload. Simi-
larly, Facchinetti et al [3] propose a hierarchical scheduling
framework with an assigned bandwidth to interrupts, so that
the real-time application tasks can be guaranteed service
that is independent of the interrupt server. However, the in-
terrupt policy is completely independent from the schedul-
ing policy for the application processes. In other work,
Jeffay and Stone [5] analyzed the schedulability of tasks

while considering interrupts as the highest priority classof
events. None of the above research works explore the de-
pendency between interrupts and processes, and use this
information to decide the priority of interrupts (essentially
bottom halves) in CPU scheduling. The novelty of our work
is based on the combined scheduling and accountability of
interrupts associated with corresponding processes that is-
sue service requests on I/O devices.

The issue of scheduling dependencies has been ad-
dressed in many other areas of research over the years.
Priority inheritance [7] and priority ceiling protocols [17],
for example, were proposed to schedule processes with re-
source dependencies. Clark’s work on DASA [2] focused
on the explicit scheduling of real-time processes by group-
ing them based on their dependencies. In these bodies of
work there is an assumption that dependencies are known
in advance before a process is scheduled. However, Zheng
and Nieh [23] developed the SWAP scheduler that automat-
ically detects process dependencies and accounts for such
dependencies in scheduling. In contrast to these research
works, we address the dependencies between interrupts and
processes, rather than those amongst only processes. By
using various prediction techniques, we are able to more
accurately schedule and account for interrupts, so that other

processes in the system are assured of their timeliness re-
quirements.

7 Conclusions and Future Work

In this paper, we describe a process-aware interrupt schedul-
ing and accounting framework for general-purpose systems
such as Linux. Our approach focuses on the accountability
and scheduling of bottom halves associated with I/O inter-
rupt handling. By exploring the dependency between device
interrupts and processes, we show how to properly account
for interrupt handling and how to schedule deferrable bot-
tom halves so that predictable task execution is guaranteed.

Our approach attempts to predict the importance of an
interrupt, based on the priorities of process(es) waiting on
the device generating that interrupt. Given this prediction,
our interrupt scheduling scheme decides whether to execute
or defer a bottom half by comparing its priority to that of
the currently executing process. In addition, our scheme ac-
counts for the time spent executing a bottom half and prop-
erly adjusts the system time and timeslice usage of affected
processes using a compensation algorithm.

This paper describes our approach both algorithmically
and in terms of implementation on a Linux system, to com-
bine interrupt scheduling and accountability. From the ex-
periment results on the prototype implementation of our
approach in Linux systems, we show significant improve-
ments in accountability and predictability of interrupt ser-
vicing. By properly prioritizing the interrupts, the most im-
portant real-time processes are assured of making the nec-
essary progress, without suffering system-level CPU time
penalties to process interrupts for lower-priority processes.

Our current implementation only uses a relatively simple
priority-based prediction scheme to derive the priority ofan
interrupt’s bottom half. In future work, we will investigate
other prediction schemes, to derive the priorities of bottom
halves without having to execute them first in order to deter-
mine the corresponding process(es). We are also interested
in analyzing the performance of the proposed approach in-
tegrated with other real-time process scheduling algorithms,
such as our earlier window-constrained algorithms. Finally,
we intend to validate our interrupt scheduling and account-
ability framework in embedded real-time systems.

References

[1] D. P. Bovet and M. Cesati.Understanding the Linux Kernel,
Second Edition. O’Reilly & Associates, Inc., 2002.

[2] R. K. Clark. Scheduling Dependent Real-Time Activities.
PhD thesis, Carnegie Mellon University, 1990.

[3] T. Facchinetti, G. Buttazzo, M. Marinoni, and G. Guidi.
Non-preemptive interrupt scheduling for safe reuse of legacy
drivers in real-time systems. In17th Euromicro Conference
on Real-Time Systems, 2005.

[4] D. Hildebrand. An architectural overview of QNX. In
USENIX Workshop on Microkernels and Other Kernel Ar-
chitectures, pages 113–126, 1992.

[5] K. Jeffay and D. L. Stone. Accounting for interrupt handling
costs in dynamic priority task systems. InProceedings of the
14th IEEE Real-Time Systems Symposium, December 1993.

[6] S. Kleiman and J. Eykholt. Interrupts as threads.ACM
SIGOPS Operating Systems Review, 1995.

[7] B. Lampson and D. Redell. Experience with processes and
monitors in Mesa.Communications of the ACM, 1980.

[8] L. E. Leyva-del-Foyo, P. Mejia-Alvarez, and D. de Niz. Pre-
dictable interrupt management for real time kernels over
conventional PC hardware. InIEEE Real-Time and Embed-
ded Technology and Applications Symposium, San Jose, CA,
USA, April 2006.

[9] F. Mehnert, M. Hohmuth, and H. Ḧartig. Cost and benefit
of separate address spaces in real-time operating systems.
In Proceedings of the 23rd IEEE Real-Time Systems Sympo-
sium (RTSS), Austin, Texas, December 2002.

[10] S. Oikawa and R. Rajkumar. Linux/RK: A portable resource
kernel in Linux. In Proceedings of the 4th IEEE Real-
Time Technology and Applications Symposium (RTAS), June
1998.

[11] QLinux: http://www.cs.umass.edu/ lass/software/qlinux/.
[12] RED-Linux: http://linux.ece.uci.edu/red-linux/.
[13] J. Regehr and U. Duongsaa. Eliminating interrupt overload

in embedded systems. Unpublished.
[14] J. Regehr, A. Reid, K. Webb, M. Parker, and J. Lepreau.

Evolving real-time systems using hierarchical scheduling
and concurrency analysis. InProceedings of the 24th IEEE
Real-Time Systems Symposium, December 2003.

[15] Real-Time Application Interface: http://www.rtai.org.
[16] Real-Time Linux: http://www.rtlinux.org.
[17] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance

protocols: An approach to real-time synchronization.IEEE
Transactions on Computers, 1990.

[18] V. Sohal and M. Bunnell. A real OS for real time - LynxOS
provides a good portable environment for embedded appli-
cations.Byte Magazine, 21(9):51, 1996.

[19] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and D. Niehaus.
A firm real-time system implementation using commercial
off-the-shelf hardware and free software. InProceedings of
the 4th IEEE Real-Time Technology and Applications Sym-
posium (RTAS), June 1998.

[20] H. Tokuda, T. Nakajima, and P. Rao. Real-time Mach: To-
wards a predictable real-time system. InProceedings of
USENIX Mach Workshop, pages 73–82, 1990.

[21] R. West and J. Gloudon. ‘QoS safe’ kernel extensions for
real-time resource management. Inthe 14th EuroMicro In-
ternational Conference on Real-Time Systems, June 2002.

[22] R. West and G. Parmer. Application-specific service tech-
nologies for commodity operating systems in real-time en-
vironments. InProceedings of the IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS),
San Jose, California, April 2006.

[23] H. Zheng and J. Nieh. Swap: A scheduler with automatic
process dependency detection. InProceedings of the First
USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI-2004), March 2004.

