
Quality Events: A Flexible Mechanism for Quality of Service Management

Richard West

Computer Science Department
Boston University
Boston, MA 02215
richwest@cs.bu.edu

Karsten Schwan

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332
schwan@cc.gatech.edu

Abstract

This paper describes a software mechanism, called qual-
ity events, that utilizes application- and/or system-level ser-
vice extensions to provide quality of service (QoS) guaran-
tees to end users. Such extensions offer flexibility in: (1)
how application- and/or system-level services are dynami-
cally managed to maintain required quality, (2) when such
management occurs, and (3) where this service manage-
ment is performed.

Several adaptive QoS management strategies are im-
plemented with quality events and compared with respect
to their ability to meet application-specific QoS require-
ments. These management strategies have different ser-
vice adaptation latencies, and different degrees of coordi-
nation between services. Significant performance varia-
tions observed for these alternative strategies demonstrate
the importance of a flexible QoS management mechanism
like quality events. Finally, we show that adaptive QoS and,
hence, resource management strategies can lead to more ef-
ficient use of resources, and better qualities of service for
certain applications than non-adaptive resource manage-
ment methods.

1. Introduction

Providing QoS guarantees to real-time and multimedia
applications is complicated by runtime variations in re-
source requirements and availability. For example, an ap-
plication may require more or less CPU cycles to identify a
target object in a graphical image, depending on the content
of that image. Likewise, resource availability may change
due to a dynamically changing number of application tasks
sharing a finite set of common resources. Consequently,
reservation-based resource management techniques, like
RSVP for network communications, and others for CPU
usage [16, 13], have been developed, to provide enough re-

sources to guarantee qualities of service even when there
are variations in resource demands and availability. How-
ever, by combining these resource reservation techniques
with runtime (or dynamic) quality management methods,
that monitor and adapt applications and system services, it
is possible to improve the quality of service to applications,
whenever additional resources become available.

Several advantages are derived from dynamic QoS man-
agement via runtime adaptation. First, by reserving only the
minimum amount of each resource needed by each applica-
tion, overall system utilization and scalability may be im-
proved, especially when applications exhibit runtime vari-
ations in resource requirements [9, 20]. Second, by deal-
ing with dynamic changes in resource availability, adap-
tive methods can sometimes improve the overall quality
experienced by end users [1, 15, 14, 18]. In response
to these advantages, researchers have created infrastruc-
tures for dynamic program adaptation [4], toolkits for cre-
ating and deploying powerful adaptation techniques [19, 8],
and QoS architectures [17, 2] designed for multimedia
video and audio applications. Other related work has fo-
cused on application-level specification of quality require-
ments [7, 10], translation of quality requirements at the var-
ious stages of the system [6, 10] , and evaluation of the
utility of a given quality of service to an application, using
reward [1], value [12], or payoff [14] functions.

This paper is concerned with the effective deployment
of adaptive methods for performing quality management,
for individual and/or classes of applications and services.
We describe a novel mechanism for deploying desired qual-
ity management methods and techniques, termed quality
events. Quality events are an efficient means for developers
to create flexible quality management methods that are eas-
ily varied in: (1) how application- or system-level services
are adapted to maintain desired levels of quality, (2) when
such adaptations occur, and (3) where these adaptations
are performed. Specifically, using quality events, an appli-
cation and/or system may be extended [3], at runtime, to en-



able quality management. This is done by associating with
system- or application-level service providers, application-
specific functions that produce, consume, and act on events,
thereby performing appropriate monitoring and manage-
ment tasks. For example, an application-specific function
may extend a system-level service provider to affect the way
in which resource allocation is performed on its behalf, or to
simply inform the application about system-level resource
demand. In addition, an application-level ‘handler’ func-
tion may adjust the application’s resource requirements in
response to monitored changes in resource availability. Fur-
thermore, an application may simultaneously deploy multi-
ple handlers, events, and channels to target multiple sys-
tem services and application components, thereby creating
distributed and coordinated dynamic quality management
strategies. The resulting flexibility of runtime adaptation
implemented with quality events is a strong attribute of
our work, one that is not easily realized with other qual-
ity management infrastructures (e.g., like those described
in [9, 22]).

As part of the quality event mechanism, applications
specify: (1) monitor functions that are written to capture
service quality at specified times and generate events if ser-
vice adaptation is required, and (2) handler functions, that
are executed in response to adaptation events raised by ser-
vice providers. As a result, applications control which ser-
vices are adapted by specifying which service providers
(or managers) execute monitor functions and which service
providers execute the corresponding management handlers.
Toward these ends, event channels are established between
monitors in specific service providers and their correspond-
ing management handlers, which may reside in the same or
other service providers. In this fashion, services are pro-
vided in a manner that is specific to the needs of individual
applications. Applications can monitor and detect resource
bottlenecks, adapt their requirements for heavily-demanded
resources, or adapt to different requirements of alternative
resources, in order to improve or maintain their quality of
service.

Contributions. This paper shows how quality events can be
used to construct various approaches to QoS management,
thereby emphasizing the flexibility of quality events. We
compare several alternative QoS management strategies,
that differ in the manner in which services are coordinated
and adapted to meet the QoS requirements of applications.
For instance, we show for a client-server video application
that feedback-based, ‘upstream’ management methods can
be outperformed by strategies where adaptations occur as
application-level data is being processed and/or transferred,
‘downstream’ along the logical path of resources leading
to the destination. Finally, we show that adaptive resource
management strategies can lead to more efficient use of re-
sources, and better qualities of service for certain applica-

tions than non-adaptive resource management methods.
Overview. The next section describes quality events and
how they are used in a QoS infrastructure, called Dionisys.
Section 3 describes issues and trade-offs in the implemen-
tation of different adaptive quality management strategies.
Section 4 presents an experimental evaluation of quality
events, using a client-server multimedia application. Finally
conclusions and future work are discussed in Section 5.

2. Quality Events: Definition and Use

Quality Event Definition. The quality event mechanism
enables flexible quality management strategies to be imple-
mented. A quality event is generated by a monitor func-
tion (i.e., a producer) in response to an observed quality
of service provided to a specific application, that is either
unacceptable or less than desired. In response to the gener-
ation of an event, an application-specific handler function
(i.e., a consumer) provides ‘hints’ to a service provider that
a change in service is required. Quality events pass from
application- or system-level service providers, where ser-
vice is monitored, to other application- or system-level ser-
vice providers, where service changes are enacted. An event
channel is established between a monitor in one service
provider and one or more corresponding handlers, which
may reside in the same or other service providers. Observe
that we refer to an event as an entity that is passed along an
event channel, but collectively, event channels, producers,
consumers and events all form the mechanism that we call
quality events.

Stated concisely, the quality event mechanism com-
prises:
• Service Managers (SMs) that provide runtime-

adjustable service allocation policies, while also exe-
cuting the monitoring and handling functions;

• Monitor functions, which trigger potential service
adaptations, if the actual quality of a given service type
is unacceptable, or if it is less than desired;

• Handler functions, which influence how service and,
hence, the allocation of resources among competing
applications is adapted;

• Quality Events generated by the execution of a mon-
itor function when one or more service types are re-
quired to be adapted. The attributes associated with
an event are used to decide the extent to which service
should be adapted in the target service manager; and

• Event Channels, which allow quality events to be
communicated from monitor to handler functions, that
execute in the contexts of different system-level ser-
vice managers or application-level processes, where
service should be adapted.

Event channels are capable of linking monitor and han-
dler functions that reside within the same address space, or
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Figure 1. QoS infrastructure using quality events: The Dionisys example.

in different address spaces on the same or different hosts.
Consequently, service managers are able to monitor and
adapt their own service, or that of other service managers
running in potentially different address spaces. The rate at
which service adjustments are made is determined primarily
by the rate at which service managers execute their monitor
and handler functions.
Using Quality Events – The Dionisys Example. Using
quality events, we have implemented a QoS infrastructure
called Dionisys (see Figure 1), as a middleware layer on
top of Solaris. Both Dionisys and the quality event mecha-
nism are currently being implemented in the Linux kernel.
Dionisys utilizes CPU and network service managers, that
support runtime service adaptation. In the Solaris imple-
mentation, network service management utilizes the DWCS
packet scheduling algorithm [23], while CPU service man-
agement utilizes the real-time scheduling capabilities of the
operating system. The Solaris operating system enables
CPUs to be dedicated to user processes that run in the real-
time priority class. Consequently, we have built a CPU
service manager as part of Dionisys, using the priocntl()
system call, that controls the priority and time-slice of pro-
cesses competing for CPU cycles. For the Linux kernel
implementation of Dionisys, the CPU service manager will
employ a variant of DWCS for controlling the allocation of
CPU cycles amongst competing processes and threads.

Figure 1 depicts a number of application-specific ser-
vice managers, complemented by two more ‘generic’ ser-
vice managers that control how CPU and network services
are delivered to application processes. For example, for the
video server described later in the paper, an application-
specific service manager could control frame resolution,
while the CPU and network service managers control the
rate at which frames are generated and transmitted across a
network, respectively. Quality events, transported via event

channels between these service managers, cause frame res-
olution and rate to be adapted in keeping with the video
server’s quality of service requirements.

The implementation of quality events in Dionisys is
based on the Data Exchange library [5] and uses two queues
in each service manager: one queue for application-specific
monitor functions and another for application-specific han-
dler functions. Each service manager is responsible for exe-
cuting its monitors and handlers at appropriate times: mon-
itors are executed at application-specific times and handlers
are executed in response to events generated by monitors. A
service manager runs when it must either execute its service
policy, execute one or more monitors, execute one or more
handlers in response to pending events, or process requests
from applications to create new event channels.

H(1) H(2) H(h2)

H(1)M(2) M(m1) H(2) H(h1)M(1)

M(m2)M(2)M(1)

Monitor Functions Handler Functions

. . . . . .

. . . . . .SM 2

SM 1

Event Channel

Figure 2. Example event channels involving
two service managers, SM1 and SM2.

Figure 2 shows an example of several event channels be-
tween two service managers, SM1 and SM2, in Dionisys.
Each service manager, SMi, maintains an array of point-
ers to monitor functions (M(1) to M(mi)), and an array
of pointers to handler functions (H(1) to H(hi)). Further-



more, each service manager executes at most one monitor
function and one handler function per application process.
Consequently, there is at most one handler for an event
channel in any one service manager, but there can be mul-
tiple handlers, spanning different service managers, con-
nected to the same event channel. Each event channel binds
one or more handler functions to a single monitor. For ex-
ample, Figure 2 shows two handlers connected via the same
event channel to monitor M(1), in service manager SM1.

In the Solaris-based implementation of Dionisys, ser-
vice managers on the same host all execute as kernel-
level threads, within the same address space 1. Appli-
cation processes communicate with service managers on
the same host via shared memory, using calls to library
routines offered by the Dionisys application-programming
interface (API) [23]. The Dionisys API allows applica-
tions to create, or delete, application-specific service man-
agers, and/or event channels, or to exchange data with ex-
isting service managers. The rationale for this implemen-
tation is to emulate the way in which operating system ser-
vices are accessed via system calls from application pro-
cesses. Furthermore, applications can specialize the op-
eration of Dionisys service managers, or create new ser-
vice managers, in the same way that kernel-loadable mod-
ules can be dynamically-linked into an ‘extensible’ oper-
ating system2. Stated concisely, when an application cre-
ates an application-specific service manager (which ex-
ecutes application-specific policies), the service manager
functionality is compiled into a shared object and dynam-
ically linked into the Dionisys system-level address space.
For the user-level realization of Dionisys used in this pa-
per, this address space is that of a daemon process running
all Dionisys service managers. For the kernel-level real-
ization of Dionisys now being developed by our group, this
address space is that of the (Linux) operating system kernel.
In this fashion, we can incorporate application-specific ser-
vice managers into Dionisys, supporting configurable pro-
tocols and other functions applicable to, and provided by,
each application. Finally, when running Dionisys across
a distributed system, each host has its own Dionisys dae-
mon process. A simple name-server, running on a single,
known host, uniquely identifies each service manager exe-
cuting within each and every daemon process. Sockets are
then used to communicate application data, QoS attributes
and events between these processes on different hosts.

Flexibility of Quality Management. As stated earlier, ap-
plications specify the functionality to monitor service qual-
ity. Monitor functions are executed at times determined by

1It should be noted that the quality event mechanism, fundamental
to Dionisys, imposes no restriction on how service managers are imple-
mented in general.

2For example, Linux and Solaris both allow objects to be dynamically-
linked into the kernel using ‘insmod’ and ‘modload’, respectively.

applications3, and influence when adaptations occur. An
event is typically raised when actual and required service
levels differ by an amount that causes an application to jeop-
ardize its QoS requirements. Alternatively, a monitor might
generate an event if it is possible that better quality of ser-
vice can be achieved by adapting one or more service types.
How an event is handled actually depends on the handler
function that is specified by the application, and executed
by the target service manager. Furthermore, applications
have the ability to control where monitor and handler func-
tions are executed. That is, each application using the Dion-
isys QoS infrastructure has the ability to specify the service
managers responsible for executing its monitor and handlers
functions. In Dionisys, service managers dynamically-link
with shared objects containing the monitoring and handling
functions at runtime.

Observe that the issues of protection associated with dy-
namically linking application-specific monitoring, handling
and service manager functionality into Dionisys are out of
the scope of this paper. In fact, protection issues are cur-
rently being addressed in our kernel-level implementation
of Dionisys and quality events.

Having briefly described the quality event mechanism
and a specific example of its implementation in Dionisys,
we now show how quality events can be used to construct
an adaptable real-time, client-server application.

2.1. An Adaptable Client-Server Application
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Figure 3. An example of an adaptable client-
server application.
Figure 3 shows an adaptable client-server application,

with event channels between CPU and network service
3In the Solaris implementation of Dionisys, there are limitations on the

maximum rates at which services can be monitored due to service manager
threads running in 10mS time-slices.



managers on the server host. Consider the case where Fig-
ure 3 represents a video-server. The CPU service man-
ager uses a scheduling policy to allocate CPU cycles to
server processes, that generate sequences of video frames.
These video frames are split into packets and placed in
ring buffers in shared memory, using an application-specific
memory manager, that allocates one ring buffer for each
video stream. Associated with each stream are QoS at-
tributes, that specify parameters such as throughput and
frame loss-rate. If a ring buffer is backlogged with too many
packets, the network service manager can be configured
to drop queued packets or discard incoming video frames.
Furthermore, the network manager multiplexes packets over
the outgoing network link, using a suitable packet schedul-
ing policy. Once the video frames have been received at
the destination, client processes decode and play back these
frames.

We now discuss several different adaptation strategies
that can be implemented using quality events in Dionisys,
to control the allocation of resources to applications like the
one just illustrated. In our cooperation with Honeywell Cor-
poration, we have also developed similar adaptation strate-
gies and experimented with them on an Automatic Target
Recognition (ATR) application. Consequently, the adapta-
tion strategies described in the remainder of this paper are
applicable to many ‘information flow’ (or pipelined [10])
applications, and not just the one described in this section.

3. Adaptation Configurations

Monitors

Handlers

Handlers

Monitors

CPU Service Manager

(c)

Network Service Manager

(c) Intra-SM Adaptation

(b) Upstream Adaptation

(a) Downstream Adaptation

Figure 4. Adaptation configurations.

Figure 4 depicts three different adaptation configurations
considered in this paper. For simplicity, we focus on adapta-
tions between CPU and network service managers, but what
follows applies to any combination of service managers:
• Downstream Adaptation – In this configuration,

events are delivered from monitors in the CPU service
manager to handlers within both the CPU and network
service managers. Intuitively, events from the CPU
service manager to the network service manager fol-

low the forward-going path of application data, as it is
generated and then transmitted.

• Upstream Adaptation – In this configuration, events
are delivered from monitors in the network service
manager to handlers within both the network and CPU
service managers. The term ‘upstream adaptation’ is
used to identify the situation where events are deliv-
ered in a direction opposing the logical flow of applica-
tion data. This is the case for events from the network
service manager to the CPU service manager.

• Intra-SM Adaptation – In this configuration, events
are delivered from monitors to handlers within the cor-
responding service manager. Events are not exchanged
between service managers, so there is no explicit coor-
dination of multiple service types. A similar adapta-
tion strategy has been developed by other researchers
for real-rate scheduling [21], to self-adapt service man-
agers that operate in pairs, to produce and consume in-
formation at a given rate.

Astute readers may notice that passing events between
monitors and handlers is similar to a closed-loop feedback
control mechanism, in which the handlers are like con-
trol actuators. All three adaptation configurations can be
thought of as using feedback control loops, constructed us-
ing the quality event mechanism.

To emphasize the importance of both upstream and
downstream adaptation strategies, consider the example of
an error control mechanism used in a data communication
system. In this example, the error control mechanism in-
corporates both forward-error correction (FEC) and retrans-
mission techniques. Suppose that data is typically retrans-
mitted if it is lost or received in error at the destination.
In this case, a service manager, SMdest, on the destination
host executes a monitor function to determine whether data
has been received correctly or not. If the data is received in
error (or is lost), SMdest sends a retransmission request, in
the form of an event, back to a service manager, SMsource,
on the source host. The request is handled by SMsource

and the data is retransmitted. Observe that events acting as
retransmission requests are delivered upstream with respect
to the flow of data.

Now suppose a monitor in SMsource observes that cer-
tain data is frequently being retransmitted. In this case, it
may be beneficial to apply a forward-error correcting code
to this class of data before it is transmitted, thereby elimi-
nating retransmission delays at the cost of using extra CPU
cycles to encode and decode the data. With forward-error
correction, SMsource sends an event downstream, and in
synchrony with the encoded data, to a handler in SMdest

that knows how to decode the data.
If forward-error correction requires more CPU cycles

than are available at a given point in time (at the source
and/or destination), the communication system might de-



cide to switch back to (or continue to use) a retransmission
policy. The decision depends on the cost of each error con-
trol technique to an application.

The above example illustrates a situation where both
downstream and upstream adaptation strategies are useful.
The flexibility of quality events, allows both types of adap-
tation strategies to be implemented, as well as others. The
next section evaluates several adaptation strategies using a
simple video server application, like the one described in
Section 2.1.

4. Experimental Evaluation

We ran a series of experiments, using a pair of Solaris-
based SparcStation Ultra II machines connected via Ether-
net, to show trade-offs in different service adaptation strate-
gies. These strategies differed in how, when and where ser-
vice adaptations took place. A video server was constructed
as in Section 2.1. Server processes generated video frames,
while client processes decoded and played back frames ar-
riving from the network. The CPU service manager used a
static priority preemptive scheduling policy, to schedule all
application processes (one per video stream), while the net-
work service manager scheduled all packets of video frames
from the heads of shared memory ring buffers (again, one
ring buffer per stream), using dynamic window-constrained
scheduling (DWCS) [23]. Since the network service man-
ager was implemented as a Solaris kernel thread, in a Dion-
isys daemon process, the packet scheduler did not access
the Ethernet device directly, but via sockets.

In the first set of experiments, 1000 MPEG-1 I-frames4

from a ‘Star Wars’ sequence were generated for three dif-
ferent streams, s1, s2 and s3. The QoS attributes associ-
ated with each stream were minimum, maximum and tar-
get frame rates. The QoS attributes for s1, s2 and s3 were
10± 2, 20± 2 and 30± 3 frames per second (fps), respec-
tively. A QoS violation occurred when the actual transmis-
sion rate was out of the specified range for the correspond-
ing stream, at the time it was monitored by the network ser-
vice manager.

In these experiments, the following adaptation configu-
rations were compared:
• Downstream Adaptation. The CPU service manager

monitored each stream’s frame generation rate: if the
actual generation rate was not equal to the target rate,
an event was sent to the CPU service manager and (for-
ward to) the network service manager.

• Upstream Adaptation. The network service manager
monitored each stream’s frame transmission rate: if
actual transmission rate was not equal to the target rate,
an event was sent to the network service manager and
(back to) the CPU service manager.

4160x120 pixels per frame, and 24 bits per pixel.

• Intra-SM Adaptation. Both CPU and network ser-
vice managers independently monitored each stream’s
generation and transmission rates, respectively, and
sent events to themselves if a stream’s target rate was
not equal to its actual rate.

In all cases, the monitor functions ran every T = 10 mil-
liseconds, to ensure that QoS state information was sampled
fast enough. The CPU service manager executed the same
handler for each stream. The handler attempted to alter
the Solaris real-time priority of the corresponding stream-
generator process by an amount that was a linear function
of the difference in target and actual service rates. That is,
the priority, prioi, of stream si’s generator process, changed
by an amount δprioi = Ki(ρi,target − ρi(nT )), where Ki

is some proportionality constant, ρi(nT ) is the nth sam-
pled value of service rate, and ρi,target is the target service
rate. In the first set of experiments, Ki = K, ∀i, where K
is a constant and 1 ≤ i ≤ m if there are m streams in to-
tal. A more elaborate control scheme could employ a PID 5

function of target and actual service rates.
To ensure one stream was not unduly serviced at the

cost of other streams, the CPU service manager executed
a guard function, which ensured priority assignments were
within a valid range. Policing in the CPU service manager
was used to prevent the highest-priority process from gen-
erating frames at a rate greater than the maximum required
generation rate. This forced the CPU scheduler to run as a
non-work-conserving scheduler.

The network service manager ran the same handler func-
tion for all three streams. The handler function adapted
DWCS scheduling parameters to alter the allocation of ser-
vice in a specific window of time. That is, each stream si

was given yi−xi

yi
fraction of network bandwidth every win-

dow of yi time units, where xi and yi were tunable param-
eters. Consequently, we were able to control the number
of consecutive packets of video frames transmitted from the
same stream in a given time interval. Finally, policing in the
network service manager was used to prevent the actual rate
of a stream from exceeding its maximum transmission rate.
Buffering and Missed Deadlines. Figure 5 shows up-
stream adaptation has greater variance in buffer usage. The
results are shown for s1, but the same observations apply to
all streams, irrespective of their target rate. The maximum
number of backlogged frames for a stream, and the peri-
ods in which the ring buffers are empty, is less with both
downstream and intra-SM adaptations, than with upstream
adaptation. Observe that with upstream adaptation, the net-
work monitor functions raise events too late, to request the
generation of more frames. That is, control events are gen-
erated when nothing can be done until future data is gener-
ated. By contrast, downstream adaptation can often lead to
adaptation changes in synchrony with the current data, as

5‘PID’ means ‘proportional plus integral plus derivative’.
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Figure 5. Buffering of the 10fps stream, s1, with (a) downstream, (b) upstream, and (c) intra-SM
adaptation. Cumulative missed deadlines are also shown for downstream and upstream adaptations.

it traverses the logical path of resources, to its destination.
As a consequence, Figures 5(a) and (b) show that down-
stream adaptation causes fewer consecutive missed dead-
lines than upstream adaptation, when the deadlines on con-
secutive frames of s1 are 100mS apart.

The latency of sending events from the network service
manager to the CPU service manager, with upstream adap-
tation, causes buffers to be empty for relatively long pe-
riods. Likewise, buffers can continue to fill before events
are generated to reduce the fill rate. In our experiments,
the latency of an event sent (from a monitor to a handler)
within the same service manager thread was 101.3µS, while
it was as high as 10.2mS when sent between service man-
ager threads. Inter-thread event handling is more expen-
sive than intra-thread event handling, due to the time-slice
of a thread being fixed by the operating system at 10mS.
Observe that with downstream and intra-SM adaptation, we
send events from monitors to handlers within the CPU ser-
vice manager thread. Consequently, CPU cycles are allo-
cated with finer-grained control in downstream and intra-
SM adaptation than upstream adaptation.
QoS Range Violations. Figure 6(a) shows that there are
most QoS range violations with upstream adaptation. How-
ever, intra-SM adaptation is also worse than downstream
adaptation. This is because there is no coordination be-
tween CPU and network service managers. Consequently,
intra-SM adaptation requires more time than downstream
adaptation to reach the steady-state, in which service rate is
within range of the maximum and minimum allowed values.
Mean Queueing Delay. The mean queueing delay levels
off over time using downstream adaptation but continues to
change significantly with upstream adaptation (as shown in
Figure 6(b), for s3). With upstream adaptation, the sudden
increases in delay occur when each stream’s queue length
(ring buffer fill-level) increases. Furthermore, greater mis-
matches between service rates at the CPU and network-
levels lead to more variation in the number of buffered
frames, and more variation in mean queueing delay.

Finally, the lack of coordination between service man-
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Figure 6. (a) Cumulative QoS range violations,
and (b) mean queueing delay versus time for
buffered frames, of the 30fps stream, s3.

agers, using intra-SM adaptation, is also responsible for the
rise in mean delay of s3 over time. However, intra-SM
adaptation is appropriate for applications that can tolerate
the lack of ‘explicit’ coordination between service man-
agers. Moreover, intra-SM adaptation does not suffer from
the cost of communicating events between service man-
agers.

4.1. Quality Functions

We have shown how quality events can be used to im-
plement different runtime service adaptation strategies, all
of which are suitable for different situations. With quality
events, it is also possible to embed ‘quality functions’ into
monitors and handlers, thereby influencing how resources



are best allocated to applications. The goal of such quality
functions is to maximize total quality of service across mul-
tiple applications [1], using formulations of service qual-
ity appropriate to each application. We now show how
such quality functions can be utilized to improve overall
service quality to all applications, competing for common
resources.

In this set of experiments, frame-generator processes
generated 1000 frames for stream s1, 2000 frames for s2

and 3000 frames for s3. The service rates of s1, s2 and
s3 were now set to 10 ± 1, 20 ± 2 and 30 ± 3 frames per
second, respectively. Furthermore, to model the effect of
dynamically-changing resource availability, s2 and s3 were
blocked for exponentially-distributed idle times, averaging
3 seconds, after generating each set of 1000 frames.

The same monitoring and handling functions, as in the
previous set of experiments, were used here. As before,
the CPU service manager executed a handler function that
attempted to alter the Solaris real-time priority of the corre-
sponding stream-generator process by an amount that was a
linear function of the difference in target and actual service
rates. However, the extent to which a Solaris priority was
altered was a function of the stream’s own quality function.
Such quality functions are similar to the idea of reward [1],
value [12], or payoff functions [14].
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Figure 7. (a) QoS functions for each of the
three streams, and (b) overall quality versus
time.

The actual quality functions that were used are shown

in Figure 7(a). These functions show the quality, Q, as per-
ceived by each stream, for the corresponding service rate, S.
For example, the priority of s1 is adjusted by a factor of 3
more than the priority of s2 (based on the ratio of the gradi-
ents of the quality functions for s1 and s2). In essence, this
implies that s1 is 3 times more critical than the s2, when the
actual and target service rates of both streams differ by the
same amount. Likewise, s2 is three times more ‘quality crit-
ical’ than s3. These quality functions can be incorporated
into monitors and/or handlers of different managers, assum-
ing there exists a functional translation [6, 10] from the
service offered by a given service manager to application-
perceived quality. Exactly what a given quality means to an
application is application-specific. For example, the quality
Q may be a unit-less quantity, signifying some level of satis-
faction as seen by an application user, or it may be translated
to some specific units denoting the value to an application
of a given quality of service.

Figure 7(b) shows how overall quality is improved, us-
ing different adaptation strategies, when CPU service is bi-
ased to the more quality critical stream. The ‘Q-biasing’
graphs refer to the results when the quality functions shown
in Figure 7(a) are used. By contrast, all other graphs show
results when CPU service is adjusted equally for compet-
ing streams, even though one stream’s service is really
more critical than another’s. The overall quality at time
t, Qoverall(t), was calculated from the sum of the aver-
age sampled quality of each stream. That is, Qoverall(t) =
∑m

i=1(
∑nsi(t)

j=1 Qj(si)

nsi
(t) ), where m is the number of streams,

nsi(t) is the number of times the service quality of si is
monitored (sampled) by time t, and Qj(si) is the jth sam-
pled value of Q for stream si. In these experiments, the
optimal value of Qoverall(t) is 310, which is the sum of the
peak values of Q for each stream from Figure 7(a). The
overall quality using downstream adaptation and Q-biasing
approaches 87% of the optimal value, when t = 110 sec-
onds.

Figures 8(a) and (b) show network service rates for all
three streams, using downstream and upstream adaptations,
respectively. As can be seen, s1 spends less time away from
its target rate than both s2 and s3, because s1 is more quality
critical. Better service is provided to the more important
streams, in order to improve overall quality. Also shown
in Figure 8, as a series of grey bands, are the acceptable
service (and, hence, QoS) regions. Ideally, all three streams
should have service rates as close as possible to the middle
of the QoS regions, based on the quality functions shown in
Figure 7(a). It is important to note that both upstream and
downstream adaptations maintain acceptable service rates
for all three streams most of the time, and each adaptation
method attempts to keep the service rates on target as often
as possible.
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Figure 8. Network service rate, with (a) downstream adaptation and Q-biasing, (b) upstream adapta-
tion and Q-biasing, and (c) non-adaptive rate control.

By comparison to Figures 8(a) and (b), Figure 8(c) shows
the network service rate of all three streams when non-
adaptive rate control is used. In the non-adaptive method,
CPU time was divided into slots so that s3 received 3 time
slots, s2 received 2 time slots, and s1 received 1 time slot
every window of 6 time slots. That is, CPU time was re-
served for each stream based on the corresponding target
rate requirement. Each time slot was 10mS, thereby guar-
anteeing, for example, s3 received 30mS of CPU time every
60mS. At the network-level, the packet scheduler sched-
uled packets of video frames for transmission at rates pro-
portional to the target service rates of each stream. This
situation meant that sufficient processing capacity and net-
work bandwidth was reserved to meet the maximum service
rates of all three streams, but non-adaptive rate control was
used to prevent resources being used beyond the amounts
needed to meet those maximum service rates. When a
stream’s generation or transmission rate exceeded the max-
imum rate, rate control prevented that stream from using
anymore of its reserved resources. Non-adaptive rate con-
trol was also used with the upstream and downstream adap-
tation methods, but they also adapted the allocation of re-
sources to try to ensure each stream was serviced as close
as possible to its target rate. In contrast, non-adaptive rate
control made no attempt to guarantee each stream was ser-
viced at its target rate.
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Figure 9. Overall performance of adaptive and
non-adaptive rate control methods.

In the steady state, non-adaptive rate control results in
the smallest peak-to-peak service oscillations. However, the
oscillations have the highest frequency and the service rate
is rarely on target. This is evident from Figure 9, which
shows the percentage of time that all three streams were
collectively transmitted: (a) at their target rates, (b) within
their ranges, and (c) above their maximum rates, when both
adaptive and non-adaptive rate control methods were used.

5. Conclusions and Future Work

This paper describes quality events, a software mech-
anism using which an application and/or system can be
extended to enable runtime QoS management. Such ex-
tensions offer flexibility in: (1) how application- and/or
system-level services are dynamically managed to main-
tain required quality, (2) when such management occurs,
and (3) where this service management is performed. As
part of the quality event mechanism, application-specific
monitor and handler functions are associated with service
providers, to perform service monitoring and management
tasks.

To demonstrate the importance of flexible quality man-
agement via quality events, several adaptation strategies
are compared in this paper: ‘upstream adaptation’, ‘down-
stream adaptation’ and ‘intra-SM adaptation’. Upstream
adaptation can lead to poor quality control if adaptation la-
tencies are significant. This is analogous to the problem
associated with feedback congestion control[11], in that, if
the time to inform the producer that it should reduce its gen-
eration rate, is greater than the maximum time available to
effectively apply such an adaptation, then the consumer can
be flooded with too much information. With downstream
adaptation, the delay between generating a control event
and enacting the necessary service change can be coupled
with the time to transfer application data along the logi-
cal path between service managers. That is, downstream
adaptation events can be sent in synchrony with the flow of
data. However, downstream adaptation is not always possi-



ble, especially when service adaptations cannot be enacted
in a target service manager to compensate for service inad-
equacies earlier in the logical path along which information
flows. For example, a target service manager may not be
able to allocate enough CPU cycles to decode data encoded
by a forward error correction method. By contrast, intra-
SM adaptation works well if: (1) coordination between re-
sources and, hence, service managers is not important, or
(2) there is access to shared state information (e.g., buffer
fill levels), which allows groups of service managers to co-
ordinate their own service adaptations.

Quality events also allow ‘quality functions’ to be em-
bedded into monitors and handlers, thereby permitting ap-
plications to influence how resources are best allocated to
maximize their own notions of quality of service. Experi-
mental results show how such quality functions can be uti-
lized to trade-off service quality across multiple applica-
tions that compete for common resources. These results
also demonstrate that adaptive resource management strate-
gies can lead to more efficient use of resources, and better
qualities of service for certain ‘information flow’ applica-
tions than non-adaptive resource management methods.

Finally, future work involves adding features to qual-
ity events that perform stability and error analysis, as well
as ‘QoS-safety’ checks on application-specific handlers,
thereby ensuring that service changes do not adversely af-
fect the behavior of the QoS management system.
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