Process-Aware | nterrupt Scheduling and Accounting *

Yuting Zhang and Richard West

Computer Science Department
Boston University
Boston, MA 02215

{danazh,richwe$t@cs.bu.edu

Abstract 1 Introduction

. .) . Over the years there have been numerous operating sys-
In most operating systems, the handling of interrupts is o mg specifically tailored for the predictability requirents
typically performed within the address space of the kernel. j¢ oo time computing. System such as LynxOS [18],
Moreover, interrupt handlers are invoked asynchronously QNX [4] and VxWorks as well as many others have been
during the execution of arbitrary processes. Unfortungtel developed for various real-time and embedded computing

this allows for a process’s time quantum to be consumed by, o jications, often demanding low latency and predictable
arbitrary interrupt handling. To avoid significant impaat t task execution, along with small memory demands. How-

process execution and also to respond quickly enough to iN-ever, part of our work is motivated by the desire to add

terrupts, interrupt servicing is usually split into two far e ictaple service management features for application-
a “top” and “bottom” half. The top half executes atinter- gpeific services to off-the-shelf systems that are widely-
rupt time and is meant to be short enough to complete all 5o and have relatively low development and maintenance
necessary actions at the time of the interrupt. In contrast, .o« our current and prior work on “user-level sandbox-
fthe_ bottom half can be _d_eferred to a more suitable point ing” [22] and safe kernel extensions [21] specifically ad-
in time to _complete servicing of a prior interrupt. Systems jressed the issue of how to add safe, predictable and ef-
such as Linux may defer bottom half handling to a schedu-fjent application-specific services to commodity OSes, so
lable thread that may be arbitrarily delayed until there are they could be tailored to the real-time requirements oftarg
no other processes to execute. A better approach would beapplications.

to schedule bottom halves in accordance with the priorities ~ har research efforts have also investigated the use of

of processes that are affected by their execution. Likewise commodity operating systems, such as Linux, in real-time
bottom half processing should be charged to the CPU-timeenvironments [10, 11, 12, 15, 16, 19]. RTLinux Free, for

usage of the affected process, or processes, where possis,ample. provides low-latency and predictable executfon o
ble, to ensure fairer and more predictable resource manage-y o mel.level real-time tasks. It can support tasks wittdhar
ment. This paper describes some of our approaches, bottyg,) ime guarantees by enforcing bounds on the overheads
algorithmically and in terms of implementation on a Linux associated with interrupt processing. This is achieved by

system, to combine interrupt scheduling and accountabil- ., ifying the interrupt-handling code within the Linux ker
ity. We show significant improvements in predictability of & 1o g that non-real-time tasks are deferred when there are

Linux system by modifying the kemel to more accurately ac-p 5 real-time tasks awaiting service. In fact, one of the

count for interrupt servicing qosts and more precisely con- key observations in RTLinux is that general-purpose sys-
trol when and to what extent interrupts can be serviced. tems suffer unpredictability due to potentially unbounded
delays caused by interrupt-disabling. Lengthy periods in
which interrupts are disabled is a common problem in the
critical sections of poorly-written device drivers. Hovegy

two other significant problems with general-purpose sys-
*This material is based upon work supported by the Nationariei tems are: (1) interrupt servicing is largely independent of

Foundation under Grant No. 0615153. Any opinions, findirge con- 55 cesg scheduling, and (2) interrupt accountability ferof
clusions or recommendations expressed in this material ase thibthe

author(s) and do not necessarily reflect the views of theoNatiScience mis.represen-ted. In the latter case, the time spent segvicin
Foundation. an interrupt is usually charged to the process that was ac-

tive at the time the interrupt occurred. The consequence ofCPU time penalties to process interrupts for lower-pryorit

this is that a process’ timeslice is arbitrarily consumed by processes.

system-level activities rather than useful work for thd+rea The remainder of the paper is organized as follows: Sec-

time task at hand. tion 2 presents the general framework for predictable inter
The primary goals of this work are essentially two-fold: rupt accounting and scheduling. The corresponding algo-

(1) how to proper|y account for interrupt processing' sd tha rithms for scheduling and accountability are then desdribe

the time spent in kernel control paths due to interrupts from in detail in Section 3. Section 4 introduces a simple pro-

I/0 devices is charged to the appropriate process, wherdOtype implementation of our approach in Linux, which is

possib|e, and (2) how to schedule deferrable interrupt han_then evaluated experimentally in Section 5. Related work is

dling so that predictable task execution is guaranteed. Indescribed in Section 6, after which we discuss conclusions

addressing these goals, it is important to understand howand future work in Section 7.

interrupt processing is dealt with on typical general pggo

systems in use today. Systems such as Linux split inter-2 |nterrupt Servicing and Accountability

rupt service routines into “top” and “bottom” halves, with Eramework

only the top half requiring execution at the time of the inter

rupt. Further interrupts may be disabled during a top half,)

which performs only the basic service requirements at theINterrupts are events that can be either synchronous or asyn

time of the interrupt (e.g., saving device data to a device- CNronous in nature. They are generated by both hardware

specific buffer and then scheduling a bottom half). Bottom devices and also by program conditions (i.e., faults, sys-

half handling may then be assigned to a schedulable threadt®™ calls, and traps used for, e.g., debugging purposes). In

and possibly deferred until there are no other processes td!ual-mode systems such as Linux, that separate the kernel

execute. A better approach would be to schedule bottom!TOM User-space, it is typical for interrupt-handling taea

halves in accordance with the priorities of processes tieata Place in the kernel. Moreover, because interrupts can oc-

affected by their execution. Likewise, bottom half progess CUr at arbitrary times and usually require at least someebasi

ing should be charged to the CPU-time usage of the affected’@ndling to be performed with “immediaté’effect, most

process, or processes, where possible, to ensure fairer angyStems allow them to be serviced in the context of what-
more predictable resource management ever process is active at the time of their occurrence. How-

ever, because many interrupts (e.g., those relating to I/O

It should be clear that not all interrupt processing occurs : o :
o service requests) occur on behalf of specific processes, it
as a result of a specific process request. For example, a

. : . . makes sense to service them in accordance with the impor-
hardware timer interrupt may be generated, irrespective of

tance of the corresponding process, or processes. Likewise
any processes, to update the system clock. However, for I/O P gp P ke

devices and corresponding /O requests (e.g.r eiad() proper accounting of CPU usage to handle a specific inter-
) P 9 9 -g.reac rupt should be charged to the process(es) receiving service
andwr i t e() system calls on a POSIX system) it is clear X .
AF ... as a result of the interrupt, not necessarily the procegs tha
that device interrupts are generated on behalf of a speC|f|ch b . he fi fi
rocess. It is for such interrupts that we attempt to priori- appens to be executing at the time of interrupt occurrence.
Fize the i.m ortance of corresponding bottom half handlin With this in mind, we describe our general approach to ser-
In effect apbottom half will hgve a griorit consistent withg' vice interrupts in a “process-aware” manner, showing how
that of trlle process for which it is pzrforni/ing some service it differs from that of the traditional “process-indepentle
! . roach typical of general-pur ms.
request. Given that we need to determine the target processapp oach typical of general-purpose systems
associated with a given device interrupt, we need to care-Traditional process-independent interrupt service: Fig-
fully account for the bottom half execution time and then ure 1 shows the typical flow of control in general-purposes
charge that time to the proper process, which may not beoperating systems resulting from 1/0O service requests that
the one active at the time of the interrupt. trigger device interrupts. In this figure, a process issues

This paper, therefore, describes some of our methodsan I/O request, via a system call (step (1)). The OS then
both algorithmically and in terms of implementation on a Sends the request to the corresponding device via a device
Linux system, to combine interrupt scheduling and account- driver. At some time later, the hardware device responds
ability. We show significant improvements in predictagilit Py generating an interrupt (step (2)), which is handled by
of a Linux system by modifying the kernel to more accu- the top half. The deferrable bottom half then completes
rately account for interrupt servicing costs and more pre- the necessary service requirements on behalf of the prior
cisely control when and to what extent interrupts can be ser-interrupt (step (3)), and wakes up the corresponding pro-
viced. We show how to p_rlor|t|ze Interrupt servicing so that Lin reality, there is a small amount of interrupt dispatch layeto actu-
the most important real-time processes are assured of makay save the current execution state and switch to therimpehandiler in
ing the necessary progress, without suffering system-leve question.

cess(es). Since bottom halves may run for a relatively longIf the bottom half’s priority does not correspond to that of
time (compared to top halves), interrupts are usually en-the blocked process, then the process may wake up too late.
abled during their execution. Therefore, bottom halves canThis could lead to missed deadlines in a real-time system.
be preempted by the top halves for handling newly occur- Moreover, since interrupts are handled in the context of an
ring interrupts, to ensure fast interrupt responsiveness. arbitrary process, the wrong process may be charged for the
serve that after completion of interrupt handling, a preces time spent handling the interrupt. For the purposes of more
that is awoken can be rescheduled. Control can then passccurate CPU accounting, we need to determine the process
back to the user-level process on return from an earlier sys-that is to be awoken, or which is related to the interrupt, and

tem call (step (4)). charge its CPU time accordingly.
General-purpose systems such as Linux neglect the re-
Processes lationship between interrupts and corresponding prosesse

do not properly integrate the scheduling of bottom halves
with other processes, and do not accurately account for CPU
time usage as a consequence of interrupt servicing.

Process-aware interrupt service: With current hardware
support and OS design, we argue that it is reasonable for
top halves to execute immediately in order to release I/O
devices, since their execution times are meant to be short.
However, our approach explores the dependency between
interrupts (notably their bottom halves) and correspogdin
processes, for more predictable service execution and re-

Interrupt handler

Bottom Halves

os T?p H*alve*s

1

[interrupts] source accounting. Figure 2 shows the framework of our

Hardware approach. An interrupt accounting component is added af-

ter the execution of bottom halves, to keep track of the pro-

Figure 1. Interrupt handling control path in cessing time of interrupt handlers and to charge this time to
general purpose systems such as Linux. the appropriate process(es). An interrupt scheduler iscdd

between the execution of top halves and bottom halves to
Frequently occurring interrupts and, hence, the execu-predict the requesting process and determine exadign

tion of corresponding top and bottom half handlers may bottom halves should execute. We will use the term “in-
unduly impact the CPU time of a running process. To terrupt scheduler” to refer to the scheduling of deferrable
deal with this scenario, systems such as Linux execute afunctions such as bottom halves (or, equivalently, sdtirq
finite number of pending bottom halves after top half ex- and tasklets).
ecution, and then defer any subsequently pending bottom
halves to a scheduled thread (or until another interrupt oc- / Interrupt handler \
curs, whichever comes first). For example, Linux 2.6 it-
erates through a function callelb_sof ti rq() upto 10

BH accounter

times if there are pending “bottom halves” before deferring Bottom Halves

their execution. Note that we use the term bot'tom. half” to oS BH scheduler

refer to any deferrable function whose execution is a con-

sequence of a prior interrupt. Linux 2.6 has deprecated the Top Halves

term “bottom half” but still retains deferrable functions i K /

the form of “softirgs” and “tasklets”. The deferrable servi

ing of sof ti rgs andt askl et s in Linux takes place in Figure 2. Process-aware interrupt scheduling
the context of a task, callddsof t i r qd_CPUxxx (where and accounting framework.

xxX is a CPU number). However, each of these tasks on

different CPUs are given the lowest priority amongst all One major challenge is to determine the process asso-
schedulable tasks and may therefore delay servicing on be<ciated with a given interrupt and, hence, bottom half. In
half of another important waiting thread or process. Ob- many cases, the requesting process can only be known at
serve that bottom halves (and, equivalently, softirqs andthe end of bottom half execution. It is not trivial to find the
tasklets) complete the work originated by an interruptf tha requesting process before the completion of interrupt pro-
may have been generated as a consequence of an I/O requestssing. For example, consider an interrupt from a network
from a process. That process may be blocked, waiting fordevice such as an Ethernet card that indicates the arrival
the completion of the 1/0 request and, hence, bottom half. of a packet; on arrival, the packet is processed by a bot-

tom half interrupt handler, to find the proper socket, from executing bottom halves. Knowing the execution time of
which the target process can be determined. Unfortunatelybottom halves allows us tmompensatéor CPU time usage

by the time the bottom half completes we may have con- charged to the wrong process, which just so happens to be
sumed CPU time in the context of the wrong process and wepreempted while interrupt handling is taking place. Once
may have prevented a more important real-time task fromwe determine the process associated with a given interrupt
executing. we charge its CPU time usage for the cost of bottom half

Our approach attempts fwedict before the execution execution.

of a bottom half, whether or not the corresponding interrupt
is for a more important process than the one currently ac-
tive. If this is the case, we should execute the bottom half
immediately after completion of the top half, rather than de

Compensation algorithm: There are three steps in the
compensation algorithm: (1) measurement of the execution
time of a bottom half handler in CPU cycles taken from
L S the average time across multiple bottom halves, (2) mea-
ferring it in preference for other tasks. Similarly, we need :

surement of the total number of interrupts processed, and

to account for the time spent executing in the bottom half .
. : . the number processed on behalf of each process, in each
and, once we know the process associated with this bottom

half, we should charge it with the CPU time expended in clocktick, and_(3) adjgstment of the system time charged to

) .~ each process in the timer handler as a result of mischarged

the bottom half. If the target process is not the one active.

. . interrupt costs. In what follows, we assume that any ref-

at the time of bottom half processing, then we need to 'e erence to processing and accounting for interrupts agtuall
plenish the available CPU time in the current timeslice of P 9 9 b

the preempted process and deduct the CPU time of the nex pplies to. botFo.m half processing on behalf of interrupts.
. : Iso, for simplicity, we assume all interrupts and, hendle, a
timeslice from the proper process.

bottom halves are for the same device. In practice, the com-
pensation algorithm accounts for the numbers and costs of
3 Interrupt Servicing and Accountability Al- interrupts for different devices (e.g., interrupts forwetk
gorithms devices versus disks).

At system clock timet, let N (¢) be the number of inter-
In this section, we describe the interrupt accounting and "UPts whose total (bottom half) execution time is one clock
scheduling algorithms in detalil. tick 2. Letm(t) be the number of interrupts processed in
the last clock tick, and lei(t) be the number of unac-
counted interrupts for procedy,. Whenever an interrupt
is processed, increase by 1. If processP; is the process

associated with the interrupt, increasgt) by 1. As stated

Based on the current process accounting mechanism, Wearlier, we determing®; by the time the bottom half has
propose a compensation algorithm for more accurate inter’finishe,d execution J

rupt and process accounting. Suppose the current clock tick is charged to the system
Overview of process accounting mechanism: In most execution time of procesB; which is active at time¢. At
general-purpose systems, such as Linux, time keeping andhis point,m(t) is the number of interrupts handled in the
process accounting is at the granularity of the system clockcontext of P; in the last clock tick. The execution time
tick, which is updated according to a hardware timer inter- of thesem(t) interrupts is included in this one clock tick,
rupt. In the timer interrupt handler, the clock time is in- which is possibly mischarged t8;. Therefore, the differ-
creased by one tick (i.e., ofjiffy). On Linux x86 systems, encem(t) — x;(t) (if positive) is the number of interrupts

a clock tick typically ranges frond — 10ms, and this one that have been over-charged B. At each system clock
unit of time is charged to the executing process at the cur-tick, we update the process accounting information in the
rent time. It is possible to increase the frequency of timer timer handler as follows:

interrupts and, hence, the precision of the system clokk tic

3.1. Interrupt Accounting Algorithm

but this comes at the cost of increased interrupt handling xi(t) = i (t) — m(t);
overheads [19]. sign = sign of (z;(t));

Usually, the execution time of an I/O interrupt handler is while (abs(x;(t)) >= N(t))
less than one clock tick. Fortunately, systems such as Linux systemtime(P;) + = 1 % sign;
leverage hardware support to accurately account for time at timeslice;) — = 1 * sign;
granularities smaller than a clock tick. For example, on the x;(t) = x; () — N(¢);
x86 architecture there is thealt sc instruction to access the m(t) = 0;

timestamp counter, which is updated at the frequency of the
processor and th_erefore measures time in CPU C|0(.:k Cycles. 2e actually round offV(¢) to the nearest integer for cases where the
We use the x86 timestamp counter to measure the time spentbtal execution time ofV (¢) interrupts is not exactly one clock tick.

In the above, systertime(P;) is the time spent executing
at the kernel-level for proceds; in clock ticks. Similarly,
timeslice;) is the timeslice of procesB;. To smooth out
the short term variabilities olV(¢) in each measurement,
the current value ofV () is estimated as an average value
N(t) at time ¢t using an Exponentially-Weighted Moving
Average (EWMA) with parametey (0 < v < 1) on the
instantaneous values df(t) as follows:

N(t)

= (1—=9) N(t—-1)+~-N() 1)

Example: Figure 3 gives a simple example to show how
the compensation algorithm works; is the interrupt pro-
cessed on behalf of process. The number of interrupts
that need to be compensated on behalf of proégss time

t is m(t) — z;(t). Looking at timet = 1 in the figure,3
interrupts have been processed arate for proces#’;, so
the cost ofl interrupt should be deducted from the system
time charged taP;. Looking ahead to time¢ = 7, 2 in-
terrupts are charged tB; in the last clock tick, although
neither were actually foP;. At this point,4 interrupts have
occurred forP; since its last execution and accounting took
place. Previously, it was observed tlfatwas over-charged
by the cost ofl interrupt. Consequently, at timte= 7, we
havez;(7) = —2+4—1 = 1 unaccounted interrupts. When
the absolute value of the number of unaccounted interrupts
is greater than or equal ¥ (¢) we update the system time
and timeslice of the process accordingly.

P2

P2

2

X (1):-3+2=-1, X,(2):-1+1=0,
X3(3):-2+2=0, X4(4) 1 -3+ 1=-2,
%4(5): -2 + -4+ 0=-6, X,(6):0+-2+2=0,
X (7):-1+-2+4=1, x48):0+-3+4=1

Figure 3. Compensation algorithm example.

3.2. Interrupt Scheduling Algorithm

We propose a process-aware interrupt scheduling algorithm
to provide more predictable service execution by schedulin
bottom halves. Specifically, the importance of executing a
bottom half is dictated by the priority of the corresponding
process. The challenge is to identify the corresponding pro
cess without having to first execute the bottom half. There
are three steps to the algorithm:

e Finding the candidates: At the time top half inter-
rupt processing completes, information about the I/O
device that raised the interrupt is available. It therefore
makes sense that the process which issued a service

request that resulted in the interrupt is one of the pro-
cesses waiting on the corresponding 1/0O device. This
is certainly the case for blocking 1/0 system calls (e.g.,
blockingr ead() requests). Moreover, non-blocking
requests are not a problem because the process is able
to continue its execution and is probably running when
the interrupt occurs, unless its timeslice has expired.
Notwithstanding, to reduce the overhead of finding
candidate processes that could be associated with the
interrupt, we require all 1/O requests to register the pri-
ority of the calling process, and process IDs, with the
corresponding device.

Predicting the process associated with the inter-
rupt: With the knowledge of all the candidates, the
next step is to infer the process that issued the I/O re-
guest and decide the corresponding priority that will
be assigned to the bottom half for the interrupt. There
are several different prediction schemes we can use. In
this paper, we use a simple priority-based predication
scheme, in which the bottom half’s priority is set to the
highest priority of all processes waiting on the corre-
sponding 1/O device for a given interrupt. It may be
the case that the highest priority process is not the one
associated with a specific interrupt occurrence. For ex-
ample, a packet arriving on an Ethernet device causes
an interrupt which is ultimately associated with a low-
priority process waiting on a corresponding socket.
At the time of the interrupt a higher priority process
is also waiting on another socket associated with the
same Ethernet device. The justification for our simple
highest priority assignment approach is that we typi-
cally do no worse than a traditional interrupt process-
ing scheme, in which interrupts are effectively given
precedence over all processes, but more often do better
at avoiding issues such as priority inversion and incor-
rect interrupt accounting. Notwithstanding, in the fu-
ture we will look at more complex predictability mod-
els that assess the likelihood of an interrupt being for
a given process e.g., by monitoring the history of past
interrupts and 1/O requests from processes, as well as
considering the distribution of priorities of processes
waiting on a given device.

Scheduling the bottom half: After predicting the pri-
ority of the process associated with the device inter-
rupt, the interrupt-level scheduler decides whether it is
more important to service the bottom half or the pro-
cess active at the time of the interrupt. The bottom
half is given the priority of the process associated with
the interrupt for the purposes of scheduling decisions.
If deemed more important, the bottom half executes
without delay, otherwise it is deferred until the next
scheduling point.

In our approach, the interrupt scheduler is executed

whenever the bottom halves are activated and ready to be

executed. To avoid unnecessary context switch overhead

we also invoke the interrupt scheduler in the process sched-

uler. Before an actual context switch to a newly selected
process, the interrupt scheduler compares the prioritigeof t
next process to that of the bottom halves. If next process
has higher priority, the actual context switch is performed
If any bottom halves have higher priority, they are executed
instead without the process context-switch taking place.

Example: Figure 4(a) shows an example time-line for
scheduling a bottom half in the presence of 2 background
processes in Linux. Attimg, P, sends an I/O request, and
is blocked while waiting for the request to complete. At this
point, the process scheduler seletdor execution. In the
context of P, at timeto, the I/O device responds to the I/O
request byP; , and raises an interrupt. The corresponding
top half (labeled/t,) is activated and later finishes at time
t3. At some timet,, the bottom half (labeledB;) is exe-
cuted, and it finishes at timg. Finally, P; is woken up and
eventually scheduled at timg. Both the execution time of
top and bottom halves is charged®p. However, with our
compensation algorithm, we will be able to charge the ex-
ecution time of the bottom half to proces$ as shown in
Figure 4(b).

In this paper, we focus on the delay time betwegand
t4 which is affected by the interrupt scheduler. Observe that
if the time betweernt, andt; is small P;'s progress may be
unduly affected. Moreover, i’ happens to be more im-
portant thanP; we end up delaying the progress Bf on
behalf of a bottom half for a lower priority process. Worse
still, if P, happens to be a real-time process with a dead-
line, the execution of a bottom half could cauBeto miss
that deadline. If the opposite action is taken, so that tie bo

Process| P P P
Interrupt Handler It — | 1B,
Hardware t, 't t,
(a)
tl t5 t6
Process| Py Ps Py
Interrupt Handler It —| 1B,
Hardware t, 't t,
(b)
t, te
Process| P P Py
Interrupt Handler It — [1B,
Hardware t, 'ty t,
(©)

Figure 4. Alternative approaches to schedul-
ing bottom halves versus processes.

and bottom halves interchangeably in the following text.

Control path for packet reception in the Linux kernel:
Figure 5 shows the control path of system calls for receiving
UDP packets in Linux. A socket structure is used to send or
receive packets in Linux, and each socket can be associated

with a specific IP address and port number usingd()

andconnect () system call semantics. Other system calls
such ag ead(),recvnsg() andrecv() can be made

by applications to receive data on a given socket. The kernel
checks whether there are any packets in the receiving queue

tom half is deferred until no other processes are ready tofor the specified socket and, if so, they are copied to a target

execute, we may unduly impact the progress madeé’py
awaiting the outcome of its I/O request. In our approach,
if P; has higher priority, we want its bottom half to be ex-

user-level process. Since the kernel cannot predict when a
packet will arrive on a network interface, the networking
code that takes care of packet reception is executed in top

ecuted as soon as possible as in Figure 4(b). However, ifand bottom half interrupt handlers.

P; has higher priority, we wanP, to continue to execute
until it finishes, then to executB;’s bottom half as shown
in Figure 4(c).

4 System Implementation

Our prototype implementation only requires a few minor
modifications to the base Linux kernel. As a case study, we
focus on interrupt handling associated with network packet

At some future time, when a packet carrying the right
hardware address arrives at the network device, it is stored
in a device buffer and then the device raises an inter-
rupt. The device-specific interrupt handler (i.e., the top
half “irg handler”) copies the packet from device mem-
ory to a kernel socket buffer, does other necessary op-
erations, and then enables thNET_RX_SOFTI RQ (bot-
tom half for network packet reception) to be scheduled
at some convenient time. Whedo_softirq() is
executed to schedule bottom halves, it checks whether

reception, and implement the scheduling and accountingthere are pendinlET_RX_SOFTI RQs, and calls the cor-

component of our framework on top of the existing bottom
half mechanism in Linux. Linux usesoftirqs to rep-

responding bottom half handleret rx_acti on() to
receive all arrived packets if there are any. The func-

resent bottom halves. To be consistent, we refer to softirgstion neti f recei ve_skb() is the main code to re-

ceive a packet. It in turn ultimately invokes a suit-

22:16 ;lsjr;ﬁtlggjéor rtgs(r)]ef[\é)vorrekc;i/yeernggtogg:(e;?s or}er::- The interrupt (bottom half) scheduler is mainly imple-
’ b- P ' mented in thedo_sof ti rq() function. Before the cor-

target socket is determined, and any received packets

are appended to that socket’s receiving queue. Finally responding softirq handler (e.giet .rx.action() for
sock_def r eadabl e() is invoked to essentially wake NET_RX_SOFTI RQ) is invoked, it checks the eligibility of

up a process sleeping in the socket's wait queue. When th each softirg, and decides whether to schedule it based on

application process is woken up it continues the path of a he priority of the softirq versus the priority of the curten

particular protocol (heraydp_r ecvimsg()), which copies process. From the_ cqntrol path in F'g'“.'re S We can see
each packet payload into a user-space buffer [1] that before the softirg is executed, the right device for the

current softirq is known. Thus all related sockets for the

Implementation of the interrupt scheduling algorithm:

read() read() network device, and all processes sleeping on the sockets,
bind
by OMEC) oo =0 are known. These relationships can be established explic-
» bimdo . }ecvmsgo _ f ity when the processes issié nd()/ connect () and
Sys_comnect) (b e reoumsa0 wake_tp_interruptible() _read_()_/ r ecv(_) s_ystem calls, so the overhez?\d of find-
wip_doumsg) sock_defreadabie, Skb_coy_qatagram fovec() ing this information in the bottom half scheduler is reduced
ke datagram() udp-gueye rov_sko0 skb_recy._datagram(Then, based on the priority of the candidate processes wait-
wait_for packet). vpprev0 wait_for_packet(ing for a network device interrupt, along with the prediatio
oo netf_regelve S0 e algorithm used to determine which process the current in
; -
(device specifc poll fn) terrupt is likely to be for, we can determine the priority of

net_rx_action()

each softirq at each scheduling point.

__raise_softirq_irqoff ----» doisgmrq()

netif_rx_schedule(dev)

5 Experiments

(device specific irq handler)
4

Kernel

Hardware

Using our prototype implementation, we conducted a se-
ries of experiments to evaluate the performance of the pro-
posed approach for interrupt scheduling and accountgbilit

focusing on network packet reception interrupts. We used
a UDP-server process running on an experimental machine,
which simply binds to a port, and receives arriving pack-

ets for the specified port. A UDP-client process on another

net _rx_action() is measured for each invocation, us- : .
: machine keeps sending UDP packets to the port of the ex-
ing the high-precision Pentium-based Timestamp Counter . : .
(TSC). More than one packet may be received in each han perimental machine specified by the UDP-server process.
7 X P . Y The interrupt arrival rate is adjusted by varying the packet
dler invocation. By measuring the number of packets re- : . :
. . . sending rate of the UDP-client. To evaluate the interrupt ef
ceived, and the total time to process these packets in bot-
fect on other processes, we run another CPU-bound process
tom halves, we are able to calculate the number of packets

NN . n the experimental machin ncurrently with the UDP-
N, whose total execution time is up to one clock tick. The on the experimental machine concurrently the U

— : .) . server process.
EWMA value of N (), N(t) (as defined in Section 3) is Both UDP-server and UDP-client machines have

used to compensate processes whose system time is €O GHz Pentium IV processors with2GB of RAM. They
sumed by handling interrupts for other processes. We use_’ '

a~y value of0.3 to calculate the EWMA. When the proper are co_nnected by glgablt Ethe_rnet cards, a_md each machine
. . runs Linux-2.6.14 withl00 Hz timer resolution. We com-
socket is found for the packet (e.g. urdp_rcv()), the

right process for the packet is known. This enables us to pare the performance of interrupt and process servicing in

. the original Linux-2.6.14 kernel with that of a modified
keep track of the number of packets received for each pro-; . X .
: Linux-2.6.14 kernel, patched with our process-aware inter
cess, as well as the total number of packets received from

the network device in each clock tick. We also keep track of rupt s_chedulmg and accounting components on the server
) machine.

the number of orphan packets whose requesting processes

are unknown. The essential part of service time compen-Accounting accuracy: In this set of experiments, we set

sation is implemented in the timer handler. Specifically, the CPU-bound process to be a real-time process with pri-

we modify theaccount _syst emti ne() kernel func- ority 50 in the SCHED_FI FO class, while the UDP-server

tion to update the system time accounting and timeslice ofis a non-real-time process. Therefore, the CPU-bound pro-

the current process at the granularity of one clock tick, ac- cess always preempts the UDP-server process, and runs for

cording to the algorithm in Section 3.1. its entire timeslice when it is ready to execute. The CPU-

Figure 5. Control path for receiving UDP
packets in the Linux kernel.

Implementation of the interrupt accounting algo-
rithm: The execution time of the softirg handler

bound process simply loops through a series of arithmeticprocess every00s, whilet, is the equivalent optimal value
operations, without making any system calls, so that its discarding the interrupt servicing time. As can be seen, the
execution time should be spent at user-level. We recorderror in accounting accuracy is as high6a8s in the origi-

the number ofiffies that each process spends executing at nal Linux kernel, while it is less tha20% (and more often
user-level versus system- (or kernel-) level, by readingifr less tharb%) in ourLi nux- |1 A approach.

/ proc/ pi d/ st at for each process with a specifi¢ d. Figure 6(c) shows the absolute value of compensated
Each jiffy represent$Oms. The results are averaged oger time for both the CPU-bound process and the UDP-server
trials of each experiment. In each trial, the CPU-bound pro- in ourLi nux- | A approach. The bars for the “UDP-server
cess runs fot00s and then sleeps fafs. During the whole (a)” case represent the time charged (due to interrupts) to
110s period, the UDP-client keeps sending packetslaf the UDP-server in the first00s of everyl10s period, when
bytes data to the UDP-server at a constant rate. Since thehe CPU-bound process is running, while the bars for the
CPU-bound process has a relatively high priority, the UDP- “UDP-server(b)” case represent the time charged (again,
server can only run after each periodl6fis whenthe CPU- due to interrupts) over the whole 0s period. We can see
bound process goes to sleep. Thus, network interrupts arehat the time compensated to the CPU-bound process is ac-
processed in the context of the CPU-bound process in thecurately charged to the UDP-server process in thelfiiés

first 100s of eachl10s period (unless they are deferred to period. In the last ten seconds of each period, the high pri-
their own threads, which is not the case in our experiments).ority CPU-bound process is sleeping, allowing the UDP-

Figure 6(a) compares the accounted execution time ofse_rverto execute and be correctly charged for interrupt han
the CPU-bound process in Linux (labeled “Linux”) against dling.

the accounted time in our modified Linux system (labeled gqitom half scheduling effects: Using the same scenario
“Linux-1A" for Interrupt Accounting). For completeness, as above, we evaluate the scheduling impact of bottom

we also show the optimal value (labeled “Opt”), which rep- 1o es on the CPU-bound process and the UDP-server pro-
resents how much time should be accounted for the CPU-¢oqq sing our modified Linux kernel versus an unmodified

bound process exgcutmg entirely at user-level euens. kernel. In this case, our modified kernel is patched with
Any system-level time charged to the CPU-bound processy, interrupt accounting and scheduling components.
is due to interference from |_nterrupts such as those asso- Figure 7(a) compares the user-time consumed by the
ciated W|th the the network mterface._ Ideally, we do_not CPU-bound process running on a vanilla Linux system (la-
want any interference from network interrupts associated beled “Linux”) versus our patched system (labeled “Linux-
with the UDP-server process, because that process is set A" for Interrupt Scheduling and Accounting). As ex-
a distinctly lower priority so that we can guarantee the pre- plained before, for the original Linux kernel, the userdim
dictability of the real-time CPU-bound process. However, consumed by the CPU-bound process in a given real-time
giyen that we have to acc_ount for system-level interrupt han period (here100s) decreases when the packet sending rate
dling somewhere, we wish to ensure that the CPU-boundp) the UDP-client machine increases. However, for the
process is not unduly charged for unrelated system-level ac Li nux- | SA case, the CPU-bound process is not affected
tivities. by network interrupt handling. In fact, the CPU-bound pro-
In Figure 6(a), ther-axis is the packet sending rate from cess can still use up to 100% of time during the fifiis of
the UDP-client. As the Sending rate increases, the UDP-each period when it is running_ In the nux- | SA case,
server machine observes a correspondingly higher rate ofhe priority of the interrupt is set to that of the requesting
network interrupts and, hence, more time spent servicingprocess, which is the UDP-server. Since the UDP-server
top and bottom halves. Thus, the user-level CPU time CON-has lower priori[y than the CPU-bound process, the net-
sumed by the CPU-bound process decreases significantlywork bottom half handler cannot preempt the CPU-bound
as shown by th€pt value. However, in the original Linux process. Therefore, the predictable execution of the CPU-
case, alll00s of time during which the CPU-bound process hound process is guaranteed.
is active are charged to the CPU-bound process, along with Figure 7(b) shows the time consumed by interrupt han-
time spent handling network interrupts. In contrast, with djing on behalf of the UDP-server over eath0s inter-
our interrupt accounting component, the time consumedyg|. In theLi nux- | SA case, network bottom half han-
by interrupt handling is more accurately compensated t0 dling only starts to consume CPU time after the CPU-bound
the CPU-bound process and, inStead, Charged to the UDPproceSS goes to S|eep, whereaslth@ux case incurs Sig_
server process. As can be seen, the accounted time in th@jficant interrupt handling costs during the time the CPU-
Li nux- 1 Acase is very close to the optimal value. bound process is runnable. Figure 7(c) shows the packet re-
Figure 6(b) shows the ratio between the accounting er-ception rate of the UDP-server, which is the ratio between
ror and the optimal value, calculated%;#, wheret is the the number of packets received in UDP-server to the num-
actual accounted time for the execution of the CPU-bound ber of packets sent by the client. It can be seen that the

193
1%l
© 14000 T T T T T T T T T T
§ I Linux 60T —— Linux & Il CPU-bound
2 12000 I Linux-1A -+ - Linux-1A 8 4000!| B UDP-Server(a)
g [Jopt 50 g [_JuDP-Server(b)
o —
o 10000 <)
T a0 E 3000
% 8000 <] °

0 Q
5 2 30 T
& 6000 g 2 2000
£ S 2 g
3 4000 g + £
S < N © 1000¢
< 2000 10 3

- <
£ - ¥ -
5 0 S = 0
; 42 86 16.6 31.1 54.1 87.3 1249 218 4.2 8.6 16.6 31.1 54.1 87.3 1249 218 42 86 16.6 31.1 541 87.3 1249 218
Packet Sending Rate (103 pkt/s)) Packet Sending Rate (103 pkt/s)) Packet Sending Rate (103 pkt/s))
@) (b) (c)

Figure 6. CPU time accounting accuracy.

receiving rate in th&i nux- | SA case is very close to that UDP-server. However, ihi nux- | SA, the packet recep-

of the original Linux kernel. Both are less tha6%. In tion rate is pretty constant. With guaranteed service of the
the unpatched Linux case, most packets cannot be receive€PU-bound process, the UDP-server is able to be scheduled
by the user-level UDP-server until the CPU-bound processto receive packets after the CPU-bound process finishes its
sleeps, due to their relative priorities. Therefore, tineeti execution in each period.i nux- | SAimproves service to
spent receiving packets into kernel socket buffers during all processes on account of its interrupt scheduling.

bottom half handling in the unpatched Linux case is largely

wasted. This is partly because they may be over-writteq be—6 Related Work

fore the UDP-server reads them. Consequently, our Linux
interrupt scheduling and accounting framework can guaran-
tee the predictable execution of processes with high priori
ties, while not degrading the service of processes withtowe
priorities.

A number of systems have added real-time capabilities
to off-the-shelf time-sharing kernels to provide both pre-
dictability and applicability for a large application bd4e,
10, 20, 16, 15]. Some researchers have focused on the struc-
As a final experiment, the UDP-client sends bursts of ture of systems and the use of micro-kernels in real-time ap-
packets according to a two-state Markov Modulated Pois- plication domains, showing how the communication costs
son Process (MMPP-2), with average geometric burst sizesbetween separate address spaces is often less than the over-
of 5000 packets, and different average exponential burst heads associated with interrupt processing [9]. Other re-
inter-arrival times. The CPU-bound process is set as a peri-search efforts such as RTLinux and RTAI, for example, pro-
odic real-time process with a constant period ®fn which vide support for hard real-time tasks by modifying a base
it must execute fof.95s. The end of eachs period acts Linux kernel to essentially intercept the delivery of inter
as a deadline. From Figure 8(a), there are no missed deadrupts. Such approaches ensure that legacy device drivers
lines inLi nux- | SA. The service of the real-time process cannot disable interrupts for lengthy periods that afflet t
is guaranteed, and the interrupt handling is deferred until predictability of the system. None of these systems, how-
the CPU-bound process finishes execution in its current pe-ever, have focused on the scheduling and accounting of de-
riod. This contrasts with the high deadline miss rate in the ferrable bottom halves in an integrated manner, to ensure
Li nux case as the packet sending rate increases. As campredictable service guarantees on commercial off-thé-she
be seen from Figure8(b), interrupts consume a lot of time systems.
during the execution of the CPU-bound process. However, The traditional interrupt-handling mechanism in exist-
the time spent handling the packet reception interrupts doe ing off-the-shelf operating systems is largely indepemnden
not help the performance of the UDP-server in the original of process management, which can compromise the tem-
Li nux case, as shown in Figure 8(c). The packet receptionporal predictability of the system. The idea of integrating
rate is even less thanin nux- | SA, and down to 0% when interrupt handling with the scheduling and accountability
the sending rate is high. This is because the CPU-boundof processes has been investigated to different degrees in
process cannot finish its execution before the start of k6 ne several research works. Kleiman and Eykholt [6] treat in-
period due to the costs of interrupt handling, and thus is al- terrupts as threads, which allows a single synchronization
ways competing for CPU cycles. As the lower priority pro- model to be used throughout the kernel. However, interrupt
cess, the UDP-server never has the opportunity to wake upthreads still use a separate rank of priority levels separat
and read its packet data. The unpredictable interrupt serfrom those of processes, whereas we associate the prior-
vice not only affects the CPU-bound process, but also theities of bottom halves with corresponding processes. By

1%}
1%}
9 : 5000F= « : 12 — :
S 12000} IIMLinux " I Linux 5 —s— Linux
e [JLinux-ISA g [JLinux-ISA| 2 oll=* - Linux-ISA

= L ()
S 10000 g 4000 |y S
_8 § % 8»— --------------------- N
] > RS
2 8000 £ 3000 o T
(8} I) 6)
2 6000 £ g
o [%] =
3 2 2000 Z
£ 5 3 4
5 4000 o g
g & 1000 2

r x
O 2000 S a2
3 * 8
E 0 0 Q
; 42 86 16.6 31.1 54.1 87.3 1249 218 42 86 16.6 31.1 541 87.3 1249 218 4.2 8.6 16.6 31.1 54.1 87.3 1249 218
Packet Sending Rate (103 pkt/s)) Packet Sending Rate (103 pkt/s)) Packet Sending Rate (103 pkt/s))

(@) (b) (©)

Figure 7. Network bottom half scheduling effects.

=
o
o

12

—e—Linux » || I Linux 5 —e— Linux
-+ = Linux-IA 8 2590 Linux-isA 2 Joll-+- Linux-1sA
g : i
< £ 2000 a
g 60 2 2
P 8 1500f &
s £ 8
o 40 2 .(%
£ S 1000f 8
E ° &
i} i 9
a o 2
20 € 500f X
£
* X
0 0
42 86 166 311 541 87.3 1249 218 42 86 166 31.1 541 87.3 1249 218 42 86 166 311 541 87.3 1249 218
Packet Sending Rate (10° pkt/s)) Packet Sending Rate (10° pkt/s)) Packet Sending Rate (10° pkt/s))

@) (b) (©

Figure 8. Deadline miss rates and other performance charact eristics under bursty traffic conditions.

contrast, Leyva-del-Foyo et al proposed a unified mecha-while considering interrupts as the highest priority claks
nism for synchronization and scheduling of both interrupts events. None of the above research works explore the de-
and processes [8]. In this work, interrupts are assignedpendency between interrupts and processes, and use this
dynamic priorities and scheduled like processes (or tasks)information to decide the priority of interrupts (esselhjia
within their own contexts. In the absence of special hard- bottom halves) in CPU scheduling. The novelty of our work
ware support, to integrate the scheduling of tasks and-inter is based on the combined scheduling and accountability of
rupts, a software-based abstraction layer must stralgica interrupts associated with corresponding processesghat i
mask the delivery of certain interrupts to ensure task pre-sue service requests on I/O devices.

dictability. This whole approach may, however, yield in-

creased context-switching overheads to service intesrupt The issue of scheduling dependencies has been ad-

dressed in many other areas of research over the years.
There are other alternative techniques to integrate inter-Priority inheritance [7] and priority ceiling protocolsTlL

rupt and process scheduling without introducing a separatefor example, were proposed to schedule processes with re-
context for interrupt handling. Regehr et al[13, 14] deseri source dependencies. Clark’s work on DASA [2] focused
a hierarchy of software and hardware schedulers to handleon the explicit scheduling of real-time processes by group-
the overload caused by interrupts. By using well-known ing them based on their dependencies. In these bodies of
scheduling techniques such as sporadic servers, the semork there is an assumption that dependencies are known
vice for interrupts is constrained to prevent overload.iSim in advance before a process is scheduled. However, Zheng
larly, Facchinetti et al [3] propose a hierarchical schadul and Nieh [23] developed the SWAP scheduler that automat-
framework with an assigned bandwidth to interrupts, so thatically detects process dependencies and accounts for such
the real-time application tasks can be guaranteed servicalependencies in scheduling. In contrast to these research
that is independent of the interrupt server. However, the in works, we address the dependencies between interrupts and
terrupt policy is completely independent from the schedul- processes, rather than those amongst only processes. By
ing policy for the application processes. In other work, using various prediction techniques, we are able to more
Jeffay and Stone [5] analyzed the schedulability of tasks accurately schedule and account for interrupts, so thatoth

processes in the system are assured of their timeliness re- [4] D. Hildebrand. An architectural overview of QNX. In
quirements. USENIX Workshop on Microkernels and Other Kernel Ar-
chitecturespages 113-126, 1992.

K. Jeffay and D. L. Stone. Accounting for interrupt handling
costs in dynamic priority task systems.Rroceedings of the

14th IEEE Real-Time Systems SymposiDetember 1993.

In this paper, we describe a process-aware interrupt sthedu [6] S. Kleiman and J. Eykholt. Interrupts as thread&CM
ing and accounting framework for general-purpose systems SIGOPS Operating Systems Revi&@95.
such as Linux. Our approach focuses on the accountability [7] B. Lampson and D. Redell. Experience with processes and
and scheduling of bottom halves associated with I/O inter- monitors in MesaCommunications of the ACM980.
rupt handling. By exploring the dependency between device [8] L E. Leyva-del-Foyo, P. Mejia-Alvarez, and D. de Niz. Pre-
interrupts and processes, we show how to properly account dlctable_ interrupt management for real _tlme kernels over

. . conventional PC hardware. IEEE Real-Time and Embed-
for interrupt handling and how to schedule deferrable bot-

i C ded Technology and Applications SymposiSamn Jose, CA,
tom halves so that predictable task execution is guaranteed USA, April 2006.

Our approach attempts to predict the importance of an [9] F. Mehnert, M. Hohmuth, and H. &itig. Cost and benefit
interrupt, based on the priorities of process(es) waiting o of separate address spaces in real-time operating systems.
the device generating that interrupt. Given this predictio In Proceedings of the 23rd IEEE Real-Time Systems Sympo-
our interrupt scheduling scheme decides whether to execute sium (RTSS)Austin, Texas, December 2002.
or defer a bottom half by comparing its priority to that of [10] s. Oikayva a_md R. Rajkumar. I__inux/RK: A portable resource
the currently executing process. In addition, our scheme ac kernel in Linux. - InProceedings of the 4th IEEE Real-

counts for the time spent executing a bottom half and prop- Iggg Technology and Applications Symposium (RTAS)

erly adjusts the system time ar_1d timesl_ice usage of aﬁected[ll] QLinux: http://www.cs.umass.edu/ lass/software/qlinux/.
processes using a compensation algorithm. [12] RED-Linux: http:/linux.ece.uci.edu/red-linux/.

This paper describes our approach both algorithmically [13] J. Regehr and U. Duongsaa. Eliminating interrupt overload
and in terms of implementation on a Linux system, to com- in embedded systems. Unpublished.
bine interrupt scheduling and accountability. From the ex- [14] J. Regehr, A. Reid, K. Webb, M. Parker, and J. Lepreau.
periment results on the prototype implementation of our Evolving real-time systgms using hierarchical scheduling
approach in Linux systems, we show significant improve- and concurrency analysis. Rroceedings of the 24th IEEE

. i . . ; Real-Time Systems Symposilacember 2003.
ments in accountability and predictability of interrupt-se [15] Real-Time Application Interface: http://www.rtai.org.

vicing. By properly prioritizing the interrupts, the most- [16] Real-Time Linux: http:/Avww.rtlinux.org.
portant real-time processes are assured of making the nec{17] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance
essary progress, without suffering system-level CPU time protocols: An approach to real-time synchronizatitfiEE
penalties to process interrupts for lower-priority prcsees Transactions on Computer$990.

Our current implementation only uses a relatively simple [18] V. Sohaland M. Bunnell. A real OS for real time - LynxOS
priority-based prediction scheme to derive the prioritpof provides a good portable environment for embedded appli-
interrupt’s bottom half. In future work, we will investigat cations.Byte Magazing21(9).51, 1996.

h dicti h deri h - f bo [19] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and D. Niehaus.
other prediction schemes, to derive the priorities o tto A firm real-time system implementation using commercial

7 Conclusionsand Future Work 5]

halves without having to execute them firstin order to deter- off-the-shelf hardware and free software.Rroceedings of
mine the Corresponding prOCGSS(eS). We are aISO interested the 4th IEEE Real-Time Techn0|ogy and App"cations Sym-
in analyzing the performance of the proposed approach in- posium (RTAS)une 1998.
tegrated with other real-time process scheduling algmith ~ [20] H. Tokuda, T. Nakajima, and P. Rao. Real-time Mach: To-
such as our earlier window-constrained algorithms. Fpall wards a predictable real-time system. Rmoceedings of
we intend to validate our interrupt scheduling and account- _ _ USENIX Mach Workshopages 73-82, 1990. _
ability framework in embedded real-time systems. [21] R. W_est and J. Gloudon. ‘QoS safe’ kernel exte_n5|ons for
real-time resource management.tte 14th EuroMicro In-
ternational Conference on Real-Time Systeluse 2002.
References [22] R. West and G. Parmer. Application-specific service tech-
nologies for commodity operating systems in real-time en-
[1] D. P.Bovet and M. CesatlUnderstanding the Linux Kernel, vironments. InProceedings of the IEEE Real-Time and Em-
Second EditionO’Reilly & Associates, Inc., 2002. bedded Technology and Applications Symposium (RTAS)
[2] R. K. Clark. Scheduling Dependent Real-Time Activities San Jose, California, April 2006.
PhD thesis, Carnegie Mellon University, 1990. [23] H. Zheng and J. Nieh. Swap: A scheduler with automatic
[3] T. Facchinetti, G. Buttazzo, M. Marinoni, and G. Guidi. process dependency detection. Aroceedings of the First
Non-preemptive interrupt scheduling for safe reuse of legacy USENIX/ACM Symposium on Networked Systems Design
drivers in real-time systems. [kirth Euromicro Conference and Implementation (NSDI-2004)1arch 2004.

on Real-Time Systen2005.

