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Abstract—Quest-V is a system we have been developing
from the ground up, with objectives focusing on safety, pre-
dictability and efficiency. It is designed to work on emerging
multicore processors with hardware virtualization support.
Quest-V is implemented as a “distributed system on a
chip” and comprises multiple sandbox kernels. Sandbox
kernels are isolated from one another in separate regions
of physical memory, having access to a subset of processing
cores and I/O devices. This partitioning prevents system
failures in one sandbox affecting the operation of other
sandboxes. Shared memory channels managed by system
monitors enable inter-sandbox communication.

The distributed nature of Quest-V means each sandbox
has a separate physical clock, with all event timings being
managed by per-core local timers. Each sandbox is respon-
sible for its own scheduling and I/O management, without
requiring intervention of a hypervisor. In this paper, we
formulate bounds on inter-sandbox communication in the
absence of a global scheduler or global system clock.
We also describe how address space migration between
sandboxes can be guaranteed without violating service
constraints. Experimental results on a working system show
the conditions under which Quest-V performs real-time
communication and migration.

I. I NTRODUCTION

Quest-V is a real-time system we are developing that
focuses on predictability, efficiency and safety. It is built
from the ground up rather than being a modification
to a pre-existing system such as Linux. We chose this
path because Linux is in many ways overly complex,
making it difficult to enforce system-wide predictability
by simply modifying individual components such as the
scheduler. Additionally, our development of Quest-V has
enabled us to investigate ways to integrate emerging
hardware features directly into the design of the OS.
For example, many modern processors feature hardware
virtualization support (e.g., Intel VT, AMD-V and ARM
Cortex A15 processors), and Quest-V uses these capabil-
ities to isolate system components into separate “sandbox
kernels”. This enhances fault tolerance and dependability
of the system. Unlike traditional hypervisors that support
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separate largely unrelated guest OSes and their appli-
cations, Quest-V sandbox kernels work together as a
distributed system on a chip.

The distributed organization of Quest-V means there
is no notion of a single kernel responsible for global
scheduling or system-wide resource management. In-
stead, each sandbox kernel manages its own dedicated
resources, including a specific set of cores, I/O devices
and memory regions. The philosophy behind Quest-V is
to share as little as possible between different sandbox
kernels and their memory spaces. This reduces resource
contention and has been shown to increase scalabil-
ity [1]. However, this imposes several challenges on the
design of applications. For example, multi-threaded ap-
plications must be distributed across the various sandbox
kernels to increase the degree of parallelism. Since each
sandbox manages a private region of physical memory,
separate threads in different sandboxes will each need a
private copy of their address spaces. Parallel applications
must be designed to work in a distributed manner,
communicating across special shared memory channels
when necessary.

Quest-V’s distributed system design means that each
sandbox operates with an independent system clock. Just
as traditional distributed systems have neither physically
shared memory nor a single physical clock for all loosely
coupled compute nodes, each Quest-V sandbox on a
multicore processor uses a local timer on each core to
manage event timings.

The lack of a global clock and a global scheduler in
Quest-V poses challenges in two key ways: (1) in the
communication between threads in different sandboxes,
and (2) the migration of threads between sandboxes. The
first problem occurs when two or more threads need to
synchronize or exchange data within time bounds. A
sending thread in one sandbox may be forced to wait
for a reply from a remote thread that is independently
scheduled in another sandbox. A method to bound the
round-trip delay is necessary. The second problem occurs
when a thread may have partially executed in one sand-
box and needs to complete by a certain time in another
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sandbox. Ideally, we want the migrating thread to avoid
any penalty for migration and clock skew that could
affect its ability to meet timing requirements. Likewise,
any migrating thread should not adversely affect the
timing guarantees of threads already executing in the
destination sandbox.

Contributions. This paper describes how Quest-V
guarantees predictable inter-sandbox communication and
thread migration between separate sandboxes running on
a multicore processor. We formulate constraints under
which these objectives can be guaranteed without re-
quiring a common clock or global scheduler.

In the next section, we briefly describe the Quest-
V architecture. This is followed by a discussion of
the mechanisms to enforce predictable thread migration,
as well as inter-sandbox communication. Experimental
results are shown in Section V. A summary of related
work is described in Section VI. Finally, conclusions and
future work are discussed in Section VII.

II. QUEST-V A RCHITECTURE

As stated earlier, the Quest-V system is partitioned
into a series ofsandbox kernels, with each sandbox en-
compassing a subset of memory, I/O and CPU resources.
Sandbox memories are isolated from one another using
hardware virtualization capabilities found on modern
multicore processors. The current system works on x86
(Intel VT-x) platforms but plans are underway to port
Quest-V to the ARM architecture.

We envision Quest-V being applicable to safety-
critical systems, where it is important that services
remain operational even when there are hardware and
software failures. Future automotive, avionics, factory
automation and healthcare systems are example appli-
cation domains where safety-criticality is required.

Although we assume the existence of hardware vir-
tualization features, this is not essential for the design
of our system. Sandbox memory isolation can instead
be enforced using segmentation or paging on platforms
with simpler memory protection units. However, hard-
ware virtualization offers potential advantages (albeit
with added costs) that we wish to investigate in our
system design. In particular, it provides an extra logical
“ring of protection” that allows services to execute with
traditional kernel privileges. This is in contrast with
micro-kernels that grant the least privileges necessary
for services, at the expense of added communication to
access other services in separate protection domains.

A high-level overview of the Quest-V architecture is
shown in Figure 1. Each sandbox, including its kernel
and application space, is associated with a separate
monitor. The monitors are relatively small, fitting easily

Fig. 1. Quest-V Architecture Overview

into a4KB memory page. They primarily exist to main-
tain extended page table (EPT) mappings, so that each
sandbox’s virtual memory space maps onto a separate
region of host physical memory. The only other times
monitors are needed is to launch a sandbox when the
system is initialized, to aid in fault recovery or protection
management (e.g., if there is an EPT violation), and to
update shared memory mappings between sandboxes.

Shared memory mappings are used in Quest-V to
establish communication channels between the otherwise
separate sandboxes. We use replicated monitors rather
than a single hypervisor such as in Xen [2] for three
main reasons. First, each monitor is a trusted code base
with a small memory footprint (less than 4KB). Second,
the monitors can be implemented differently so that they
are not all susceptible to the same security vulnerability.
Third, a monitor maintains EPT mappings for only one
sandbox, eliminating the overheads of scheduling and
switching guest address spaces as is done with traditional
hypervisor systems.

In Quest-V all scheduling and device management
is performed within each sandbox directly. We use a
form of I/O passthrough to allow device interrupts to
be directed to a sandbox kernel without monitor inter-
vention. This differs from the “split driver” model of
systems such as Xen that have a special domain to handle
interrupts before they are directed into a guest. Allowing
sandboxes to have direct access to I/O devices and to
perform local scheduling decisions greatly reduces the
overhead of switching into a hypervisor (or, equivalently,
monitor) to aid in resource management.

Quest-V supports configurable partitioning of re-
sources amongst guests, similar to the way cores are
partitioned in systems such as Corey [3]. By default,
we assume each sandbox is associated with a single
processing core since this simplifies local (sandbox)
scheduling, although it is possible to configure a sandbox
to encompass multiple cores. Similarly devices can be
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shared or partitioned. For example, a network device
could be exclusive to one sandbox while all USB devices
are shared between two or more sandboxes.

An IO APIC is programmed to deliver interrupts
from a device to all sandboxes with access to that
device. Device drivers are written so they performearly
demultiplexing[4] of device interrupts, discarding any
interrupts that are not ultimately associated with a device
request in the local sandbox. While this is out of the
scope of this paper, we have shown this method of device
sharing and interrupt delivery results in lower latency and
higher throughput than using a split driver as in Xen [5].

Fig. 2. APIC Configuration

Figure 2 shows the hardware APIC configuration.
Each Local APIC, associated with a different core, is
used to generate IPIs and establish local timer events.

A. VCPU Scheduling and Migration

Quest-V uses virtual CPUs (VCPUs) as the basis for
time management and predictability of its sub-systems.
VCPUs in Quest-V differ from those in conventional vir-
tualized systems. Rather than maintaining guest machine
state, they act as resource containers for shares of actual
CPU time, and are assigned priorities for scheduling
purposes. Multiple threads can share the same VCPU,
with the chosen thread being assigned according to some
configurable policy (e.g., FCFS, rate-monotic, EDF, or
a priority inheritance-based approach). VCPUs are then
scheduled on available physical CPUs (PCPUs) by the
local sandbox kernel.

By default, VCPUs act like Sporadic Servers [6],
and are assigned static priorities. Each VCPU,Vi, has
a budget capacity,Ci, and replenishment period,Ti.
Rate monotonic scheduling [7] can then be applied to
determine schedulability. For improved utilization it is
possible to configure Quest-V to schedule VCPUs in
increasing deadline order. However, for cases where
there are multiple tasks with different deadlines sharing
the same VCPU, there is an increased overhead of
managing VCPU priorities dynamically. Additionally,
with real-time multicore systems, we see predictable
resource management as being more important than

maximizing total CPU utilization in all cases. Factors
such as shared caches and other micro-architectural
resource contention [8], [9] affect thread progress on
multicore systems, and are arguably as important as CPU
utilization.

Quest-V decouples the scheduling of conventional
tasks from those associated with I/O events, such as
interrupts. The latter class of events is often sporadic
in nature and may be associated with a thread that origi-
nated an I/O request. Quest-V integrates interrupt and
task scheduling, preventing interrupts from arbitrarily
interfering with task execution. While conventional tasks
execute on Main VCPUs, their I/O events are processed
in the context of I/O VCPUs (See Figure 3). Every I/O
event is associated with an I/O VCPU, whose priority
is inherited from a corresponding Main VCPU. Thus, a
thread,τ , running on Main VCPU,VM , may block while
awaiting the response from a service request handled by
an I/O VCPU,VIO. The priority ofVIO is inherited from
that of τ ’s Main VCPU, after whichτ can be woken up
to resume onVM . In past work, we have shown how
this integrated interrupt and task scheduling approach is
more predictable than systems such as Linux [10].

Fig. 3. VCPU Scheduling Hierarchy

In Quest-V there is no notion of a periodic timer
interrupt for updating system clock time. Instead, the
system is event driven, using per-processing core local
APIC timers to replenish VCPU budgets as they are
consumed during thread execution.

B. Inter-Sandbox Communication

Inter-sandbox communication in Quest-V relies on
message passing primitives built on shared memory, and
asynchronous event notification mechanisms using Inter-
processor Interrupts (IPIs). IPIs are currently used to
communicate with remote sandboxes to assist in fault
recovery, and can also be used to notify the arrival of
messages exchanged via shared memory channels. Mon-
itors update extended page table mappings as necessary
to establish message passing channels between specific
sandboxes. Only those sandboxes with mapped shared
pages are able to communicate with one another. All
other sandboxes are isolated from these memory regions.
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A mailboxdata structure is set up within shared mem-
ory by each end of a communication channel. By default,
Quest-V currently supports asynchronous communica-
tion by polling a status bit in each relevant mailbox to
determine message arrival. Message passing threads are
bound to VCPUs with specific parameters to control the
rate of exchange of information. Likewise, sending and
receiving threads are assigned to higher priority VCPUs
to reduce the latency of transfer of information across
a communication channel. This way, shared memory
channels can be prioritized and granted higher or lower
throughput as needed, while ensuring information is
communicated in a predictable manner. Thus, Quest-
V supports real-time communication between sandboxes
without compromising the CPU shares allocated to non-
communicating tasks.

The lack of both a global clock and global scheduler
for all sandboxes creates challenges for a system requir-
ing strict timing guarantees. In the next two sections we
elaborate on two such challenges, relating to predictable
address space migration and communication.

III. PREDICTABLE M IGRATION FRAMEWORK

Quest-V allows threads and VCPUs to be migrated
between sandboxes, rather than forcing them to be stat-
ically mapped. There are several reasons why migration
might be desired, including:

a) performance:by redistributing workloads across
sandboxes we can avoid pathological co-schedules that
conflict with micro-architectural resources. Such re-
sources include shared on-chip caches and memory
buses. Without judicious co-scheduling, it is possible for
thread progress to be stalled even if VCPU shares are
guaranteed.

b) predictability: dynamically-created threads and
VCPUs can overload the local sandbox, making it im-
possible to guarantee their timing requirements without
migration to less loaded sandboxes.

c) resource affinity:a thread may require access to
resources, such as I/O devices, that are not available in
the local sandbox. Either the thread can communicate
via shared memory to a remote sandbox, potentially
incurring high latencies, or it can be migrated to the
sandbox that owns the required resources.

d) fault recovery: a software fault in the local
sandbox might render a service required by a thread
inoperable. As part of system recovery, the local service
can be restored in the background while the thread
continues in a different sandbox.

For this paper, we do not focus on policies to decide
where a thread should be migrated or how to recover
from faults. Rather, given that migration is supported, the

key issue is how to guarantee a thread and its VCPU’s
timing guarantees when it is migrated.

A. Predictable Migration Strategy

Threads in Quest-V have corresponding address
spaces and VCPUs. The current design limits one, pos-
sibly multi-threaded, address space to be associated with
a single VCPU. This restriction avoids the problem of
migrating VCPUs and multiple address spaces between
sandboxes, which could lead to arbitrary delays in copy-
ing memory. Additionally, only Main VCPUs and their
address spaces are migratable, as I/O VCPUs are pinned
to sandboxes with access to specific devices.

Migration from one sandbox’s private memory re-
quires a copy of an address space and all thread data
structures to the destination. Each thread is associated
with a quest_tss structure that stores the execution
context and VCPU state.

Figure 4 shows the general migration strategy. Al-
though not shown, both application address spaces and
kernel threads are migratable. An inter-processor inter-
rupt (IPI) is first sent to the destination sandbox, to
initiate migration. A specialmigration threadhandles
the IPI in the destination, generating a trap into its
monitor that has access to machine physical memory of
all sandboxes. The migrating address space in the source
sandbox is temporarily mapped into the destination. The
address space and associatedquest_tss thread struc-
tures are then copied to the target sandbox’s memory.
At this point, the page mappings in the source sandbox
can be removed by the destination monitor. To bound
the costs of migration, a limit is placed on the number
of threads and, hence,quest_tss structures, within a
single address space.

An IPI from the destination to the source sandbox is
needed to signal the completion of migration. This is
handled by a migration thread in the source sandbox,
which is able to reclaim the memory of the migrated
address space. All IPIs are handled in the sandbox
kernels, with interrupts disabled while in monitor mode.
The migration thread in the destination can now exit its
monitor and return to the sandbox kernel. The migrated
address space is attached to its VCPU and added to
the local schedule. At this point, the migration threads
in source and destination sandboxes are able to yield
execution to other VCPUs and, hence, threads.

Before migrating an address space and its VCPU, the
migration thread in the destination sandbox performs
admission control. This verifies the scheduling require-
ments of the incoming VCPU can be guaranteed without
violating the requirements of all existing VCPUs.
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Fig. 4. Migration Strategy

Migration Thread Preemption. A migration thread in
the destination sandbox is bound to a Main VCPU with
parametersCm andTm. If the VCPU depletes its budget,
Cm, or a higher priority VCPU is ready to run, the
migration thread should be preempted. However, this is
complicated by the fact that the migration thread spends
most of its time inside its monitor (a.k.a. VMX root
mode) and each sandbox scheduler runs within the local
kernel (a.k.a. VMX non-root mode).

Migration thread preemptions require a domain switch
between a sandbox monitor and its kernel, to access the
local scheduler. This results in costly VM-Exit and VM-
Entry operations that flush the TLB of the processor
core. To avoid this cost, we limited migration thread pre-
emption to specific preemption points. Additionally, we
associated each migration thread with a highest priority
VCPU, ensuring it would run until either migration was
completed or the VCPU budget expired. Bookkeeping
is limited to tracking budget usage at each preemption
point. Thus, within one period,Tm, a migration thread
needs only one VM-Exit and one VM-Entry.

Preemption points are currently located: (1) imme-
diately after copying eachquest_tss structure, (2)
between processing each Page Directory Entry during
address space cloning, and (3) right before binding the
migrated address space to its VCPU, for re-scheduling.
In the case of a budget overrun, the next budget replen-
ishment is adjusted according to the corrected POSIX
Sporadic Server algorithm [11]. Figure 5 describes the
migration control flow.
Clock Synchronization. One extra challenge to be
considered during migration is clock synchronization
between different sandboxes in Quest-V. Quest-V sched-

Fig. 5. Migration Framework Control Flow

ulers use Local APIC Timers and Time Stamp Counters
(TSCs) in each core as the source for all time-related
activities in the system, and these are not guaranteed
to be synchronized by hardware. Consequently, Quest-
V adjusts time for each migrating address space to
compensate for clock skew. This is necessary when
updating budget replenishment and wakeup time events
for a migrating VCPU that is sleeping on an I/O request,
or which is not yet runnable.

The source sandbox places its current TSC value in
shared memory immediately before sending a IPI migra-
tion request. This value is compared with the destination
TSC when the IPI is received. A time-adjustment,δADJ ,
for the migrating VCPU is calculated as follows:

δADJ = TSCd − TSCs − 2 ∗RDTSCcost − IPIcost

TSCd andTSCs are the destination and source TSCs,
while RDTSCcost andIPIcost are the average costs of
reading a TSC and sending an IPI, respectively.δADJ

is then added to all future budget replenishment and
wakeup time events for the migrating VCPU in the
destination sandbox.

B. Migration Criteria

Quest-V restricts migratable address spaces to those
associated with VCPUs that either: (1) have currently
expired budgets, or (2) are waiting in a sleep queue.
In the former case, the VCPU is not runnable at its
foreground priority until its next budget replenishment.
In the latter case, a VCPU is blocked until a wakeup
event occurs (e.g., due to an I/O request completion or a
resource becoming available). Together, these two cases
prevent migrating a VCPU when it is runnable, as the
migration delay could impact the VCPU’s utilization.

For VCPU, Vs, associated with a migrating address
space, we defineEs to be therelative time1 of the next

1i.e., Relative to current time.
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event, which is either a replenishment or wakeup. For
the utilization ofVs to be unaffected by migration, the
following must hold:

Es ≥ ⌊
∆s

Cm

⌋ · Tm +∆s mod Cm, (1)

where Cm and Tm are the budget and period of
the migrating thread’s VCPU, and∆s is the migration
cost of copying an address space and itsquest tss

data structures to the destination. At boot time, Quest-V
establishes base costs for copying memory pages without
caches enabled2. These costs are used to determine
∆s for a given address space size. Quest-V makes sure
that the migrating thread will not be woken up by
asynchronous events until the migration is finished. The
system imposes the restriction that threads waiting on
I/O events cannot be migrated.

A schedulability test is performed before migration, to
ensure a VCPU can be added to the destination sandbox
without affecting total utilization. If the test fails, the
migration request will be rejected immediately by an IPI,
and the source sandbox will put the address space and its
VCPU back into the local scheduler queue. At the next
scheduling point, a new destination sandbox is tested if
necessary. A VCPU can be migrated immediately for
any successful test, if it does not require its utilization
to be guaranteed while migration is in progress.

In order to simplify the migration criteria, our current
implementation restricts concurrent migration requests to
different destination sandboxes. This is not problematic
as migrations are expected to be infrequent.

IV. PREDICTABLE COMMUNICATION

In Quest-V, as in any distributed system, there is often
a need for threads to communicate and exchange infor-
mation. This section describes how Quest-V attempts
to guarantee bounded and predictable communication
latency between threads in different sandboxes.

Consider a sending thread,τs, associated with a
VCPU, Vs, which wishes to communicate with a re-
ceiving thread,τd, bound toVd in a remote sandbox.
Supposeτs sends a message ofN bytes at a cost ofδs
time units per byte. Similarly, supposeτd replies with
anM byte message at a cost ofδd time units per byte.
Before replying, letτd consumeK units of processing
time to service the communication request.

2We do not consider memory bus contention issues, which could
make worst-case estimations even larger.

We first define the following symbols:

Ls = Cs − (N · δs) mod Cs

Ld = Cd − (M · δd +K) mod Cd

S = ⌈
N · δs
Cs

⌉ · Ts − Ls

D = ⌈
M · δd +K

Cd

⌉ · Td − Ld

R =
D − Ls

Ts

Q = D − Ls − ⌊R⌋ · Ts

P = Q− (Ts − Cs)

B = Cs − f(
Q

Ts − Cs

) · P

where

f(x) =

{

1 if x ≥ 1
0 if x < 1

Assumingτs starts communicating withτd at the end
of its current budget, the worst case round trip time (W )
as shown in Figure 6 is:

W = S +D + f(
D

Ls

) · (Ls + ⌈R⌉ · Ts −B −D) (2)

Equation 2 is derived from the5 different scenarios, as
shown in Figure 6, for when the receiver (Recv 1-5)
responds to the sender. This is dependent on VCPU
budget availabilities of the sender and receiver. In the
equation,S represents the total time taken byτs to send
a request message.D is the total time between the end of
τs’s request (i.e. end ofS) and the end ofτd’s response.
Ls is the remaining budget ofVs after sending a request.
Similarly,Ld is the remaining budget ofVd after sending
a response.R is the number of elapsed periods ofVs to
receive a response toτs’s request.Q is the time between
τd’s response and the end ofτs’s most recently used
budget.P is the partially consumed current budget for
τs when it receives a response.P is 0 for cases whenτd
completes its response andτs is not runnable. Finally,
B is the remaining budget forτs when it receives a
response. In essence, Equation 2 becomesW = S +D

for Case 1, andS+Ls+⌈R⌉·Ts−B for all other cases.
Figure 6 assumesN ·δs

Cs

< 1 and M ·δd+K

Cd

< 1. This
means, a request is processed in the budget capacity,Cs,
and a response is processed inCd. S andD capture the
general cases where processing time may exceed the full
budget capacity of the sender or receiver.

The worst case round trip time shown in Equation 2
can be exceeded in certain cases where the sender starts
communication before the end of its current budget. Fig-
ure 7 shows the situation whereτs starts communicating
atS′, while it still has some budget remaining. Consider
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Fig. 6. Communication Cost Scenarios

case4 as an example, if we shiftS to the left such that
τs finishes at the beginning of its current budget, we can
actually increase the worst case time byCs−Ls. Hence
the worst case round trip time (W ′) becomes:

W ′ = S+D+f(
D

Ls

) ·(Ls+⌈R⌉·Ts−B−D)+E (3)

whereE is defined as:

E = max(N1, N2)

N1 = (1− f(
Q

Ts − Cs

)) ·min(Q,Cs − Ls)

N2 = f(
Q

Ts − Cs

) · f(
Cs − Ls

P
)·

min(Ts − Cs, Cs − Ls − P )

Here,E is the extra time added to Equation 2, caused
by the shift ofS to S′. N1 is the term representing cases
2 and4, while N2 covers cases3 and5.

Fig. 7. Phase shift of S

V. EXPERIMENTAL EVALUATION

We conducted a series of experiments on a Gigabyte
Mini-ITX machine with an Intel Core i5-2500K 3.3GHz
4-core processor, 8GB RAM and a Realtek 8111e NIC.

A. Predictable Migration

To verify the predictability of the Quest-V migration
framework, we constructed a task group consisting of
2 communicating threads and another CPU-intensive
thread running a Canny edge detection algorithm on a

stream of video frames. The frames were gathered from
a LogiTech QuickCam Pro9000 camera mounted on our
RacerX mobile robot, which traversed one lap of Boston
University’s indoor running track at Agganis Arena. To
avoid variable bit rate frames affecting the results of our
experiments, we applied Canny repeatedly to the frame
shown in Figure 8 rather than a live stream of the track.
This way, we could determine the effects of migration on
a Canny thread by observing changes in processing rate
while the other threads communicated with each other.

Fig. 8. Track Image Processed by Canny

For all the experiments in this section, we have two
active sandbox kernels each with5 VCPUs. The setup
is shown in Table I. The Canny thread is the target for
migration from sandbox1 to sandbox2 in all cases. Mi-
gration always starts at time5. A logger thread was used
to collect the result of the experiment in a predictable
manner. Data points are sampled and reported in a one
second interval.

VCPU (C/T) Sandbox 1 Sandbox 2
20/100 Shell Shell
10/50 Migration Thread Migration Thread

20/100 Canny
20/100 Logger Logger
10/100 Comms 1 Comms 2

TABLE I
M IGRATION EXPERIMENT VCPU SETUP

Figure 9 shows the behavior of Canny as it is migrated
in the presence of the two communicating threads. The
left y-axis shows both Canny frame rate (in frames-
per-second,fps) and message passing throughput (in
multiples of a1000 Kilobytes-per-second). The right y-
axis shows the actual CPU consumption of the migration
thread in (millions of,x1m) cycles. We can see from
this figure that none of the threads (2 communicating
threads and Canny) have been affected due to migration.
The sudden spike in migration thread CPU consumption
occurs during the migration of the Canny thread.

The average time to migrate an address space varies
from under1 millisecond to about10 - 20 milliseconds,
depending on the actual address space size. This is with
all caches enabled and with address spaces being limited
to a maximum of4MB. As long as the criteria in
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Section III-B are satisfied, all VCPUs remain unaffected
in terms of their CPU utilization during migration.
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Fig. 9. Migration With No Added Overhead

Table II shows the values of variables as defined in
Equation 1. The worst-case migration cost,∆s, worst,
was the cost of copying a Canny address space with
all caches disabled (including the overhead of walking
its page directory).∆s, actual was the actual migra-
tion thread budget consumption during migration. Both
worst-case and actual migration costs satisfy the con-
straints of Equation 1.

Variables Es ∆s, worst ∆s, actual Cm Tm

Time (ms) 79.8 5.4 1.7 10 50

TABLE II
M IGRATION CONDITION

The next experiment investigated the effect on the
migrating address space when Equation 1 cannot be
satisfied. This may impact the predictability of the
migrating address space. If this is acceptable then the
system will transfer the address space. We added a
busy-wait overhead of800µs to the address space clone
procedure for each processed Page Directory Entry (of
which there were 1024 in total). This increased migration
costs in a controlled manner.

Figure 10 shows how the migration costs increase,
with only the migrating address space being affected.
This is observed by the drop in Canny frame processing
rate, but all other threads and their VCPUs are unaf-
fected. Here, the preemption points within each sandbox
monitor prevent excessive budget overruns that would
otherwise impact VCPU schedulability.

Table III shows the migration parameters for this
experiment. The drop in Canny frame rate is due to the
migration constraint in Equation 1 being violated.

We also measured the budget utilization of the mi-
gration thread while it was active. Results are shown in

 50

 100

 150

 200

 250

 0  5  10  15  20  25
 0

 20

 40

 60

fp
s 

or
 x

10
00

 K
B

/s

M
ig

ra
tio

n 
O

ve
rh

ea
d 

(x
10

m
 C

yc
le

s)

Time (Seconds)

Canny
Comms 1
Comms 2
Migration

Fig. 10. Migration With Added Overhead

Variables Es ∆s, worst ∆s, actual Cm Tm

Time (ms) 79.8 891.4 825.1 10 50

TABLE III
M IGRATION CONDITION WITH ADDED OVERHEAD

Table IV for the interval [6s,10s] of Figure 10. As can
be seen, the migration thread budget consumption peaked
at 91.5%. Scheduling and accounting overheads prevent
the migration thread from actively using its entire budget.
We are currently working on optimizations to our system
to reduce these overheads.

Time (sec) 6 7 8 9 10
Utilization 67.5% 91.5% 91.5% 91.5% 71.5%

TABLE IV
M IGRATION THREAD BUDGET UTILIZATION

The same experiment was repeated without a dedi-
cated migration thread. Migration was instead handled
in the context of an IPI handler that runs with interrupts
subsequently disabled. Consequently, the handler delays
all other threads and their VCPUs during its execution,
as shown in Figure 11.
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Fig. 11. Migration Without a Migration Thread

Finally, Table V shows the values of the variables
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used in Equation 1 when the migration overhead first
starts to impact the Canny frame rate. In theory, the
minimum ∆s that violates Equation 1 in this case is
20ms. However, because∆s, worst is a worst-case esti-
mation, the first visible frame rate drop happened when
it reached 26.4ms. At this time, the actual (measured)
budget consumption of the migration thread is 19.2ms,
which is smaller than 20ms because of the scheduling
and accounting overheads mentioned earlier.

Variables Es ∆s, worst ∆s, actual Cm Tm

Time (ms) 79.8 26.4 19.2 10 50

TABLE V
M IGRATION BOUNDARY CASE CONDITION

B. Predictable Communication

Here, we constructed5 different scenarios according
to Figure 6 and tried to predict the worst case round
trip time using Equation 3. The VCPU settings of the
sender and receiver, spanning two different sandboxes,
are shown in Table VI.

Case # Sender VCPU Receiver VCPU
Case 1 20/100 2/10
Case 2 20/100 20/100
Case 3 20/100 20/130
Case 4 20/100 20/200
Case 5 20/100 20/230

TABLE VI
VCPU PARAMETERS

In addition to the VCPU parameters, we also cal-
culated the values ofM , N , δs and δd by setting the
message size to2KB for both sender and receiver (i.e.
M = N = 2KB) and disabling cachingon the test
platform. The message processing timeK has essentially
been ignored because the receiver immediately sends the
response after receiving the message from the sender.

Both sender and receiver threads running on VCPUs
Vs andVd, respectively, sleep for controlled durations, to
influence phase shifts between their periodsTs andTd.
Similarly, the sender thread adds busy-wait delays before
transmission, to affect the starting point of communica-
tion within its VCPU’s available budget,Cs. After 10000
message exchanges in each scenario, we recorded the
observed worst case round trip time shown in Figure 12.
As can be seen from Figure 12, the observed worst case
time recorded in Quest-V is within the bounds, but also
close, to the prediction derived from Equation 3.

VI. RELATED WORK

Quest-V is a multikernel designed to work on modern
multicore processors. It has similarities to Barrelfish [1],
Factored OS (FOS) [12], Hive [13] and Corey[3]. Corey
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Fig. 12. Worst Case Communication Time Prediction

is a library OS that allows processing cores to be dedi-
cated to applications, which can communicate via shared
memory. Hive provides fault containment within groups
of processing nodes, orcells. These systems all address
scalability by eliminating as much as possible the sharing
of system state across cores. Quest-V differs from these
systems by using virtualization for fault isolation, and
methods to enforce real-time task execution.

The seL4 microkernel [14], [15] attempts to statically
verify software faults will never occur. This contrasts
with Quest-V, which uses sandboxing techniques to
isolate the effects of faults at runtime. As of yet, we
are unaware of seL4 for multicore processors. While
efforts have been made to derive WCET bounds for
interrupt-response latency in seL4, the work in this paper
is concerned with establishing bounds on communication
and migration.

In Quest-V, each sandbox kernel performs its own
localized scheduling, without requiring the overhead
of hypervisor intervention. This contrasts with virtual
machine monitors such as Xen [2] that schedule and
manage the assignment of guest VCPUs on PCPUs.
Quest-V adopts asemi-partitionedstrategy [16], [17],
allowing task migration to remote sandboxes. Quest-V’s
migration scheme is intended to maintain predictability,
even for tasks that may have started executing on VCPUs
in one sandbox and then resume execution in another.
Other systems that have supported migration include
MOSIX [18] and Condor [19], but these do not focus
on real-time migration.

In other work, reservation-based scheduling has been
applied to client/server interactions involving RPC [20].
This approach is based on analysis of groups of tasks in-
teracting through shared resources accessed with mutual
exclusion [21], [22]. A bandwidth inheritance protocol
is used to guarantee the server handles each request
according to scheduling requirements of the client. We
intend to investigate the use of bandwidth inheritance
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protocols across sandboxes, although this is complicated
by the lack of global prioritization of VCPUs. In this
work, we have focused instead on deriving a delay bound
for round-trip communication, in the absence of a global
scheduler or system-wide clock.

VII. C ONCLUSIONS ANDFUTURE WORK

This paper describes the mechanisms in Quest-V to
support real-time thread migration and communication.
The work builds on ideas first considered in our OSPERT
paper [23] but which have now been implemented.
The “distributed system on a chip” design of Quest-V
ensures separate sandbox kernels can coexist and remain
functional in the presence of faults in other sandboxes.
Hardware virtualization is used to isolate sandboxes,
which perform local I/O management and scheduling.

Quest-V allows threads to migrate between sandboxes,
either due to performance, predictability, resource affin-
ity or fault recovery reasons. We have shown how Quest-
V’s migration mechanism between separate sandboxes is
able to ensure predictable VCPU and thread execution.
Experiments show the ability of our Canny edge detector
to maintain its frame processing rate while migrating
from one sandbox to another. This application bears
significance in our RacerX autonomous vehicle project
that uses cameras to perform real-time lane detection.

Finally, we have shown how Quest-V is able to enforce
predictable time bounds on the exchange of information
between threads mapped to different sandboxes. This
lays the foundations for real-time communication in a
distributed embedded system. Future work will inves-
tigate lazy migration of only the working set (orhot)
pages of address spaces. This will likely reduce initial
migration costs but incur page faults that will need to be
addressed predictably.
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