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Abstract—Quest-V is a system we have been developingseparate largely unrelated guest OSes and their appli-

from the ground up, with objectives focusing on safety, pre- cations, Quest-V sandbox kernels work together as a
dictability and efficiency. It is designed to work on emerging distributed system on a chip.

multicore processors with hardware virtualization support. - o
Quest-V is implemented as a “distributed system on a The distributed organization of Quest-V means there

chip” and comprises multiple sandbox kernels. Sandbox IS N0 notion of a single kernel responsible for global
kernels are isolated from one another in separate regions scheduling or system-wide resource management. In-
of physical memory, having access to a subset of processingstead, each sandbox kernel manages its own dedicated
cores and /O devices. This partitioning prevents system yagqrces, including a specific set of cores, 1/0 devices
failures in one sandbox affecting the operation of other . . . .
sandboxes. Shared memory channels managed by systemand memory regions. Thg philosophy be_hmd Quest-V is
monitors enable inter-sandbox communication. to share as little as possible between different sandbox
The distributed nature of Quest-V means each sandbox kernels and their memory spaces. This reduces resource
has a separate physical clock, with all event timings being contention and has been shown to increase scalabil-
Q&ga%er?tls)yosvir:grﬁéﬂﬁil “;"nedrsligﬁgnza”:n:’g)r‘]tis r?tfllgo?' ity [1]. However, this imposes several challenges on the
requiring intervention of ag hypervisor. In ?his papl)gl\rl,I weu de_sgn of appllcatlons..For example, multl-t_hreaded ap-
formulate bounds on inter-sandbox communication in the PRlications must be distributed across the various sandbox
absence of a global scheduler or global system clock. kernels to increase the degree of parallelism. Since each
We also describe how address space migration betweensandbox manages a private region of physical memory,
igzgﬁgiﬁz Eineﬁswe%ltj;rraensfﬁﬁgo\évghv?/g:km0|2tlgt% ;ZLVC')S\? separate threads in different sandboxes will each need a
the conditibnspunder which Quest-V perfo?mg real-time private copy OT their address Spaces' Par_a”el application
communication and migration. must be designed to work in a distributed manner,
communicating across special shared memory channels
when necessary.
Quest-V's distributed system design means that each
Quest-V is a real-time system we are developing thaandbox operates with an independent system clock. Just
focuses on predictability, efficiency and safety. It is builas traditional distributed systems have neither physicall
from the ground up rather than being a modificatioahared memory nor a single physical clock for all loosely
to a pre-existing system such as Linux. We chose thisupled compute nodes, each Quest-V sandbox on a
path because Linux is in many ways overly complexnulticore processor uses a local timer on each core to
making it difficult to enforce system-wide predictabilitymanage event timings.
by simply modifying individual components such as the The lack of a global clock and a global scheduler in
scheduler. Additionally, our development of Quest-V haQuest-V poses challenges in two key ways: (1) in the
enabled us to investigate ways to integrate emergicgmmunication between threads in different sandboxes,
hardware features directly into the design of the O%nd (2) the migration of threads between sandboxes. The
For example, many modern processors feature hardwéirst problem occurs when two or more threads need to
virtualization support (e.g., Intel VT, AMD-V and ARM synchronize or exchange data within time bounds. A
Cortex A15 processors), and Quest-V uses these capab#énding thread in one sandbox may be forced to wait
ities to isolate system components into separate “sanddox a reply from a remote thread that is independently
kernels”. This enhances fault tolerance and dependabilg@gheduled in another sandbox. A method to bound the
of the system. Unlike traditional hypervisors that supporbund-trip delay is necessary. The second problem occurs
when a thread may have partially executed in one sand-
This work is supported in part by NSF Grant #1117025. box and needs to complete by a certain time in another
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sandbox. Ideally, we want the migrating thread to avoid
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In the next section, we briefly describe the Quest- Fig. 1. Quest-V Architecture Overview

V architecture. This is followed by a discussion of L . :
the mechanisms to enforce predictable thread migratidmO a4K.B memory page. They primarily exist to main-

as well as inter-sandbox communication. Experiment&'" dixte,ndeld pellge table (EPT) mappings, so that each
results are shown in Section V. A summary of relateg@"dPOX’s virtual memory space maps onto a separate

work is described in Section VI. Finally, conclusions an{f91on of host physicgl memory. The only other times
future work are discussed in Section VIL. monitors are needed is to launch a sandbox when the

system is initialized, to aid in fault recovery or protectio
1. QUESTV ARCHITECTURE management (e.g., if there is an EPT violation), and to

As stated earlier, the Quest-V system is partitiondéPdate shared memory mappings between sandboxes.
into a series obandbox kerneJswith each sandbox en- Shared memory mappings are used in Quest-V to
compassing a subset of memory, 1/0 and CPU resourcéstablish communication channels between the otherwise
Sandbox memories are isolated from one another usiggparate sandboxes. We use replicated monitors rather
hardware virtualization capabilities found on moderihan a single hypervisor such as in Xen [2] for three
multicore processors. The current system works on x®6ain reasons. First, each monitor is a trusted code base
(Intel VT-x) platforms but plans are underway to porwith a small memory footprint (less than 4KB). Second,
Quest-V to the ARM architecture. the monitors can be implemented differently so that they

We envision Quest-V being applicable to safetyare not all susceptible to the same security vulnerability.
critical systems, where it is important that servicehird, a monitor maintains EPT mappings for only one
remain operational even when there are hardware ag@ndbox, eliminating the overheads of scheduling and
software failures. Future automotive, avionics, factor§witching guest address spaces as is done with traditional
automation and healthcare systems are example applpervisor systems.
cation domains where safety-criticality is required. In Quest-V all scheduling and device management

Although we assume the existence of hardware vils performed within each sandbox directly. We use a
tualization features, this is not essential for the desigarm of 1/O passthrough to allow device interrupts to
of our system. Sandbox memory isolation can instedi® directed to a sandbox kernel without monitor inter-
be enforced using segmentation or paging on platformgntion. This differs from the “split driver” model of
with simpler memory protection units. However, hardsystems such as Xen that have a special domain to handle
ware virtualization offers potential advantages (albeiterrupts before they are directed into a guest. Allowing
with added costs) that we wish to investigate in owandboxes to have direct access to 1/0O devices and to
system design. In particular, it provides an extra logicglerform local scheduling decisions greatly reduces the
“ring of protection” that allows services to execute wittpverhead of switching into a hypervisor (or, equivalently,
traditional kernel privileges. This is in contrast withmonitor) to aid in resource management.
micro-kernels that grant the least privileges necessaryQuest-V supports configurable partitioning of re-
for services, at the expense of added communicationgources amongst guests, similar to the way cores are
access other services in separate protection domainspartitioned in systems such as Corey [3]. By default,

A high-level overview of the Quest-V architecture isve assume each sandbox is associated with a single
shown in Figure 1. Each sandbox, including its kernglrocessing core since this simplifies local (sandbox)
and application space, is associated with a separatheduling, although it is possible to configure a sandbox
monitor. The monitors are relatively small, fitting easiljfo encompass multiple cores. Similarly devices can be



shared or partitioned. For example, a network devigeaximizing total CPU utilization in all cases. Factors
could be exclusive to one sandbox while all USB devicesich as shared caches and other micro-architectural
are shared between two or more sandboxes. resource contention [8], [9] affect thread progress on
An 10 APIC is programmed to deliver interruptsmulticore systems, and are arguably as important as CPU
from a device to all sandboxes with access to thatilization.
device. Device drivers are written so they perfoearly Quest-V decouples the scheduling of conventional
demultiplexing[4] of device interrupts, discarding anytasks from those associated with I/O events, such as
interrupts that are not ultimately associated with a devidgeterrupts. The latter class of events is often sporadic
request in the local sandbox. While this is out of th& nature and may be associated with a thread that origi-
scope of this paper, we have shown this method of devinated an 1/O request. Quest-V integrates interrupt and
sharing and interrupt delivery results in lower latency an@sk scheduling, preventing interrupts from arbitrarily
higher throughput than using a split driver as in Xen [5]nterfering with task execution. While conventional tasks
execute on Main VCPUSs, their 1/O events are processed

cPU cPU in the context of I/O VCPUs (See Figure 3). Every 1/0O

Local APIC Local APIC event is associated with an I/O VCPU, whose priority

wst| [Pt e wsi| el e is inherited from a corresponding Main VCPU. Thus, a
i o m— . thread,r, running on Main VCPUY},, may block while

awaiting the response from a service request handled by
| Bridge |-——|I/OAPIC|~—> an 1/0 VCPU,V; . The priority of V¢ is inherited from

MSI : Msg Signaled Interrupt  IPI : Inter-Processor Interrupt that OfT'S Main VCPU, aftel’ Wh|ChT can be WOken Up

to resume onVy,. In past work, we have shown how

this integrated interrupt and task scheduling approach is

. . .__more predictable than systems such as Linux [10].
Figure 2 shows the hardware APIC configuration.
é;‘ § § i Threads

Each Local APIC, associated with a different core, is Addrese
6 O Q QMainVCPUs

PCI Device

Fig. 2. APIC Configuration

used to generate IPIs and establish local timer events. Space |

A. VCPU Scheduling and Migration

1/0 VCPUs
Quest-V uses virtual CPUs (VCPUs) as the basis for Q\ ‘/CD o
time management and predictability of its sub-systems. T [ oo
VCPUs in Quest-V differ from those in conventional vir-
tualized systems. Rather than maintaining guest machine Fig. 3. VCPU Scheduling Hierarchy

state, they act as resource containers for shares of actual
CPU time, and are assigned priorities for scheduling In Quest-V there is no notion of a periodic timer
purposes. Multiple threads can share the same VCPHerrupt for updating system clock time. Instead, the
with the chosen thread being assigned according to sogi&tem is event driven, using per-processing core local
configurable policy (e.g., FCFS, rate-monotic, EDF, 9&PIC timers to replenish VCPU budgets as they are
a priority inheritance-based approach). VCPUs are thednsumed during thread execution.
scheduled on available physical CPUs (PCPUSs) by the
local sandbox kernel. B. Inter-Sandbox Communication

By default, VCPUs act like Sporadic Servers [6], Inter-sandbox communication in Quest-V relies on
and are assigned static priorities. Each VCBRUJ, has message passing primitives built on shared memory, and
a budget capacity(;, and replenishment period];. asynchronous event notification mechanisms using Inter-
Rate monotonic scheduling [7] can then be applied fwocessor Interrupts (IPIs). IPIs are currently used to
determine schedulability. For improved utilization it iscommunicate with remote sandboxes to assist in fault
possible to configure Quest-V to schedule VCPUs irecovery, and can also be used to notify the arrival of
increasing deadline order. However, for cases whengessages exchanged via shared memory channels. Mon-
there are multiple tasks with different deadlines shariritprs update extended page table mappings as necessary
the same VCPU, there is an increased overhead tofestablish message passing channels between specific
managing VCPU priorities dynamically. Additionally,sandboxes. Only those sandboxes with mapped shared
with real-time multicore systems, we see predictablgages are able to communicate with one another. All
resource management as being more important thaiiher sandboxes are isolated from these memory regions.



A mailboxdata structure is set up within shared menkey issue is how to guarantee a thread and its VCPU’s
ory by each end of a communication channel. By defautiming guarantees when it is migrated.
Quest-V currently supports asynchronous communica-
tion by polling a status bit in each relevant mailbox tg\. Predictable Migration Strategy
determine message arrival. Message passing threads aLFhrea ds

bound to VCPUs with specific parameters to control the in_Quest-V have corresponding address

rate of exchange of information. Likewise, sending an%t%al‘ces ?[n?hvczuj. -I;jhde current detSIgt? limits qnte, dpof[;l
receiving threads are assigned to higher priority VCP y multi-threaded, address space 1o be associated wi

to reduce the latency of transfer of information acros%.smg!e VCPU. This restngtmn avoids the problem of
a communication channel. This way, shared memo igrating VCPUs and multiple address spaces between

- : ndboxes, which could lead to arbitrary delays in copy-
channels can be prioritized and granted higher or Iowlg‘g memory. Additionally, only Main VCPUs and their

throughput as needed, while ensuring information | . .
communicated in a predictable manner. Thus, Que ddress spaces are migratable, as I./O VQPUS are pinned
0.sandboxes with access to specific devices.

V supports real-time communication between sandboxes™. . ) .
Migration from one sandbox’s private memory re-

without compromising the CPU shares allocated to non- .
communicating tasks. quires a copy of an address space and all thread data

The lack of both a global clock and global schedule?t,”:ftures to the destination. rI]Each threa(:] is assoqated
for all sandboxes creates challenges for a system reqlW|JI a quejtv_c';sj structure that stores the execution
ing strict timing guarantees. In the next two sections weontext an state.

elaborate on two such challenges, relating to predictabler9uré 4 shows the general migration strategy. Al-
address space migration and communication. though not shown, both application address spaces and

kernel threads are migratable. An inter-processor inter-
[Il. PREDICTABLE MIGRATION FRAMEWORK rupt (IPI) is first sent to the destination sandbox, to
Quest-V allows threads and VCPUs to be migrate@itiate migration. A speciammigration threadhandles
between sandboxes, rather than forcing them to be stéte IPI in the destination, generating a trap into its
ically mapped. There are several reasons why migratigionitor that has access to machine physical memory of
might be desired, including: all sandboxes. The migrating address space in the source
a) performance:by redistributing workloads acrosssandbox is temporarily mapped into the destination. The
sandboxes we can avoid pathological co-schedules tiagidress space and associage@st _t ss thread struc-
conflict with micro-architectural resources. Such relures are then copied to the target sandbox's memory.
sources include shared on-chip caches and memdythis point, the page mappings in the source sandbox
buses. Without judicious co-scheduling, it is possible f&tan be removed by the destination monitor. To bound
thread progress to be stalled even if VCPU shares dhe costs of migration, a limit is placed on the number
guaranteed. of threads and, hencguest _t ss structures, within a
b) predictability: dynamically-created threads andsingle address space.
VCPUs can overload the local sandbox, making it im- An IPI from the destination to the source sandbox is
possible to guarantee their timing requirements withooeeded to signal the completion of migration. This is
migration to less loaded sandboxes. handled by a migration thread in the source sandbox,
c) resource affinity:a thread may require access tovhich is able to reclaim the memory of the migrated
resources, such as I/O devices, that are not availableai@dress space. All IPIs are handled in the sandbox
the local sandbox. Either the thread can communicaternels, with interrupts disabled while in monitor mode.
via shared memory to a remote sandbox, potentiallthe migration thread in the destination can now exit its
incurring high latencies, or it can be migrated to thewonitor and return to the sandbox kernel. The migrated
sandbox that owns the required resources. address space is attached to its VCPU and added to
d) fault recovery: a software fault in the local the local schedule. At this point, the migration threads
sandbox might render a service required by a thrednl source and destination sandboxes are able to yield
inoperable. As part of system recovery, the local serviexecution to other VCPUs and, hence, threads.
can be restored in the background while the threadBefore migrating an address space and its VCPU, the
continues in a different sandbox. migration thread in the destination sandbox performs
For this paper, we do not focus on policies to decidadmission control. This verifies the scheduling require-
where a thread should be migrated or how to recoverents of the incoming VCPU can be guaranteed without
from faults. Rather, given that migration is supported, théolating the requirements of all existing VCPUs.

4



i Push quest_tss igrati Schedule De-schedule
address(es) to @ Migration Resume local —>| Migration Thread »

SB Kernel | destination and > [hicadlcyent scheduling

received

(Guest) resume schedule T y Sandbox Kernel
41 % r o vorir 1 5]
gl |z Exit Code Entry Code
z| |2 c Move addr space
g Y GUESE s » and VCPU from f
structure(s) 2 source
Restore machine state

Save machine state
for migration code

for migration code

Start / Continue
migration

Kernel Kernel Kernel
— Migration:
\\__ Thread

S8 1213 |33
00 @s ©6

Scheduler 1 Scheduler \ ) Scheduler Flg 5.
®

Migration Framework Control Flow

a )

Monitor MonW

Monitor ulers use Local APIC Timers and Time Stamp Counters

(TSCs) in each core as the source for all time-related
activities in the system, and these are not guaranteed
to be synchronized by hardware. Consequently, Quest-
V adjusts time for each migrating address space to
fompensate for clock skew. This is necessary when
updating budget replenishment and wakeup time events
for a migrating VCPU that is sleeping on an 1/O request,

@

Fig. 4. Migration Strategy

Migration Thread Preemption. A migration thread in

the destination sandbox is bound to a Main VCPU wit
parameterg’,,, andT,,. If the VCPU depletes its budget,
Cp, or a higher priority VCPU is ready to run, the C 2
migration thread should be preempted. However, this ¥ which is not yet runnable.

complicated by the fact that the migration thread spend]'nghe dsource Sandboé(_ plallcebs f'ts curre;_t TS(|:P\I/aI1_Je n
most of its time inside its monitor (a.k.a. VMX root Sared memory imme lately before sending a migra-

mode) and each sandbox scheduler runs within the lo ign request. This value is compared with the destination
kernel (a.k.a. VMX non-root mode) TSC when the IPI is received. A time-adjustmehip s,

Migration thread preemptions require a domain switcff?r the migrating VCPU is calculated as follows:

between a sandbox monitor and its kernel, to access thg,; = 7SC; — TSCs — 2%« RDTSC\pst — IPI, 05t

local scheduler. This results in costly VM-Exit and VM- o
Entry operations that flush the TLB of the processor 1°Ca @ndT'SC; are the destination and source TSCs,

core. To avoid this cost, we limited migration thread pre¥hile RDT'SCeos andIP 1, are the average costs of

emption to specific preemption points. Additionally, wé€2ding & TSC and sending an 1P, respectivelyy ,
associated each migration thread with a highest priority then added to all future budget replenishment and
VCPU, ensuring it would run until either migration WagNak(_aup' time events for the migrating VCPU in the
completed or the VCPU budget expired. Bookkeepin estination sandbox.

is limited to tracking budget usage at each preemptigs Migration Criteria

Eglan(;:sEzlljsyovr:/:ath\I/nM?lgiitp;gﬂme, sMnjg?rtlon thread Quest-V restricts migratable address spaces to those
y Y- associated with VCPUs that either: (1) have currently

Preemption points are currently located: (1) immeéXpired budgets, or (2) are waiting in a sleep queue.

n th t 2 bud h bud | ., due to an I/O request completion or a
n the case of a bu get overrun, the next budget repleR, rce becoming available). Together, these two cases
'Shme”.t is adjusted apcordlng 0 _the corrected_ POS event migrating a VCPU when it is runnable, as the
Spora@c Server algorithm [11]. Figure 5 describes t igration delay could impact the VCPU's utilization.
migration control flow. For VCPU, V, associated with a migrating address

Clock Synchronization. One extra challenge to bespace, we defing, to be therelative time! of the next
considered during migration is clock synchronization

between different sandboxes in Quest-V. Quest-V schedi.e., Relative to current time.



event, which is either a replenishment or wakeup. For We first define the following symbols:
the utilization of V, to be unaffected by migration, the L= C.—(N-6.) mod C,
(

following must hold:
Ly=Cy4— M5d+K) mod Cy

ESZL§SJ.Tm+ASmode, &) SZ[NC' 1.7, I
M54+ K
where C,, and T,, are the budget and period of D= [#1 Ta — La

the migrating thread’s VCPU, and, is the migration D— L,
cost of copying an address space and dtgst_tss R= T
data structures to the destination. At boot time, Quest-V -D —SL _\Rl.T
establishes base costs for copying memory pages without @= s~ BT,
caches enabled. These costs are used to determine P=Q—(Ts - C)
A, for a given address space size. Quest-V makes sure B=C,— f( Q ). P
that the migrating thread will not be woken up by ‘ Ts — Cs

asynchronous events until the migration is finished. Thghere _
system imposes the restriction that threads waiting on fla) = 1 ifz>1
I/O events cannot be migrated. 0 ifz<l1

A schedulability test is performed before migration, to Assumingr, starts communicating with, at the end

ensure a VCPU can be added to the destination sandlits current budget, the worst case round trip tirfié)(
without affecting total utilization. If the test fails, theas shown in Figure 6 is:

migration request will be rejected immediately by an IPI, D
and the source sandbox will put the address space and it = S + D + f(L—
VCPU back into the local scheduler queue. At the next s
scheduling point, a new destination sandbox is tested ifEquation 2 is derived from thdifferent scenarios, as
necessary. A VCPU can be migrated immediately fé&hown in Figure 6, for when the receiveéRecv 1-5)
any successful test, if it does not require its utilizatiofesponds to the sender. This is dependent on VCPU
to be guaranteed while migration is in progress. budget availabilities of the sender and receiver. In the
In order to simplify the migration criteria, our current®duation.s represents the total time taken byto send
implementation restricts concurrent migration requests & request messagp. is the total time between the end of
different destination sandboxes. This is not problematie S réquest (i.e. end of) and the end of,'s response.

as migrations are expected to be infrequent. L, is the remaining budget df; after sending a request.
Similarly, L, is the remaining budget df; after sending

a responserR is the number of elapsed periods \df to
IV. PREDICTABLE COMMUNICATION receive a response tQ’s request() is the time between
74's response and the end ef’s most recently used
In Quest-V, as in any distributed system, there is oftefudget. P is the partially consumed current budget for
a need for threads to communicate and exchange infe{-when it receives a responsk.is 0 for cases wheny
mation. This section describes how QUE‘St-V attemp&%mmetes its response an-g is not runnable. Fina”y’
to guarantee bounded and predictable communicatignis the remaining budget for, when it receives a
latency between threads in different sandboxes. response. In essence, Equation 2 becoffies: S + D
Consider a sending thread,, associated with a for Case 1, and + L, + [R]-Ts — B for all other cases.
VCPU, V., which wishes to communicate with a re- Figure 6 assume$-’= < 1 and %‘jl{ < 1. This
ceiving thread,r;, bound toV; in a remote sandbox. means, a request is pfocessed in the budget capégity,
Supposer, sends a message Of bytes at a cost of, and a response is processed’n S and D capture the
time units per byte. Similarly, supposg replies with general cases where processing time may exceed the full
an M byte message at a cost &f time units per byte. budget capacity of the sender or receiver.
Before replying, letr; consumekK units of processing  The worst case round trip time shown in Equation 2
time to service the communication request. can be exceeded in certain cases where the sender starts
communication before the end of its current budget. Fig-

2We do not consider memory bus contention issues, which coutf© 7 Shc_)ws_’ the situation where starts Co_m_mumcat'ng
make worst-case estimations even larger. at S’, while it still has some budget remaining. Consider

) (Ls+[R]-T; = B-D) (2)



stream of video frames. The frames were gathered from
a LogiTech QuickCam Pro9000 camera mounted on our
RacerX mobile robot, which traversed one lap of Boston
University’s indoor running track at Agganis Arena. To
avoid variable bit rate frames affecting the results of our
experiments, we applied Canny repeatedly to the frame
shown in Figure 8 rather than a live stream of the track.
This way, we could determine the effects of migration on
a Canny thread by observing changes in processing rate
while the other threads communicated with each other.
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Fig. 6. Communication Cost Scenarios

case4 as an example, if we shiff to the left such that

7, finishes at the beginning of its current budget, we can
actually increase the worst case time®@y— L. Hence
the worst case round trip timé¥(’) becomes:

D
W' = S"'D_"f(fs) ’ (LS + Hﬂ T _B_D) +E (3) Fig. 8. Track Image Processed by Canny

where 7 is defined as: For all the experiments in this section, we have two

E = max(Ny, No) active sandbox kernels each wishVCPUs. The setup
Q ' is shown in Table I. The Canny thread is the target for

Ni=(1- f(ﬁ)) -min(Q, Cs — L) migration from sandbos to sandbox2 in all cases. Mi-

) ) gration always starts at tinfe A logger thread was used

No = flm—7) [/ : Iz %)- to collect the result of the experiment in a predictable

manner. Data points are sampled and reported in a one

min(Ty = Cs, Cs — Ls = P) second interval.

Here, I/ is the extra time added to Equation 2, caused

. , . . VCPU (C/T) Sandbox 1 Sandbox 2
by the shift of S to S”. N, is the term representing cases 30/100 Shell Shell
2 and4, while Ny covers case8 and5. 10/50 | Migration Thread| Migration Thread
20/100 Canny
— w— 20/100 Logger Logger
— s — 10/100 Comms 1 Comms 2
i e O
snd % 17222/ B TABLE |
MIGRATION EXPERIMENTVCPU SETUP
Recv i ] _ ) o
% Figure 9 shows the behavior of Canny as it is migrated
Reovs — —— — in the presence of the two communicating threads. The
| tan Request | Fiisn Request ' Receive Response left y-axis shows both Canny frame rate (in frames-
per-second,fps) and message passing throughput (in
Fig. 7. Phase shift of S multiples of al000 Kilobytes-per-second). The right y-

axis shows the actual CPU consumption of the migration
V. EXPERIMENTAL EVALUATION thread in (millions of,x1m) cycles. We can see from
We conducted a series of experiments on a Gigaby¥s figure that none of the thread3 ¢ommunicating
Mini-ITX machine with an Intel Core i5-2500K 3.3GHz threads and Canny) have been affected due to migration.
4-core processor, 8GB RAM and a Realtek 8111e NIGhe sudden spike in migration thread CPU consumption
) o occurs during the migration of the Canny thread.
A. Predictable Migration The average time to migrate an address space varies
To verify the predictability of the Quest-V migrationfrom underl millisecond to aboui0 - 20 milliseconds,
framework, we constructed a task group consisting depending on the actual address space size. This is with
2 communicating threads and another CPU-intensial caches enabled and with address spaces being limited
thread running a Canny edge detection algorithm onta a maximum of4AM B. As long as the criteria in



Section IlI-B are satisfied, all VCPUs remain unaffected

. . e . o 250 f ‘ ‘ _ Canny —— 7
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0 5 10 15 20
Time (Seconds) Variables | FEs As,worst | Ag,actual | Cp, | T
Time (ms) | 79.8 891.4 825.1 10 50

Fig. 9. Migration With No Added Overhead
TABLE Il

Table 1l shows the values of variables as defined in MIGRATION CONDITION WITH ADDED OVERHEAD

Equation 1. The worst-case migration cosl,, worst, Taple |V for the interval [6s,10s] of Figure 10. As can
was the cost of copying a Canny address space Wil seen, the migration thread budget consumption peaked
all caches disabled (including the overhead of walkings g1 505 Scheduling and accounting overheads prevent
its page directory)As, actual was the actual migra- yhe migration thread from actively using its entire budget.
tion thread budget consumption during migration. Botye gre currently working on optimizations to our system
worst-case and actual migration costs satisfy the copy requce these overheads.

straints of Equation 1.

Time (sec) 6 7 8 9 10
Variables | Es | As,worst | As,actual | Cpy, | T Utilization | 67.5% | 91.5% | 91.5% | 91.5% | 71.5%
Time (ms) | 79.8 5.4 1.7 10 50 TABLE IV
TABLE I MIGRATION THREAD BUDGET UTILIZATION

MIGRATION CONDITION

] _ ) The same experiment was repeated without a dedi-
The next experiment investigated the effect on theyeq migration thread. Migration was instead handled

migrating address space when Equation 1 cannot peihe context of an IPI handler that runs with interrupts
satisfied. This may impact the predictability of theypsequently disabled. Consequently, the handler delays

migrating address space. If this is acceptable then thg other threads and their VCPUs during its execution,
system will transfer the address space. We added;& spown in Figure 11.

busy-wait overhead d#00.s to the address space clone
procedure for each processed Page Directory Entry (of  x

L ! Canny —— |
which there were 1024 in total). This increased migration 280 ggmi; o
costs in a controlled manner. . 200 " ]
Figure 10 shows how the migration costs increase,g 200 | [
with only the migrating address space being affected.g |t

This is observed by the drop in Canny frame processings
rate, but all other threads and their VCPUs are unaf-3 120}
fected. Here, the preemption points within each sandbox® o |

monitor prevent excessive budget overruns that would 0L : |

otherwise impact VCPU schedulability. N ‘ ‘ ‘
Table Il shows the migration parameters for this 0 5 10 15 20

experiment. The drop in Canny frame rate is due to the Time (Seconds)

migration constraint in Equation 1 being violated. Fig. 11. Migration Without a Migration Thread

We also measured the budget utilization of the mi-
gration thread while it was active. Results are shown in Finally, Table V shows the values of the variables



used in Equation 1 when the migration overhead first 10 [ Sserved ==
starts to impact the Canny frame rate. In theory, the g | Predicted o
minimum A, that violates Equation 1 in this case is

20ms. However, becaugk,, worst is a worst-case esti- é
mation, the first visible frame rate drop happened wheng 7t
it reached 26.4ms. At this time, the actual (measured)? ¢ |
budget consumption of the migration thread is 19.2ms,LE’
which is smaller than 20ms because of the scheduling§<

and accounting overheads mentioned earlier. 4r
Variables Es Ag,worst | Ag,actual | Cp | T : l
Time (ms) | 79.8 26.4 19.2 10 | 50 ? T casel Case? Case3 Cased Cases
MIGRATION BOJI\I?EAL;(\(/ZASE CONDITION Fig. 12. Worst Case Communication Time Prediction
B. Predictable Communication is a library OS that allows processing cores to be dedi-

] ) . cated to applications, which can communicate via shared
Here, we constructed different scenarios accordingmemory. Hive provides fault containment within groups
to Figure 6 and tried to predict the worst case roungk h-ocessing nodes, @ells These systems all address
trip ime using Equation 3. The VCPU settings of thg g apility by eliminating as much as possible the sharing
sender and receiver, spanning two different sandboxes.system state across cores. Quest-V differs from these

are shown in Table VI. systems by using virtualization for fault isolation, and

Case #1 Sender VCPU | Receiver VCPU methods to enforce real-time task execution.
Case 1 20/100 2/10 The seL4 microkernel [14], [15] attempts to statically
Case 2 20/100 20/100 verify software faults will never occur. This contrasts
ggzgi ;gﬁgg ggggg with Quest-V, which uses sandboxing techniques to
Case 5 207100 501230 isolate the effects of faults at runtime. As of yet, we
TABLE VI are unaware of seL4 for multicore processors. While
VCPU PARAMETERS efforts have been made to derive WCET bounds for

interrupt-response latency in seL4, the work in this paper

In addition to the VCPU parameters, we also cals concerned with establishing bounds on communication
culated the values oM, N, §, and; by setting the and migration.
message size tdKB for both sender and receiver (i.e. In Quest-V, each sandbox kernel performs its own
M = N = 2KB) and disabling cachingon the test localized scheduling, without requiring the overhead
platform. The message processing tiiiehas essentially of hypervisor intervention. This contrasts with virtual
been ignored because the receiver immediately sends thechine monitors such as Xen [2] that schedule and
response after receiving the message from the sendemanage the assignment of guest VCPUs on PCPUs.

Both sender and receiver threads running on VCPW3uest-V adopts aemi-partitionedstrategy [16], [17],
Vs andVj, respectively, sleep for controlled durations, tallowing task migration to remote sandboxes. Quest-V'’s
influence phase shifts between their periddsand7,;. migration scheme is intended to maintain predictability,
Similarly, the sender thread adds busy-wait delays befageen for tasks that may have started executing on VCPUs
transmission, to affect the starting point of communicdn one sandbox and then resume execution in another.
tion within its VCPU's available budgef/;. After 10000 Other systems that have supported migration include
message exchanges in each scenario, we recorded Nt@SIX [18] and Condor [19], but these do not focus
observed worst case round trip time shown in Figure 18n real-time migration.
As can be seen from Figure 12, the observed worst casén other work, reservation-based scheduling has been
time recorded in Quest-V is within the bounds, but alsapplied to client/server interactions involving RPC [20].
close, to the prediction derived from Equation 3. This approach is based on analysis of groups of tasks in-
teracting through shared resources accessed with mutual
exclusion [21], [22]. A bandwidth inheritance protocol

Quest-V is a multikernel designed to work on moderis used to guarantee the server handles each request
multicore processors. It has similarities to Barrelfish [1according to scheduling requirements of the client. We
Factored OS (FOS) [12], Hive [13] and Corey[3]. Coreyntend to investigate the use of bandwidth inheritance

VI. RELATED WORK



protocols across sandboxes, although this is complicatgé
by the lack of global prioritization of VCPUs. In this
work, we have focused instead on deriving a delay bounfd,
for round-trip communication, in the absence of a global
scheduler or system-wide clock. -

VII. CONCLUSIONS ANDFUTURE WORK

This paper describes the mechanisms in Quest-V 9]
support real-time thread migration and communication.
The work builds on ideas first considered in our OSPERT
paper [23] but which have now been implemented.
The “distributed system on a chip” design of Quest-\A0!
ensures separate sandbox kernels can coexist and remain
functional in the presence of faults in other sandboxes.
Hardware virtualization is used to isolate sandboxegl!
which perform local I/0 management and scheduling.

Quest-V allows threads to migrate between sandboxes,
either due to performance, predictability, resource affif?]
ity or fault recovery reasons. We have shown how Quest-
V’s migration mechanism between separate sandboxe$13
able to ensure predictable VCPU and thread execution.
Experiments show the ability of our Canny edge detector
to maintain its frame processing rate while migrating4]
from one sandbox to another. This application bears
significance in our RacerX autonomous vehicle project
that uses cameras to perform real-time lane detection.

Finally, we have shown how Quest-V is able to enforcé®!
predictable time bounds on the exchange of information
between threads mapped to different sandboxes. This
lays the foundations for real-time communication in &6!
distributed embedded system. Future work will inves-
tigate lazy migration of only the working set (ohot)
pages of address spaces. This will likely reduce initi&t’]
migration costs but incur page faults that will need to be

addressed predictably.
[18]
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