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Abstract—This paper describes a real-time USB 2 sub-  On popular single board computers such as the Bea-
system for the Quest operating system. Quest is designedgleboard [5] from Texas Instruments, or the Raspberry
for real-time embedded systems. Such systems need to in-p; [6], connectivity with other devices is possible using

teract with their environment using sensors and actuators. . .
On many embedded platforms today there is support for USB 2.0 or 100Mbps Ethernet. To date, higher bit-rate

basic serial, USB 2.0 and 100 Mbps Ethernet. Of these, USB COmMmunication technologies such as Thunderbolt [7]

2.0 supports the highest throughput, while also supporting and USB 3.0 [8] are not typically available on many
real-time communication. ) low-cost single board computers. While communication
We show how the Quest USB 2.0 sub-system improves, \nolngies such as CAN [9] and Flexray [10] exist,
upon some of the deficiencies in USB software stacks in . . S
systems such as Linux through experimental evaluation. these are either more expensive or are still limited to
We demonstrate that the Quest USB sub-system is capable Pandwidths far below that offered by Ethernet or USB.
of predictable bandwidth allocation and increased overall For this reason, we are developing a communication
performance. By dynamically reordering transaction re- infrastructure in Quest based on the ubiquitous USB 2.0

quests, Quest's USB sub-system is able to avoid unnecessangiangarq. In particular, we envision the application of
admission control rejections. Additionally, we are able '

to provide real-time guarantees for asynchronous USB real-time co'mmunicat.ion protocols over USB to be used
transactions such as bulk transfers, which are typically t0 not only interact with sensors and actuators, but also
treated in a best-effort manner. Real-time guarantees for to support real-time communication between computer
bulk transactions are necessary for any system interacting nodes in a distributed embedded system.

with devices that implement bulk endpoints such as in  5nq of the limitations with USB is that host-to-host, or

a real-time file system. The paper also introduces an L vel d. Devi
algorithm for USB scheduling that accepts more requests peer communication Is not natively supported. Devices

and provides bulk transfer guarantees, for cases where typically actas slaves and connect to computers, or hosts,
Linux fails. which act as masters. The masters are responsible for
|. INTRODUCTION e.;'cgt;hsh:ng a c(;)rtnmumcatlton I|nll<_ft.odpe.r|ph?_ral (Ijev.|ces,
_ which only need to support simplified signaling logic.
i This paper. fotgusis on thek ?evelopmen'i. of a rteal'The USB “on-the-go” (OTG) specification supports
Ime communication framework for an operating Systelg, | e devices, allowing them to act as either masters

we are developing, called Quest [1]. Quest is mtendeﬂ{ slaves, as necessary. As an example, a smartphone

Iﬁr.use n embetd d.ed sysﬁen::s th"’;t must mtergct \tNI vice might communicate with a host computer to allow
€Ir environment via a Collection of Sensors and actuge. o g 14 jtg storage. In other situations the smartphone
tors. Many embedded systems are built on single b“ﬁﬁa

; AR y wish to output photographic images to a printer.
computers, with 1/0O connectivity limited mostly to Iow-I this way, the smartphone is able to take on the role

bandwidth serial links. Communication standards su-%ﬁ either a master or slave, depending on the entity
as R3232 [2] are typically supported on these platforn\ﬁmh which it communicates., Moreover, star, ring and

along with protocols for a Serial Peripheral Intencr"C?ree—based communication topologies can be established,

o vy
(SP1) bus [3],.7°C" [4], or TWO Wire Interface (_TW!)‘ to allow devices to operate in a distributed embedded
However, for many emerging real-time applications

. . system. This has motivated us to consider USB as the
sensors require greater bandwidth than that suppor Lﬁi

. . : standard for real-time communication in our system.
by simple serial bus protocols. For example, HD wdew ile we focus on USB 2.0 or, more specifically, the Ex-
cameras may generate data streams with bit-rates ' '

. S t8hded Host Controller Interface (EHCI) [11], we believe
several megabits per second. In contrast, many univ

I h ert tter (UART) chi Hhat porting a real-time communication infrastructure to
sal asynchronous receiver-transmitter ( ) chips a§sB 3.0 should be relatively straightforward.

limited to baud rates that are an order of magnitude Iess.In comparison to USB approaches for systems such
This work is supported in part by NSF Grant #1117025. as Linux, the Quest RT-USB framework is able to:



« guarantee bandwidth allocations when opening co)'SB 2.0 and EHCI specifications. This is followed

nections with communication endpoints, by an introduction to the USB scheduling problem in
« dynamically reorder transfer requests to avoid urgection lll. In Section 1V, we describe the Quest real-
necessary rejections, and time USB architecture in more detail. The experimental
« provide real-time guarantees for both asynchronoesaluation is discussed in Section V, followed by related
and periodic transfers. work in Section VI. Finally, conclusions and future work
The Quest RT-USB sub-system guarantees bandwidife discussed in Section VII.
allocations for communication paths between endpoints Il. USB 2 AND EHC| OVERVIEW

using admission control. When a transfer request is , } ,

received, existing requests are reordered in their frameli /& NOW provide a brief overview of the USB 2.0 [12]

schedules to avoid unnecessary rejections. That is, if3d EHCI [11] specifications.

feasible schedule is possible, then attempts are madeatoUniversal Serial Bus

?grn?(;nn']ﬁﬂii;‘:{gfigﬁ&jﬁ?'éﬂ;;;r:}i;;he[)?l:g:rﬁ;srr:_t%\s stated earlier, Universal Serial Bus (USB) is a
j Mmaster-slave protocol that connects a host computer (the

quests can occur f_or anew device or to chaqge data ra}ﬁgster) to one or more peripheral devices (the slaves). A
for a currently active device. For example, if the fram

. ) evice operates at one of three possible communication
rate and/or image quality of a USB camera needs to b b

. . 10 Phies: low, full or high speed. These have maximum
changed, this could result in the need to dynamical ¥|roughputs ofL.5, 129and?180Mbps, respectively. Fig-

reorder transactions. For bandwidth guaranteed requel';Jtise 2 depicts the hardware-software structure of both

we focus on USB high-speed devices due to the fact thgtUSB host and device. which communicate over a
both OTG and modern sensors such as USB cameras Sﬁﬁsical link '

capable of high-speed throughput.
Quest’'s USB sub-system temporally isolates periodic Host USB Stack Device USB Stack

requests so that soft real-time guarantees are achievable
. Client Software usB
on asynchronous transfers, such as for bulk data. This Function
enables bulk devices such as those found in flash storage cornages. Interfaces
to be used in a real-time system, providing timing interfaces
guarantees on accesses to a filesystem, for example.
One of our design goals is to create a real-time
communication bus that is capable of host-to-device ) \J
and peer-to-peer communication. Using custom FPGA- USB System USB
based “USB routers” it is possible to create such a Software Endbol Logical
. . . points||| Device
communication bus (Figure 1). A single USB router - Host Controller Driver
could appear as multiple USB devices to different hosts. O e Do
This would enable data communication between hosts
or other routers. Given the real-time aspects of USB, we
Y A\

aim to create a real-time bus communication protocol

built on top of USB that resembles CAN and Flexray.
The first step towards this objective is a real-time USB Host [ S8 USB Bus
host sub-system, as described in this paper. Controller|| | e face Interface

Fig. 2. USB Host and Device Stacks

Each physical device consists of one or mooafig-
@ urations that specify how many interfaces it supports,
amongst other information. Only one configuration for a
[ camera ][ arduino | [Motor contoller] [ Fiash prive | [Beagieboard] given device is active at any time, and it in turn supports
one or morefunctions A multi-function full-speed input
device, for example, might have two functions for both a

The next section provides a brief summary of thkeyboard and a mouse. Each hardware function provides

Fig. 1. USB Communication Topology



a collection ofinterfaces with each interface providing boundary. USB 2.0 supports micro-frames of 125 mi-
one or moreendpointsof communication. croseconds. Each frame contains eight micro-frames and
Each endpoint specifies the type of transfer mod#ansactions cannot cross a micro-frame boundary. The
whether it is an input or output endpoint, the maximurhost controller will discard any transactions that span
packet size, how many packets it can receive duriibese micro-frame boundaries.
a single transaction, and how often transactions should
occur in the case of periodic endpoints. B. Enhanced Host Controller Interface
A function can have alternative interfaces to enable or The Enhanced Host Controller Interface (EHCI) is the
disable certain endpoints and/or change their data rat@ost commonly used specification for a USB 2.0 host
For example, USB cameras have different interfaces foontroller. EHCI splits transaction types into two classes
a video stream source. Each interface exposes a differéht periodic which is for isochronous and interrupt
version of the endpoint for receiving the video frametransfers, and (2asynchronouswhich is for bulk and
and the device driver selects the endpoint that has tbentrol transfers.
minimum data rate required for the camera frame rate All transactions that the host controller performs are
and image quality. described in transaction descriptors. Periodic transac-
The host side of USB communication consists dfons are organized into a periodic frame list that the host
a hardwarehost controller and a software stack. Thecontroller indexes into using ifsame index registerThe
software stack comprises a USB host controller drivendex is incremented every micro-frame. Asynchronous
device-specific drivers, and interfaces that allow clierttansactions are organized into a round-robin circular

applications to communicate with devices. linked-list.
The USB specification supports four bagransfer
typesfor data exchange between a host and a device: Periodic Frame List  Asynchronous Round-Robin List
« Control transfers- Used for device configuration. : W@J
No time guarantees are provided by the USB spec- i
ification. Error detection and checksumming is used f

to guarantee data delivery. All devices have at least
one control endpoint, identified as endpoint zero.

« Bulk transfers Used for devices that do not require f+2
time guarantees but do require guaranteed data f+3
delivery. An example bulk transfer device would
be a USB thumb-drive for mass storage.

« Isochronous transfers Used for devices that re- 5
quire real-time guarantees without retransmissions f+6
of erroneous data. The bandwidth and time proper-
ties are specified using the packet size, number of
packets per transmission, and transmission interval f+8
(specified inmicro-framesfor high speed devices
andframesfor low and full speed devices). The in- Fig. 3. EHCI Scheduling Overview
terval is always a power of 2 for high speed devices. Figure 3 shows an overview of the schedul-
A camera is an example isochronous device.  jng data structures. The periodic list points either

« Interrupt transfers- Used for devices that require; an isochronous transaction descriptofiTD), for
both real-time guarantees and alsp the Correcmfﬁéchronous transactions, or gueue head(QH) for
of transferred data. If the data is corrupted, iferrupt transactions. The value in each QH is the inter-
is retransmitted at the next opportunity. The realy| of the corresponding endpoint. Both iTDs and QHs
time guarantees are specified the same way as {Qfntain a pointer that identifies the next transaction to
isochronous transfers. A keyboard is an examplgs processed. A single iTD contains the data to perform
interrupt device. a maximum of eight transactions (potentially one per

USB transactionsare always initiated by the busmicro-frame). The host controller uses the three least

master; peripheral devices only respond to host requesiginificant bits of the frame index register to determine
In USB 1.0/1.1, all transactions occur within a framevhich transaction in the iTD it should execute if the
set at 1 millisecond. Transactions cannot cross a frartransaction is active. Therefore, multiple iTDs must be
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in the periodic list to perform more than eight requesis Table 1.

for an isochronous endpoint. However, multiple iTDs for
a single endpoint must not be encountered within the
same micro-frame.

By comparison, a queue head does not contain all

the information necessary to perform a transaction bu

instead points to a linked-list afueue element transac-
tion descriptors(qTDs). A QH and its qTDs represent
all transactions that are pending for a given endpoint.
Similar to iTDs, QHSs in the periodic list contain an 8-bit
bitmap that the host controller uses to determine whether
it should execute a transaction in the given micro-frame.

Periodic Tree-based Schedulingln order to meet the
requirements of iTDs and QHSs, the periodic schedule
forms a tree, with the frames of the periodic list acting
as leaves. Every micro-frame the host controller picks the
appropriate starting leaf and traverses transfer descsipt
until it reaches the root. The first elements in the path
are iTDs (if any). After all iTDs are traversed the host
controller encounters QHs (if any).

Endpoint A

d Interval < 8 Endpoint C
Periodic List (_A__\ Interval = 16
B
|
2
*~——
: 9
4 Endpoint D
Interval < 8
: Endpoint B
Interval = 16

Fig. 4. Periodic Schedule Example

Frame | Endpoints Visited
1 A, C,D
2 A, B, D
3 A, C,D
4 A, B, D
TABLE |

ORDER ENDPOINTS ARE VISITED DURING TRAVERSAL

IIl. USB SCHEDULING PROBLEM

The QHs are arranged such that if they are supposed;gg gcheduling does not allow transmissions to cross

to be reached only eved* frames they will be skipped
every2" —1 frames. For example, in Figure 3, framgs

micro-frame boundaries. This is a restriction placed on
the USB host controller by the specification [12]. This

and f + 8 are leaf nodes for paths that traverse an iThitation causes USB scheduling to look similar to the

followed by all the QHs with intervals front4 to 1

traditional bin-packing problem. In what follows, we

micro-frames. Fram¢g + 4 is a leaf node for a path thatdefine the scheduling problem over a set of tupfes

includes an iTD followed by all the QHs with intervals
from 32 to 1. Likewise, framesf +1, f+2, f+3, f+5,
f+6,andf+7 are leaf nodes for paths through all QHs
with intervals from8 to 1. Note that for brevity we have
omitted a queue head with intervas.

such that:

S = {(whtl), (w2,t2)7 ey (wrutn)} )

wherew; is the time it takes to send transactiband
t; is the interval of transactiof (either in micro-frames

At the root of the tree in Figure 3 are all the QHs thagr frames). For high-speed endpoints, the value; d$
have an interval of 8 or less. Such QHs must be reachabi&tricted to a power of two in the rang®’, 21°]. Each

from every index of the periodic list. After traversing theyalue, w;, is measured in nanoseconds and can take any
periodic list, the host controller uses the remaining timgf the following forms [12]:

in the micro-frame to process the asynchronous list from
its previous position.

Another example periodic schedule with iTDs and e
QHs for different endpoints is shown in Figure 4. The
numbers in the iTDs and QHs are the frame numbers
in the periodic list when the corresponding transfer de-
scriptors are accessed by the host controller. Isochronous
endpoint A has an interval of eight or less micro-frames
and therefore one of the iTDs for it must be visited every
frame. Isochronous endpoint B has an interval of sixteen
micro-frames, so iTDs for it are visited every other o
frame. Similarly, interrupt endpoint C has an interval of
sixteen micro-frames, so its QH is positioned to only be
reached every other frame. Finally, interrupt endpoint D
has an interval of eight or less micro-frames, so its QH is
reached every frame. The traversal ordering is outlined

(c+p+ (2.083 % [3.167 + 56/6 % b)) * k

¢ is the overhead uniquely associated with a given
host controller. For our implementation we assume
this is five nanoseconds, which is the same in Linux.
p is the protocol overhead to send a packet. For
isochronous transactions, this 88.232 nanosec-
onds. For all other transactions this {56.52
nanoseconds. Most of the difference between the
two is the extra overhead to ensure data integrity.
b is the number of bytes in the packet. While not an
explicit requirement of the USB 2.0 specifications
this value is typically a power of 2. For high-
speed bulk transactions this value must be 512. For
interrupt and isochronous endpoints this value can
range from0 to 1024.



o k is either 1, 2, or 3 representing the number alecreasing algorithm for bin-packing and rate monotonic
packets in a single transaction. scheduling [14]. The algorithm first sorts transactions
» The constant.083, 3.167 and56/6 are given by by interval from smallest to largest, breaking ties by
the USB 2.0 specification [12]. These account fasorting transmission delay from largest to smallest. The
various transmission costs including bit stuffing. transactions are then inserted into the first available

As stated above, USB transactions cannot ct@sgs Micro-frame according to their interval constraints. The
micro-frame boundaries. Depending on whether we afégorithm for this approach is the following:
providing real-time guarantees for bulk transactions we
either have 100 or 125 micro-seconds for scheduliﬁ%l
real_tim_e transaCtionS' . IZ: g::gz ?J:Lt#esfcgztéﬂﬁit; assignments
The interval,¢;, specifies the rate to exchange data 7 — 1024 element array initially all zero
between a device and a host. For high-speed devices, T[f]lgot(i)rgg H:eﬂi;rgrgﬁigg;&zrgﬁ‘ows time for bulk transfers)
intervals are specified in micro-frantesTherefore, a - i
device endpoint that has an interval of one micro- j/ Sort transactions by increasing interval,
frame has no options for scheduling. A device with /I breaking ties by largest transmission delay first
an interval of two or more micro-frames has multiple griszogyf}_ 1 do
options for when it is scheduled. For example, a device «; — TRANSMISSION DELAY (R[i])
with an interval of two can be scheduled in either & < INTERVAL(R][i])
odd or even micro-frames. If the device is scheduled AE‘O_ !
in micro-frame f it must also be scheduled in micro-  while A[i] = —-1Aj < ¢; do
frame f+2i | i€ {1,2,...}. Consequently, the number feasible — TRUE

of options we have to schedule a single USB device’s \fvhjejf <1024 do

gorithm 1 Quest USB Scheduling Algorithm

transactions is equal to the endpoint interval. Addition- if T[f] + w; > B then

ally, the number of unique scheduling options for a set é’?fasible «— FALSE
. end |

of nnendpomt tuples{(wy,t1), (wa,t2), ..., (Wn,tn)}, Fe f41,

is [T, ti end while

The USB scheduling problem has bounded execution ~ if szqsible,t;‘/eg ¢ starts in microframe
time, due to the fact there is a maximum number of [i] = 5 /I Request starts in micro-frame

—

possible transactions that are schedulable. The maximum while f < 1024 do
transactions is constrained by the product of the number T[f] < Tt[f] +wi
of zero-length packe_t&, schedulable in a single micro- engv‘;ﬂ{:r !
frame, and the maximum interval valu&)24. Let the end if
value M = 1024z. All scheduling problems that present Je—g+1
. . . end while
more than) transactions can be rejected in constant Ali] = —1 then
time as not schedulable. return FALSE
The question remains: “if the size &f is less than end if

or equal toM is there an efficient algorithm that can i:tﬂraor (TRUE, A)

determine if S is schedulable and, if so, what is the

H H H - I)” )
af35|gnmbe|zntt of trants_act;_ons t(.) rlr_uc_rto (;r?mefs_ ) i AS thi Sel¢ successful, the algorithm returns arelement array
Of possIbie transaction imes 1S fimited 10 a finte NUMBEL, ", 01y 141 eachl[i] holds the starting micro-frame of

the problem is similar to restricted bin packing, Wh'd?equesti. As stated earlier, transactions with smaller pe-

has a well known dynamic programming solution [1.3]riods (here, intervals) are ordered first. The tie-breaking
However, due to the added restriction that transactio Blicy sorting from largest to smallest transmission
must be spaced apart by their interval value, the U elay, is justified with the following logic: the set of

schedulmg probl_em does not trivially map to the re{)ositions in a schedule that are acceptable to higher
stricted bin-packing problem.

o h to findi , ¢ USB transmission delay requests is a subset of the positions
ur approach to finding an assignment of U tran?ér lower transmission delay requests. By scheduling

actions is to use a heuristic that parallels the f'rs"['fl'&wer transmission delay requests first, it is possible that

they reduce the number of positions in the schedule for

lUnless stated otherwise we assume all intervals are in mich]-. her t ission del ts. C | hedul
frames. However, they could be in frames for low- and full-spee'gNEr ransmission delay requests. Lonversely, schedul-

devices. ing higher transmission delay requests first does not re-




[l Reauest 1 (Tx Delay = 31.25s, Interval = 2 p-frames)

Request 2 (Tx Delay = 31.25s, Interval = 2 p-frames)

Interval Only Sort
(Request 4 not schedulable)

Micro-frame #

T T T 1
0 31.25 62.5 93.75  125ps

BE] Request 3 (Tx Delay = 93.75ys, Interval = 2 -frames)

[[] Request 4 (Tx Delay = 93.75ys, Interval = 2 p-frames)

Interval Sort
Breaking Ties using Transmission Delay,

Micro-frame #

T T T
0 31.25 62.5 93.75  125us

Fig. 5. Interval Only Sort vs. Interval Sort Breaking Tiesngs Transmission Delay

duce the number of choices in the schediiy available

to lower transmission delay requests. See Figure 5 for 1 a sort by decreasing transmission delay then

an example.

Figure 6 shows simulation results comparing the Ques

Algorithm # | Description
Sort by increasing interval breaking ties with

first-fit (Quest)
2 Sort by increasing interval then first-fit
Sort by increasing interval breaking ties with

USB scheduling method to the Linux first-fit approach, | 3 a sort by increasing transmission delay then
as well as others. Table Il outlines each schedulin first-fit _ - _
method used. The simulation iterates over all possible 4 \?:Ir:hbgn”f‘icr;f_aﬁf'”g transmission delayinter-
schedulable permutations of five or less USB request E Sort by decreasing transmission delayin-
and reports the success rate of each algorithm. In the terval then first-fit
simulation we limited possible interval values to 2, 4, | ¢ fS_O’tTf_?y decreasing transmission delay then

. Irst-11
8 or_16, and possible bytes per pgcket to powers of— firstAt (Linux)
two in the range[32,1024]. Quest failed to schedule 8 Sort by increasing transmission delay then
149,600 of the 62,287,898,048 possible USB requests first-fit

9 Sort by decreasing interval then first-fit

combinations. By comparison, Linux failed to schedule

95,364,176 USB request combinations, which is a factor TABLE I

of 637 worse.
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Fig. 6. Scheduling simulation results

IV. REAL-TIME USB ARCHITECTURE

A COMPARISON OF HEURISTIC SCHEDULING METHODS

which, if accepted, are guaranteed for the lifetime of
the request. This differs from the approach in Linux
where bandwidth is only guaranteed up to the transfer
length of a USB request block (URB). In Linux, a device
driver must explicitly reschedule the URB when the
request is finished. This is typically done in a completion
callback function provided by the URB, which runs in
the context of an interrupt handler. The Linux approach
allows race conditions to occur that will create gaps
in the periodic list schedule. Also, if a request is not
resubmitted immediately after it has completed the band-
width can be allocated to another endpoint. In Quest,
bandwidth is pre-allocated for iTDs and QHs throughout
the entire periodic list schedule, respecting their irdgéerv
requirements, thereby avoiding race conditions.

In addition to providing bandwidth guarantees to de-
vices, the Quest USB sub-system also reorders active
transactions to increase overall bandwidth usage. That

The Quest USB sub-system has been implementisd transactions are reordered while maintaining endpoint
from scratch, in accordance with the USB 2.0 andonstraints, to allow the admission of new requests that
EHCI specifications. It allows isochronous and intemwould otherwise be rejected, as described earlier.
rupt endpoints to specify their throughput requirements Transaction reordering does not alter the position of



QHs in the schedule. Only isochronous transactions aeval among all bulk transactions is used to deter-
reordered if possible. First, a tentative schedule is farmenine their scheduling order. With this approach, bulk
according to the sorting criteria explained in Algotransactions are scheduled in the same way as interrupt
rithm 1. If a new transaction can be accommodated in thend isochronous transactions, using the same scheduling
tentative schedule, the schedule is committed as actiedgorithm.

Only iTDs requiring a different frame assignment are The Quest USB sub-system can run in one of two
moved. This causes each reassigned isochronous devigstles. The first mode provides real-time guarantees
to violate its interval value for at most one transactiorfor bulk transactions, while still ensuring that periodic
For example, Figure 7 shows three requests scheduteghsactions do not exceed 80% of any micro-frame. In
in micro-frames 1-4. Request 4 arrives between micrgne second mode, real-time guarantees are not ensured
frames 4 and 5, causing Request 2 to be reassigneddpbulk transactions but collectively they receive at teas
even micro-frames. This leads to the periodic requegb%% of every micro-frame. Either way, a mixture of both
skipping a micro-frame at time 5, but it resumes itseal-time and best-effort transactions can be supported.
correct interval spacing for subsequent micro-frames (at

6, 8, etc).
) V. EXPERIMENTAL EVALUATION

1 In this section, we evaluate our Quest USB sub-
w2 Bl Request 1 system and compare it to Linux, where appropriate. The
@ [ ] Request 2 host machine for both Quest and Linux was a 3.10

3 n GHz Intef® Core i3-2100 CPU. For Linux, we used
& 77 R t3 _ ) ’

Sy eques Ubuntu 10.04 with kernel version 2.6.32. The USB 2.0
- . Request4  EHCI chip was an IntéP Corporation cougar point USB

Reordering  enhanced host controller (rev 05).
6 Y Point Beagleboards [5] shown in Figure 8 were also used
T ‘ ‘ in various experiments. These feature USB “on-the-go”
FTig”.n7e.ms,\:|:IhC£Lr|2nF]zior dering Example (OTG) device capabilities. The boards themselves ran
Angstiom Linux [15], kernel version 2.6.34. We used
The Quest USB sub-system only reorders isochronoti Linux gadget driver interface to create a custom
transactions that are far enough ahead of the currdhbB device. This allowed us to measure throughput
frame index register. This is to avoid updates to entri¢gore effectively as the Beagleboards were programmed
that are being buffered by the host controller itself. [0 always have data and space available for requests.
is possible to do this with iTDs but more difficult with\We wrote a device driver for the Beagleboards in Linux
QHs, since there is only a single QH for each interrugnd Quest that performed the equivalent functionality on
transaction. If we were to reorder both iTDs and QHBOth operating systems. Each Beagleboard has 9x512-
there would be a brief period of time where the QHBYte input- and output-endpoints that can be programmed
were following the new schedule but the iTDs weréo be any endpoint type. In comparisons with Linux, the
following the old schedule. Quest real-time asynchronous mode was disabled, unless
The USB 2.0 specification [12] states that high-sped&dated otherwise. This is because Linux does not provide
periodic transactions can use at most 80% of a micris feature.
frame, leaving at least 20% for asynchronous transac-
tions. However, along with providing real-time guaran-
tees to isochronous and interrupt transfers, the Quest
USB sub-system can provide real-time guarantees for
bulk transactions. To accomplish this, bulk transactions
are associated with an interval value similar to that with
isochronous and interrupt endpoints. This interval value
is not provided by the endpoint but by the device driver
when it submits the real-time request to the USB core.
Bulk transactions are organized in a round-robin list,
as described in Section Il, and they must occur at
the same rate. Therefore, in Quest, the minimum in-

Fig. 8. Beagleboard



A. Maximum Throughput two isochronous endpoints with an interval of one. In

While the goal of the Quest USB sub-system is tQuest, the four endpoints with an interval of two were
provide real-time guarantees, the design of the systéHisC assigned to the same micro-frames. However, when
should not be detrimental to performance. To verif{® Sub-system is presented with the tenth endpoint it
this, we tested the maximum throughput of both Queg@orders all the transactions in order to accommodate
and, Linux. We used three Beagleboards with the sarffis request. Linux fails to open the last two isochronous
configuration: three isochronous input endpoints, ea§fdPOINts because itis unable to reorder the four requests
having an interval of one micro-frame, and three bulRdch with an interval of two, which have all been
input endpoints, all with a packet size of 512-byteSSigned to the same micro-frames. This is shown by the
Figure 9 shows the aggregated throughput of Quest aftFSing bar in F_lgure 10. This is not a problem fqr either
Linux. The experiment shows that Quest and Linux ateuX Or Quest in the second scheduling experiment.
comparable in maximum throughput, when all periodic

) . 4.5
endpoints have the same interval. al |
Quest Ordering 1 1
— 3.5 | Quest Ordering 2 EE3 ]
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Fig. 10. Scheduling Vulnerability

Linux Quest

Fig. 9. Maximum Throughput

B. Scheduling Vulnerability

A . . . . F Real-Time Asynchronous Transactions
s previously discussed in Section IV, the tota
throughput of a USB schedule with Linux is depen- TO demonstrate that Quest is able to provide real-time
dent on the order of opening (or processing) endpoifilarantees for asynchronous transactions, we conducted
requests. Different schedules are possible when pedd experiment involving two Beagleboards. Each beagle-
odic devices have an interval greater than one micrgoard was configured with seven bulk, four isochronous,
frame. To demonstrate this issue, we opened the safiid three interrupt endpoints, each with an interval of
endpoints with different orderings in both Quest an@ne micro-frame. All transaction sizes were 512-bytes.
Linux. We used two Beagleboards that had a total dihe results are shown in Figure 11. As expected, Linux
four isochronous input-endpoints. Each endpoint had aH{ows all transactions to occur. Quest, however, does
interval of two micro-frames. Additionally, there were ghot allow the three interrupt transactions to pass the
total of seven isochronous input-endpoints each with @gimission control, because they would result in the bulk
interval of one micro-frame. The packet size for all th&ansactions falling below a data rate of 512-bytes per
endpoints was again 512-bytes. micro-frame.

In the first ordering, the four isochronous endpoints i i
each with intervals of two micro-frames were openel: Bandwidth Preservation
first, followed by the seven endpoints each with intervals To show how Quest provides bandwidth preservation
of one micro-frame. In the second ordering, the sevdar all open endpoints, even when the endpoint is not
endpoints with an interval of one micro-frame wereurrently in use, we conducted the following experiment:
opened first, followed by the four endpoints with an in3 Beagleboards were connected to the host as shown in
terval of two micro-frames. Both Linux and Quest allowFigure 12. A token was passed between the two Bea-
a maximum of nine periodic transactions of 512-bytegleboards while an attempt to open seven isochronous
per micro-frame. In the first ordering, Linux assigns akndpoints on the third Beagleboard took place. As stated
isochronous endpoints with an interval of two to thearlier in the paper, Linux only provides bandwidth
same micro-frames and therefore cannot open the laseservation for the output-endpoints when they are



5 uest mm— Lehoczky et al [16] modeled real—ti_me bus scheduling
Linux ooy as a CPU scheduling problem, with several notable
4t s | differenges relating to preemptiop, buffe.ring and pr';orit.
Tg‘ §§§.. g.rapulanty. Our methoq of ordering pe;rlodlc. requests is
3 3| E§§§§§ | S|m|Ia_r to rate-monotonic task scheduling, with rules for
Y X §§§§ preakmg t|es_. While Lghqczky et al address _the real-
g , E§: Eg:égg | time scheduling of periodic messages transmitted on a
g s 35 multi-master bus, this does not apply to USB, which is
Q 55 s a master-slave bus protocol.
! %%.f. E%%%% ] The Controller Area Network (CAN) [9] bus protocol
553 S is a commonly used protocol and has been heavily stud-
0 Isoc 7-10  Interrupt 11-13 ied. Tindell et al [23] studied the worst case transmission
Endpoint delay due to blocking of higher priority tasks taking jitter

into account in their analysis. More recently, Davis et
al [24] provide a revised study of CAN, correcting for

earlier analytical flaws. USB differs from CAN because

CAN is a multi-master bus protocol where each node
is capable of initiating a transmission. CAN differs

from protocols such as Ethernet by determining which
message has the highest priority during a negotiation
phase at the start of each transmission.

Zuberi and Shin [20] address the utilization problem
of CAN-bus networks. They introduce the mixed traf-
fic scheduler (MTS), which is a hierarchical scheduler
using both Earliest Deadline First (EDF) and Deadline
actively used. Since at most one output-endpoint is agronotonic Scheduling (DMS). The authors state that
tively used at any given time, the bandwidth preservatigfre Earliest Deadline is not reasonable due to the
is intermittent. This results in all seven isochronougmited number of bits for priority levels in the CAN-bus
endpoints of the third Beagleboard being opened apgbtocol. Their solution is to discretize time into regions
the token being blocked from further transmission by thgng first use EDF to prioritize tasks with deadlines in

host. In Quest, because bandwidth is allocated for opgfferent time regions. DMS is then used to prioritize
endpoints, and remains allocated even if the endpoiisks that fall within the same time region.

is not currently in use, two of the seven isochronous
endpoints fail to open. However, the token continues

be passed between Beagleboards. Table Il shows h
results of the experiment.

Fig. 11. Real-Time Asynchronous Transactions

Fig. 12. Bandwidth Preservation Setup

Dauvis et al [19] provide a scheduling analysis of CAN
ssuming that messages within a node are scheduled
ng a FIFO queue instead of priority queue. While
previous scheduling analyses for CAN are based on the

VI. RELATED WORK assumption that the highest priority message submitted
) o _ for transmission is the next message a node transmits, in
Real-time bus communication has been studied Bactice many CAN device drivers use a FIFO queue.

e T 8 7% uang e al 25, 26 e 0 rovde QoS -
: ' tees for USB 1.1 and 2.0. To do this, they modify

rovide an overview of both the theoretical aspects &1 > . o .
provic . . sP endpoint descriptors within the host controller driver.
real-time buses along with actual implementations.

Effectively, all endpoints are treated as aguivalent
endpoint with the same throughput but with the smallest

Tokens Passed Tokens Passed Third Beagleboard| ~ possible interval given the endpoint speed. For full- and

OS | Without Third | With Third Isoc Endpoints low-speed devices, the smallest interval is one frame. For
Beagleboard | Beagleboard Opened high d devi h I . Li .

Quest 1499 1499 5 igh-speed devices, the smallest interval is one micro-

Linux 1499 300 7 frame. As an example, Huang et al treat a high-speed

TABLE III endpoint with a packet size of 512-bytes and interval

RESULTS OF BANDWIDTH PRESERVATION EXPERIMENT of two micro-frames as an equivalent endpoint with a

packet size of 256-bytes and interval one micro-frame.



Admission control is then performed on the modified[3]
endpoints. This is to ensure the total utilization is below?]
maximum capacity. To reduce overhead, an attemptgé
made to reinstate the original endpoint intervals andr]
packet sizes. (8]
This endpoint modification violates the USB speci-[g]
fications as the endpoint interval rate is not respectdao]
Similarly, polling at a higher rate is not guaranteed t
work for all devices. Our USB sub-system attempts
guarantee QoS for USB 2.0 transactions without eng2]
point modification. Our USB sub-system does, howevét3!
use similar sorting strategies to those defined by Huapg,
et al. They also provide a probabilistic guarantee for
asynchronous transactions, while we provide explicit
bandwidth partitioning for asynchronous transactions. [15]

11]

VIl. CONCLUSIONS ANDFUTURE WORK [16]

This paper describes the real-time USB framework
in the Quest operating system. This is instrumental
in the development of real-time embedded applications
that require interaction with the physical world througr?
sensors and actuators. With USB OTG functionality a 317]
with custom FPGA-based USB routers, a real-time USB
sub-system is also capable of being the backbone o{tlg]
real-time communication interconnect between compute
nodes. We have demonstrated a host USB sub-system
that provides bandwidth partitioning, dynamic reordering®!
of transactions to avoid unnecessary admission control
rejections, and real-time guarantees for asynchronous
transactions. We showed how our approach to the U
scheduling problem results in a higher data throughput
than the approach found in Linux.

Future work will involve the development of a real-
time USB OTG sub-system to act as the device countgjy;
part to the real-time USB host sub-system described in
this paper. This will allow the creation of star, tree an&?!
ring topology USB networks. We will also investigate the
creation of custom hardware that is capable of acting
as a USB router. Such a device would allow multiplé3]
computer hosts to interconnect with each other without
the need for USB OTG. It would also allow for more
complex topologies than those allowed by USB OTG. 24]

While current embedded single board computers are
limited to USB 2.0 it is reasonable to assume that USB
3.0 will eventually begin to appear on such system&>l
We plan to investigate how we can apply the techniques
described in this paper to USB 3.0 host controllers.
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