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Abstract—This paper describes a real-time USB 2 sub-
system for the Quest operating system. Quest is designed
for real-time embedded systems. Such systems need to in-
teract with their environment using sensors and actuators.
On many embedded platforms today there is support for
basic serial, USB 2.0 and 100 Mbps Ethernet. Of these, USB
2.0 supports the highest throughput, while also supporting
real-time communication.

We show how the Quest USB 2.0 sub-system improves
upon some of the deficiencies in USB software stacks in
systems such as Linux through experimental evaluation.
We demonstrate that the Quest USB sub-system is capable
of predictable bandwidth allocation and increased overall
performance. By dynamically reordering transaction re-
quests, Quest’s USB sub-system is able to avoid unnecessary
admission control rejections. Additionally, we are able
to provide real-time guarantees for asynchronous USB
transactions such as bulk transfers, which are typically
treated in a best-effort manner. Real-time guarantees for
bulk transactions are necessary for any system interacting
with devices that implement bulk endpoints such as in
a real-time file system. The paper also introduces an
algorithm for USB scheduling that accepts more requests
and provides bulk transfer guarantees, for cases where
Linux fails.

I. I NTRODUCTION

This paper focuses on the development of a real-
time communication framework for an operating system
we are developing, called Quest [1]. Quest is intended
for use in embedded systems that must interact with
their environment via a collection of sensors and actua-
tors. Many embedded systems are built on single board
computers, with I/O connectivity limited mostly to low-
bandwidth serial links. Communication standards such
as RS232 [2] are typically supported on these platforms,
along with protocols for a Serial Peripheral Interface
(SPI) bus [3],I2C [4], or Two-Wire Interface (TWI).
However, for many emerging real-time applications,
sensors require greater bandwidth than that supported
by simple serial bus protocols. For example, HD video
cameras may generate data streams with bit-rates of
several megabits per second. In contrast, many univer-
sal asynchronous receiver-transmitter (UART) chips are
limited to baud rates that are an order of magnitude less.
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On popular single board computers such as the Bea-
gleboard [5] from Texas Instruments, or the Raspberry
Pi [6], connectivity with other devices is possible using
USB 2.0 or 100Mbps Ethernet. To date, higher bit-rate
communication technologies such as Thunderbolt [7]
and USB 3.0 [8] are not typically available on many
low-cost single board computers. While communication
technologies such as CAN [9] and Flexray [10] exist,
these are either more expensive or are still limited to
bandwidths far below that offered by Ethernet or USB.
For this reason, we are developing a communication
infrastructure in Quest based on the ubiquitous USB 2.0
standard. In particular, we envision the application of
real-time communication protocols over USB to be used
to not only interact with sensors and actuators, but also
to support real-time communication between computer
nodes in a distributed embedded system.

One of the limitations with USB is that host-to-host, or
peer communication is not natively supported. Devices
typically act as slaves and connect to computers, or hosts,
which act as masters. The masters are responsible for
establishing a communication link to peripheral devices,
which only need to support simplified signaling logic.

The USB “on-the-go” (OTG) specification supports
dual-role devices, allowing them to act as either masters
or slaves, as necessary. As an example, a smartphone
device might communicate with a host computer to allow
access to its storage. In other situations the smartphone
may wish to output photographic images to a printer.
In this way, the smartphone is able to take on the role
of either a master or slave, depending on the entity
with which it communicates. Moreover, star, ring and
tree-based communication topologies can be established,
to allow devices to operate in a distributed embedded
system. This has motivated us to consider USB as the
bus standard for real-time communication in our system.
While we focus on USB 2.0 or, more specifically, the Ex-
tended Host Controller Interface (EHCI) [11], we believe
that porting a real-time communication infrastructure to
USB 3.0 should be relatively straightforward.

In comparison to USB approaches for systems such
as Linux, the Quest RT-USB framework is able to:



• guarantee bandwidth allocations when opening con-
nections with communication endpoints,

• dynamically reorder transfer requests to avoid un-
necessary rejections, and

• provide real-time guarantees for both asynchronous
and periodic transfers.

The Quest RT-USB sub-system guarantees bandwidth
allocations for communication paths between endpoints
using admission control. When a transfer request is
received, existing requests are reordered in their framelist
schedules to avoid unnecessary rejections. That is, if a
feasible schedule is possible, then attempts are made to
dynamically reorder transactions so that the success rate
for communication requests is maximized. Dynamic re-
quests can occur for a new device or to change data rates
for a currently active device. For example, if the frame
rate and/or image quality of a USB camera needs to be
changed, this could result in the need to dynamically
reorder transactions. For bandwidth guaranteed requests,
we focus on USB high-speed devices due to the fact that
both OTG and modern sensors such as USB cameras are
capable of high-speed throughput.

Quest’s USB sub-system temporally isolates periodic
requests so that soft real-time guarantees are achievable
on asynchronous transfers, such as for bulk data. This
enables bulk devices such as those found in flash storage
to be used in a real-time system, providing timing
guarantees on accesses to a filesystem, for example.

One of our design goals is to create a real-time
communication bus that is capable of host-to-device
and peer-to-peer communication. Using custom FPGA-
based “USB routers” it is possible to create such a
communication bus (Figure 1). A single USB router
could appear as multiple USB devices to different hosts.
This would enable data communication between hosts
or other routers. Given the real-time aspects of USB, we
aim to create a real-time bus communication protocol
built on top of USB that resembles CAN and Flexray.
The first step towards this objective is a real-time USB
host sub-system, as described in this paper.

Fig. 1. USB Communication Topology

The next section provides a brief summary of the

USB 2.0 and EHCI specifications. This is followed
by an introduction to the USB scheduling problem in
Section III. In Section IV, we describe the Quest real-
time USB architecture in more detail. The experimental
evaluation is discussed in Section V, followed by related
work in Section VI. Finally, conclusions and future work
are discussed in Section VII.

II. USB 2 AND EHCI OVERVIEW

We now provide a brief overview of the USB 2.0 [12]
and EHCI [11] specifications.

A. Universal Serial Bus

As stated earlier, Universal Serial Bus (USB) is a
master-slave protocol that connects a host computer (the
master) to one or more peripheral devices (the slaves). A
device operates at one of three possible communication
rates: low, full or high speed. These have maximum
throughputs of1.5, 12 and 480Mbps, respectively. Fig-
ure 2 depicts the hardware-software structure of both
a USB host and device, which communicate over a
physical link.

Fig. 2. USB Host and Device Stacks

Each physical device consists of one or moreconfig-
urations that specify how many interfaces it supports,
amongst other information. Only one configuration for a
given device is active at any time, and it in turn supports
one or morefunctions. A multi-function full-speed input
device, for example, might have two functions for both a
keyboard and a mouse. Each hardware function provides



a collection ofinterfaces, with each interface providing
one or moreendpointsof communication.

Each endpoint specifies the type of transfer mode,
whether it is an input or output endpoint, the maximum
packet size, how many packets it can receive during
a single transaction, and how often transactions should
occur in the case of periodic endpoints.

A function can have alternative interfaces to enable or
disable certain endpoints and/or change their data rate.
For example, USB cameras have different interfaces for
a video stream source. Each interface exposes a different
version of the endpoint for receiving the video frames
and the device driver selects the endpoint that has the
minimum data rate required for the camera frame rate
and image quality.

The host side of USB communication consists of
a hardwarehost controller, and a software stack. The
software stack comprises a USB host controller driver,
device-specific drivers, and interfaces that allow client
applications to communicate with devices.

The USB specification supports four basictransfer
typesfor data exchange between a host and a device:

• Control transfers- Used for device configuration.
No time guarantees are provided by the USB spec-
ification. Error detection and checksumming is used
to guarantee data delivery. All devices have at least
one control endpoint, identified as endpoint zero.

• Bulk transfers- Used for devices that do not require
time guarantees but do require guaranteed data
delivery. An example bulk transfer device would
be a USB thumb-drive for mass storage.

• Isochronous transfers- Used for devices that re-
quire real-time guarantees without retransmissions
of erroneous data. The bandwidth and time proper-
ties are specified using the packet size, number of
packets per transmission, and transmission interval
(specified inmicro-framesfor high speed devices
andframesfor low and full speed devices). The in-
terval is always a power of 2 for high speed devices.
A camera is an example isochronous device.

• Interrupt transfers- Used for devices that require
both real-time guarantees and also the correctness
of transferred data. If the data is corrupted, it
is retransmitted at the next opportunity. The real-
time guarantees are specified the same way as for
isochronous transfers. A keyboard is an example
interrupt device.

USB transactions are always initiated by the bus
master; peripheral devices only respond to host requests.
In USB 1.0/1.1, all transactions occur within a frame
set at 1 millisecond. Transactions cannot cross a frame

boundary. USB 2.0 supports micro-frames of 125 mi-
croseconds. Each frame contains eight micro-frames and
transactions cannot cross a micro-frame boundary. The
host controller will discard any transactions that span
these micro-frame boundaries.

B. Enhanced Host Controller Interface

The Enhanced Host Controller Interface (EHCI) is the
most commonly used specification for a USB 2.0 host
controller. EHCI splits transaction types into two classes:
(1) periodic, which is for isochronous and interrupt
transfers, and (2)asynchronous, which is for bulk and
control transfers.

All transactions that the host controller performs are
described in transaction descriptors. Periodic transac-
tions are organized into a periodic frame list that the host
controller indexes into using itsframe index register. The
index is incremented every micro-frame. Asynchronous
transactions are organized into a round-robin circular
linked-list.

Fig. 3. EHCI Scheduling Overview

Figure 3 shows an overview of the schedul-
ing data structures. The periodic list points either
to an isochronous transaction descriptor(iTD), for
isochronous transactions, or aqueue head(QH) for
interrupt transactions. The value in each QH is the inter-
val of the corresponding endpoint. Both iTDs and QHs
contain a pointer that identifies the next transaction to
be processed. A single iTD contains the data to perform
a maximum of eight transactions (potentially one per
micro-frame). The host controller uses the three least
significant bits of the frame index register to determine
which transaction in the iTD it should execute if the
transaction is active. Therefore, multiple iTDs must be



in the periodic list to perform more than eight requests
for an isochronous endpoint. However, multiple iTDs for
a single endpoint must not be encountered within the
same micro-frame.

By comparison, a queue head does not contain all
the information necessary to perform a transaction but
instead points to a linked-list ofqueue element transac-
tion descriptors(qTDs). A QH and its qTDs represent
all transactions that are pending for a given endpoint.
Similar to iTDs, QHs in the periodic list contain an 8-bit
bitmap that the host controller uses to determine whether
it should execute a transaction in the given micro-frame.
Periodic Tree-based Scheduling.In order to meet the
requirements of iTDs and QHs, the periodic schedule
forms a tree, with the frames of the periodic list acting
as leaves. Every micro-frame the host controller picks the
appropriate starting leaf and traverses transfer descriptors
until it reaches the root. The first elements in the path
are iTDs (if any). After all iTDs are traversed the host
controller encounters QHs (if any).

The QHs are arranged such that if they are supposed
to be reached only every2n frames they will be skipped
every2n−1 frames. For example, in Figure 3, framesf
andf + 8 are leaf nodes for paths that traverse an iTD
followed by all the QHs with intervals from64 to 1
micro-frames. Framef +4 is a leaf node for a path that
includes an iTD followed by all the QHs with intervals
from 32 to 1. Likewise, framesf +1, f +2, f +3, f +5,
f +6, andf +7 are leaf nodes for paths through all QHs
with intervals from8 to 1. Note that for brevity we have
omitted a queue head with interval16.

At the root of the tree in Figure 3 are all the QHs that
have an interval of 8 or less. Such QHs must be reachable
from every index of the periodic list. After traversing the
periodic list, the host controller uses the remaining time
in the micro-frame to process the asynchronous list from
its previous position.

Another example periodic schedule with iTDs and
QHs for different endpoints is shown in Figure 4. The
numbers in the iTDs and QHs are the frame numbers
in the periodic list when the corresponding transfer de-
scriptors are accessed by the host controller. Isochronous
endpoint A has an interval of eight or less micro-frames
and therefore one of the iTDs for it must be visited every
frame. Isochronous endpoint B has an interval of sixteen
micro-frames, so iTDs for it are visited every other
frame. Similarly, interrupt endpoint C has an interval of
sixteen micro-frames, so its QH is positioned to only be
reached every other frame. Finally, interrupt endpoint D
has an interval of eight or less micro-frames, so its QH is
reached every frame. The traversal ordering is outlined

in Table I.

Fig. 4. Periodic Schedule Example

Frame Endpoints Visited
1 A, C, D
2 A, B, D
3 A, C, D
4 A, B, D

TABLE I
ORDER ENDPOINTS ARE VISITED DURING TRAVERSAL

III. USB SCHEDULING PROBLEM

USB scheduling does not allow transmissions to cross
micro-frame boundaries. This is a restriction placed on
the USB host controller by the specification [12]. This
limitation causes USB scheduling to look similar to the
traditional bin-packing problem. In what follows, we
define the scheduling problem over a set of tuplesS
such that:

S = {(w1, t1), (w2, t2), . . . , (wn, tn)} ,

wherewi is the time it takes to send transactioni and
ti is the interval of transactioni (either in micro-frames
or frames). For high-speed endpoints, the value ofti is
restricted to a power of two in the range[20, 210]. Each
value,wi, is measured in nanoseconds and can take any
of the following forms [12]:

(c + p + (2.083 ∗ ⌊3.167 + 56/6 ∗ b⌋)) ∗ k

• c is the overhead uniquely associated with a given
host controller. For our implementation we assume
this is five nanoseconds, which is the same in Linux.

• p is the protocol overhead to send a packet. For
isochronous transactions, this is638.232 nanosec-
onds. For all other transactions this is916.52
nanoseconds. Most of the difference between the
two is the extra overhead to ensure data integrity.

• b is the number of bytes in the packet. While not an
explicit requirement of the USB 2.0 specifications
this value is typically a power of 2. For high-
speed bulk transactions this value must be 512. For
interrupt and isochronous endpoints this value can
range from0 to 1024.



• k is either 1, 2, or 3 representing the number of
packets in a single transaction.

• The constants2.083, 3.167 and56/6 are given by
the USB 2.0 specification [12]. These account for
various transmission costs including bit stuffing.

As stated above, USB transactions cannot cross125µs
micro-frame boundaries. Depending on whether we are
providing real-time guarantees for bulk transactions we
either have 100 or 125 micro-seconds for scheduling
real-time transactions.

The interval,ti, specifies the rate to exchange data
between a device and a host. For high-speed devices,
intervals are specified in micro-frames1. Therefore, a
device endpoint that has an interval of one micro-
frame has no options for scheduling. A device with
an interval of two or more micro-frames has multiple
options for when it is scheduled. For example, a device
with an interval of two can be scheduled in either
odd or even micro-frames. If the device is scheduled
in micro-framef it must also be scheduled in micro-
frame f+2i | i∈{1, 2, . . . }. Consequently, the number
of options we have to schedule a single USB device’s
transactions is equal to the endpoint interval. Addition-
ally, the number of unique scheduling options for a set
of n endpoint tuples,{(w1, t1), (w2, t2), . . . , (wn, tn)},
is

∏
n

i=1
ti.

The USB scheduling problem has bounded execution
time, due to the fact there is a maximum number of
possible transactions that are schedulable. The maximum
transactions is constrained by the product of the number
of zero-length packets,z, schedulable in a single micro-
frame, and the maximum interval value,1024. Let the
valueM = 1024z. All scheduling problems that present
more thanM transactions can be rejected in constant
time as not schedulable.

The question remains: “if the size ofS is less than
or equal toM is there an efficient algorithm that can
determine if S is schedulable and, if so, what is the
assignment of transactions to micro-frames?” As the set
of possible transaction times is limited to a finite number,
the problem is similar to restricted bin packing, which
has a well known dynamic programming solution [13].
However, due to the added restriction that transactions
must be spaced apart by their interval value, the USB
scheduling problem does not trivially map to the re-
stricted bin-packing problem.

Our approach to finding an assignment of USB trans-
actions is to use a heuristic that parallels the first-fit

1Unless stated otherwise we assume all intervals are in micro-
frames. However, they could be in frames for low- and full-speed
devices.

decreasing algorithm for bin-packing and rate monotonic
scheduling [14]. The algorithm first sorts transactions
by interval from smallest to largest, breaking ties by
sorting transmission delay from largest to smallest. The
transactions are then inserted into the first available
micro-frame according to their interval constraints. The
algorithm for this approach is the following:

Algorithm 1 Quest USB Scheduling Algorithm
R← array ofn USB requests
A← array for the scheduling assignments
T ← 1024 element array initially all zero
// T [f ] = time used in micro-framef
B ← 100000 (in nano-seconds∼ allows time for bulk transfers)

// Sort transactions by increasing interval,
// breaking ties by largest transmission delay first
R← SORT(R)
for i = 0 to n− 1 do

wi ← TRANSMISSION DELAY(R[i])
ti ← INTERVAL(R[i])
A[i]← −1
j ← 0
while A[i] = −1 ∧ j < ti do

feasible← TRUE
f ← j
while f < 1024 do

if T [f ] + wi > B then
feasible← FALSE

end if
f ← f + ti

end while
if feasible then

A[i]← j // Requesti starts in micro-framej
f ← j
while f < 1024 do

T [f ]← T [f ] + wi

f ← f + ti
end while

end if
j ← j + 1

end while
if A[i] = −1 then

return FALSE
end if

end for
return (TRUE, A)

If successful, the algorithm returns ann-element array
A, such that eachA[i] holds the starting micro-frame of
requesti. As stated earlier, transactions with smaller pe-
riods (here, intervals) are ordered first. The tie-breaking
policy, sorting from largest to smallest transmission
delay, is justified with the following logic: the set of
positions in a schedule that are acceptable to higher
transmission delay requests is a subset of the positions
for lower transmission delay requests. By scheduling
lower transmission delay requests first, it is possible that
they reduce the number of positions in the schedule for
higher transmission delay requests. Conversely, schedul-
ing higher transmission delay requests first does not re-



Fig. 5. Interval Only Sort vs. Interval Sort Breaking Ties using Transmission Delay

duce the number of choices in the scheduleonlyavailable
to lower transmission delay requests. See Figure 5 for
an example.

Figure 6 shows simulation results comparing the Quest
USB scheduling method to the Linux first-fit approach,
as well as others. Table II outlines each scheduling
method used. The simulation iterates over all possible
schedulable permutations of five or less USB requests,
and reports the success rate of each algorithm. In the
simulation we limited possible interval values to 2, 4,
8 or 16, and possible bytes per packet to powers of
two in the range[32, 1024]. Quest failed to schedule
149,600 of the 62,287,898,048 possible USB requests
combinations. By comparison, Linux failed to schedule
95,364,176 USB request combinations, which is a factor
of 637 worse.
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Fig. 6. Scheduling simulation results

IV. REAL-TIME USB ARCHITECTURE

The Quest USB sub-system has been implemented
from scratch, in accordance with the USB 2.0 and
EHCI specifications. It allows isochronous and inter-
rupt endpoints to specify their throughput requirements

Algorithm # Description

1
Sort by increasing interval breaking ties with
a sort by decreasing transmission delay then
first-fit (Quest)

2 Sort by increasing interval then first-fit

3
Sort by increasing interval breaking ties with
a sort by increasing transmission delay then
first-fit

4
Sort by increasing transmission delay× inter-
val then first-fit

5
Sort by decreasing transmission delay× in-
terval then first-fit

6
Sort by decreasing transmission delay then
first-fit

7 first-fit (Linux)

8
Sort by increasing transmission delay then
first-fit

9 Sort by decreasing interval then first-fit

TABLE II
A COMPARISON OF HEURISTIC SCHEDULING METHODS.

which, if accepted, are guaranteed for the lifetime of
the request. This differs from the approach in Linux
where bandwidth is only guaranteed up to the transfer
length of a USB request block (URB). In Linux, a device
driver must explicitly reschedule the URB when the
request is finished. This is typically done in a completion
callback function provided by the URB, which runs in
the context of an interrupt handler. The Linux approach
allows race conditions to occur that will create gaps
in the periodic list schedule. Also, if a request is not
resubmitted immediately after it has completed the band-
width can be allocated to another endpoint. In Quest,
bandwidth is pre-allocated for iTDs and QHs throughout
the entire periodic list schedule, respecting their interval
requirements, thereby avoiding race conditions.

In addition to providing bandwidth guarantees to de-
vices, the Quest USB sub-system also reorders active
transactions to increase overall bandwidth usage. That
is, transactions are reordered while maintaining endpoint
constraints, to allow the admission of new requests that
would otherwise be rejected, as described earlier.

Transaction reordering does not alter the position of



QHs in the schedule. Only isochronous transactions are
reordered if possible. First, a tentative schedule is formed
according to the sorting criteria explained in Algo-
rithm 1. If a new transaction can be accommodated in the
tentative schedule, the schedule is committed as active.
Only iTDs requiring a different frame assignment are
moved. This causes each reassigned isochronous device
to violate its interval value for at most one transaction.
For example, Figure 7 shows three requests scheduled
in micro-frames 1-4. Request 4 arrives between micro-
frames 4 and 5, causing Request 2 to be reassigned to
even micro-frames. This leads to the periodic request
skipping a micro-frame at time 5, but it resumes its
correct interval spacing for subsequent micro-frames (at
6, 8, etc).

Fig. 7. Schedule Reordering Example

The Quest USB sub-system only reorders isochronous
transactions that are far enough ahead of the current
frame index register. This is to avoid updates to entries
that are being buffered by the host controller itself. It
is possible to do this with iTDs but more difficult with
QHs, since there is only a single QH for each interrupt
transaction. If we were to reorder both iTDs and QHs
there would be a brief period of time where the QHs
were following the new schedule but the iTDs were
following the old schedule.

The USB 2.0 specification [12] states that high-speed
periodic transactions can use at most 80% of a micro-
frame, leaving at least 20% for asynchronous transac-
tions. However, along with providing real-time guaran-
tees to isochronous and interrupt transfers, the Quest
USB sub-system can provide real-time guarantees for
bulk transactions. To accomplish this, bulk transactions
are associated with an interval value similar to that with
isochronous and interrupt endpoints. This interval value
is not provided by the endpoint but by the device driver
when it submits the real-time request to the USB core.

Bulk transactions are organized in a round-robin list,
as described in Section II, and they must occur at
the same rate. Therefore, in Quest, the minimum in-

terval among all bulk transactions is used to deter-
mine their scheduling order. With this approach, bulk
transactions are scheduled in the same way as interrupt
and isochronous transactions, using the same scheduling
algorithm.

The Quest USB sub-system can run in one of two
modes. The first mode provides real-time guarantees
for bulk transactions, while still ensuring that periodic
transactions do not exceed 80% of any micro-frame. In
the second mode, real-time guarantees are not ensured
for bulk transactions but collectively they receive at least
20% of every micro-frame. Either way, a mixture of both
real-time and best-effort transactions can be supported.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our Quest USB sub-
system and compare it to Linux, where appropriate. The
host machine for both Quest and Linux was a 3.10
GHz IntelR© Core i3-2100 CPU. For Linux, we used
Ubuntu 10.04 with kernel version 2.6.32. The USB 2.0
EHCI chip was an IntelR© Corporation cougar point USB
enhanced host controller (rev 05).

Beagleboards [5] shown in Figure 8 were also used
in various experiments. These feature USB “on-the-go”
(OTG) device capabilities. The boards themselves ran
Ångstr̈om Linux [15], kernel version 2.6.34. We used
the Linux gadget driver interface to create a custom
USB device. This allowed us to measure throughput
more effectively as the Beagleboards were programmed
to always have data and space available for requests.
We wrote a device driver for the Beagleboards in Linux
and Quest that performed the equivalent functionality on
both operating systems. Each Beagleboard has 9x512-
byte input- and output-endpoints that can be programmed
to be any endpoint type. In comparisons with Linux, the
Quest real-time asynchronous mode was disabled, unless
stated otherwise. This is because Linux does not provide
this feature.

Fig. 8. Beagleboard



A. Maximum Throughput

While the goal of the Quest USB sub-system is to
provide real-time guarantees, the design of the system
should not be detrimental to performance. To verify
this, we tested the maximum throughput of both Quest
and Linux. We used three Beagleboards with the same
configuration: three isochronous input endpoints, each
having an interval of one micro-frame, and three bulk
input endpoints, all with a packet size of 512-bytes.
Figure 9 shows the aggregated throughput of Quest and
Linux. The experiment shows that Quest and Linux are
comparable in maximum throughput, when all periodic
endpoints have the same interval.
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B. Scheduling Vulnerability

As previously discussed in Section IV, the total
throughput of a USB schedule with Linux is depen-
dent on the order of opening (or processing) endpoint
requests. Different schedules are possible when peri-
odic devices have an interval greater than one micro-
frame. To demonstrate this issue, we opened the same
endpoints with different orderings in both Quest and
Linux. We used two Beagleboards that had a total of
four isochronous input-endpoints. Each endpoint had an
interval of two micro-frames. Additionally, there were a
total of seven isochronous input-endpoints each with an
interval of one micro-frame. The packet size for all the
endpoints was again 512-bytes.

In the first ordering, the four isochronous endpoints
each with intervals of two micro-frames were opened
first, followed by the seven endpoints each with intervals
of one micro-frame. In the second ordering, the seven
endpoints with an interval of one micro-frame were
opened first, followed by the four endpoints with an in-
terval of two micro-frames. Both Linux and Quest allow
a maximum of nine periodic transactions of 512-bytes
per micro-frame. In the first ordering, Linux assigns all
isochronous endpoints with an interval of two to the
same micro-frames and therefore cannot open the last

two isochronous endpoints with an interval of one. In
Quest, the four endpoints with an interval of two were
also assigned to the same micro-frames. However, when
the sub-system is presented with the tenth endpoint it
reorders all the transactions in order to accommodate
this request. Linux fails to open the last two isochronous
endpoints because it is unable to reorder the four requests
each with an interval of two, which have all been
assigned to the same micro-frames. This is shown by the
missing bar in Figure 10. This is not a problem for either
Linux or Quest in the second scheduling experiment.
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C. Real-Time Asynchronous Transactions

To demonstrate that Quest is able to provide real-time
guarantees for asynchronous transactions, we conducted
an experiment involving two Beagleboards. Each beagle-
board was configured with seven bulk, four isochronous,
and three interrupt endpoints, each with an interval of
one micro-frame. All transaction sizes were 512-bytes.
The results are shown in Figure 11. As expected, Linux
allows all transactions to occur. Quest, however, does
not allow the three interrupt transactions to pass the
admission control, because they would result in the bulk
transactions falling below a data rate of 512-bytes per
micro-frame.

D. Bandwidth Preservation

To show how Quest provides bandwidth preservation
for all open endpoints, even when the endpoint is not
currently in use, we conducted the following experiment:
3 Beagleboards were connected to the host as shown in
Figure 12. A token was passed between the two Bea-
gleboards while an attempt to open seven isochronous
endpoints on the third Beagleboard took place. As stated
earlier in the paper, Linux only provides bandwidth
preservation for the output-endpoints when they are
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actively used. Since at most one output-endpoint is ac-
tively used at any given time, the bandwidth preservation
is intermittent. This results in all seven isochronous
endpoints of the third Beagleboard being opened and
the token being blocked from further transmission by the
host. In Quest, because bandwidth is allocated for open
endpoints, and remains allocated even if the endpoint
is not currently in use, two of the seven isochronous
endpoints fail to open. However, the token continues to
be passed between Beagleboards. Table III shows the
results of the experiment.

VI. RELATED WORK

Real-time bus communication has been studied in
both a theoretical framework [16]–[18] and in various
physical implementations [19]–[23]. In this section, we
provide an overview of both the theoretical aspects of
real-time buses along with actual implementations.

Tokens Passed Tokens Passed Third Beagleboard
OS Without Third With Third Isoc Endpoints

Beagleboard Beagleboard Opened
Quest 1499 1499 5
Linux 1499 300 7

TABLE III
RESULTS OF BANDWIDTH PRESERVATION EXPERIMENT

Lehoczky et al [16] modeled real-time bus scheduling
as a CPU scheduling problem, with several notable
differences relating to preemption, buffering and priority
granularity. Our method of ordering periodic requests is
similar to rate-monotonic task scheduling, with rules for
breaking ties. While Lehoczky et al address the real-
time scheduling of periodic messages transmitted on a
multi-master bus, this does not apply to USB, which is
a master-slave bus protocol.

The Controller Area Network (CAN) [9] bus protocol
is a commonly used protocol and has been heavily stud-
ied. Tindell et al [23] studied the worst case transmission
delay due to blocking of higher priority tasks taking jitter
into account in their analysis. More recently, Davis et
al [24] provide a revised study of CAN, correcting for
earlier analytical flaws. USB differs from CAN because
CAN is a multi-master bus protocol where each node
is capable of initiating a transmission. CAN differs
from protocols such as Ethernet by determining which
message has the highest priority during a negotiation
phase at the start of each transmission.

Zuberi and Shin [20] address the utilization problem
of CAN-bus networks. They introduce the mixed traf-
fic scheduler (MTS), which is a hierarchical scheduler
using both Earliest Deadline First (EDF) and Deadline
Monotonic Scheduling (DMS). The authors state that
pure Earliest Deadline is not reasonable due to the
limited number of bits for priority levels in the CAN-bus
protocol. Their solution is to discretize time into regions
and first use EDF to prioritize tasks with deadlines in
different time regions. DMS is then used to prioritize
tasks that fall within the same time region.

Davis et al [19] provide a scheduling analysis of CAN
assuming that messages within a node are scheduled
using a FIFO queue instead of priority queue. While
previous scheduling analyses for CAN are based on the
assumption that the highest priority message submitted
for transmission is the next message a node transmits, in
practice many CAN device drivers use a FIFO queue.

Huang et al [25], [26] attempt to provide QoS guar-
antees for USB 1.1 and 2.0. To do this, they modify
endpoint descriptors within the host controller driver.
Effectively, all endpoints are treated as anequivalent
endpoint with the same throughput but with the smallest
possible interval given the endpoint speed. For full- and
low-speed devices, the smallest interval is one frame. For
high-speed devices, the smallest interval is one micro-
frame. As an example, Huang et al treat a high-speed
endpoint with a packet size of 512-bytes and interval
of two micro-frames as an equivalent endpoint with a
packet size of 256-bytes and interval one micro-frame.



Admission control is then performed on the modified
endpoints. This is to ensure the total utilization is below
maximum capacity. To reduce overhead, an attempt is
made to reinstate the original endpoint intervals and
packet sizes.

This endpoint modification violates the USB speci-
fications as the endpoint interval rate is not respected.
Similarly, polling at a higher rate is not guaranteed to
work for all devices. Our USB sub-system attempts to
guarantee QoS for USB 2.0 transactions without end-
point modification. Our USB sub-system does, however,
use similar sorting strategies to those defined by Huang
et al. They also provide a probabilistic guarantee for
asynchronous transactions, while we provide explicit
bandwidth partitioning for asynchronous transactions.

VII. C ONCLUSIONS ANDFUTURE WORK

This paper describes the real-time USB framework
in the Quest operating system. This is instrumental
in the development of real-time embedded applications
that require interaction with the physical world through
sensors and actuators. With USB OTG functionality and
with custom FPGA-based USB routers, a real-time USB
sub-system is also capable of being the backbone of a
real-time communication interconnect between compute
nodes. We have demonstrated a host USB sub-system
that provides bandwidth partitioning, dynamic reordering
of transactions to avoid unnecessary admission control
rejections, and real-time guarantees for asynchronous
transactions. We showed how our approach to the USB
scheduling problem results in a higher data throughput
than the approach found in Linux.

Future work will involve the development of a real-
time USB OTG sub-system to act as the device counter-
part to the real-time USB host sub-system described in
this paper. This will allow the creation of star, tree and
ring topology USB networks. We will also investigate the
creation of custom hardware that is capable of acting
as a USB router. Such a device would allow multiple
computer hosts to interconnect with each other without
the need for USB OTG. It would also allow for more
complex topologies than those allowed by USB OTG.

While current embedded single board computers are
limited to USB 2.0 it is reasonable to assume that USB
3.0 will eventually begin to appear on such systems.
We plan to investigate how we can apply the techniques
described in this paper to USB 3.0 host controllers.
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