
HIRES: a System for Predictable Hierarchical Resource Management

Gabriel Parmer

Computer Science Department

The George Washington University

Washington, DC

gparmer@gwu.edu

Richard West

Computer Science Department

Boston University

Boston, MA

richwest@bu.edu

Abstract—This paper presents HIRES, a system structured
around predictable, hierarchical resource management (HRM).
Applications and different subsystems use customized resource
managers that control the allocation and usage of memory, CPU,
and I/O. This increased resource management flexibility enables
subsystems with different timing constraints to specialize resource
management around meeting these requirements. In HIRES,
subsystems delegate the management of resources to other sub-
systems, thus creating the resource management hierarchy. In
delegating the control of resources, the subsystem focuses on
providing isolation between competing subsystems.

To make HRM both predictable and efficient, HIRES ensures
that regardless of a subsystem’s depth in the hierarchy, the over-
heads of resource usage and control remain constant. In doing
so, HIRES encourages HRM as a fundamental system design
technique. Results show that HIRES has competitive performance
with existing systems, and that HRM naturally provides both
strong isolation guarantees, and flexible and efficient subsystem
control over resources.

I. INTRODUCTION

The general trend for processors is toward the increased

computational capability of individual chips. As single chips

decrease in cost and increase in processing ability, there is mo-

tivation to consolidate many applications and subsystems onto

a single chip. However, the temporal constraints and resource

management requirements of these applications might differ

significantly, making it difficult to integrate them onto the

same system. Additionally, the applications and subsystems

that were physically isolated previously, must now be isolated

by the policies and mechanisms of the system as they contend

for the system’s resources. The system wishes to satisfy

contradictory goals: to provide strong isolation guarantees

to different subsystems and applications, while also enabling

specialized management of resources to meet the demands of

each individual application.

Complicating isolation, there is an incentive for applications

to aggressively specialize resource management around their

requirements. For example, specialized resource management

policies enable increased predictability [1], [2], [3], [4], [5],

and increased efficiency [6], [7]. System consolidation raises

the question of how specialized policies can concurrently be

supported on a single system. In attempting to support many

applications on a single system, previous work has focused

on providing temporal isolation between them. That is, given

a resource supply from the system, the resource consump-

tion and management characteristics (e.g schedulability) of

each application should be parameterized independent of its

siblings. To enable application-specific resource management

policies in a general system, we also require spatial isolation,

or the inability of different subsystems to inadvertently of ma-

liciously disrupt the execution and data of another subsystem.

A subsystem’s resource management policies must not be able

to disrupt (temporally or spatially) another subsystem.

In this paper, we investigate the fundamental system archi-

tecture that enables the abstraction of resource management

policies across different subsystems. We present our HIRES

system that is fundamentally structured around HIerarchical

RESource management. HIRES enables different subsystems

to define application-specific, untrusted resource managers

that control the CPU, memory, and I/O processing. We focus

on these three low-level resources as higher-level resources

(such as file-systems and networking stacks) are implemented

on top of them. HIRES uses a hierarchical model in which

parent subsystems delegate their resources to their children.

Subsystems consist of a set of resource managers, and some

functionality or collection of abstractions. Subsystems can be

as general as the best-effort and hard real-time subsystems

of an open real-time system, or could be as fine-grained an

individual applications or different parts of an application.

When a parent delegates resource management to a child, it

empowers the child to manage that resource according to its

own policies. The root subsystem has access to all system

resources and delegates them out to its children.

The focus in HIRES is on building a system that both

predictable and practical. To be predictable, the protocol for

resource management delegation itself must be predictable.

To be practical, the usage of resources within a subsystem

must be as efficient as it is within the root. This is required

to encourage the hierarchical composition of systems, and

effectively encourages resource management abstraction. Just

as functions abstract the details of a computation, resource

delegation abstracts the management of resources. This ab-

straction is powerful as it encourages a separation of concerns

whereby parent subsystems focus on providing mutual guaran-

tees between children based in isolation, while children focus

on best utilizing and allocating those resources. Additionally, it

enables flexibility of design whereby child subsystems are free

to manage their delegated resources according to specialized

policies. This is especially useful in real-time and embedded

systems where temporal constraints (thus policies) determine

correctness, and the management of I/O and memory must

often be cognizant of hardware limitations. A fundamental

tenant of HIRES is that this abstraction must not impose any

undue overhead. For the system to be both predictable and

practical, the overheads of managing and using resources at

level N must be equivalent to N − 1.

Thread

Invocations

Resource

Managers

Parent Subsystem

Children Subsystems

Fig. 1. A hierarchy of subsystems with resource managers. Child resource
managers are delegated resources to manage from parent resource managers.
Subsystems interact via thread invocations, and are memory-isolated using
hardware (i.e. page-tables).

HIRES does not focus on the issue of the composability

of different resource management policies. Instead we focus

on the mechanisms able to create a predictable and efficient

HRM. This work is complementary to theoretical work, for

example, on scheduling composability [8], [9], [10].

The main contributions of this paper follow: (1) This paper

investigates and introduces the HRM model as a fundamental

system structuring tool based on the abstraction and delega-

tion of resource management using untrusted, customizable

resource managers. (2) We identify a small set of system

goals sufficient to implement a predictable and practical HRM

system, HIRES, and we detail its implementation. (3) We

experimentally investigate HIRES in a variety of situations and

show both the capabilities and, in some cases, the overheads

of HRM.

This paper is organized as follows: Section II discusses the

goals for a predictable HRM system while Section III details

the implementation of HIRES. Section IV experimentally

evaluates this system with respect to the goals. Section V

discusses related work while Section VI concludes.

II. HIRES GOALS

Here we outline the goals of a system for general hierar-

chical resource management that enables application-specific

customizability and predictable parent control.

G1: Efficient and predictable subsystem resource access

and control. Accessing and controlling resources within sub-

systems must be both efficient and predictable. This goal

is required to make HRM practical as a system structuring

technique. A subsystem tested independently should execute

predictably if placed at a different location in the hierarchy

(modulo different resource allocations from parent subsys-

tems). The use or access of a resource should not carry

overhead that is a function of the depth of the subsystem in

the hierarchy. For example, the cost of memory access, or

CPU execution should not be dependent on the position in the

management hierarchy as is the case for virtual machines that

require shadow paging or binary translation [11]. Additionally,

the control of resource allocation (i.e. mapping memory,

scheduling threads, and receiving hardware interrupts) must

also be efficient and predictable independent of the subsys-

tem’s depth, a situation we call short-circuiting the hierarchy.

This enables system overheads such as context switch time to

be considered in system analysis (e.g. schedulability analysis)

independent of how that subsystem is managed and isolated

in a specific HRM system.

This goal is based on what we consider a fundamental tenant

of any HRM system: abstraction of resource management

should not cause undue overhead.

G2: Accurate and fine-grained control over the delegation

of resource management. Subsystems must be able to dele-

gate the management of resources to their children, and they

must be able to accurately track the resulting resource usage of

each child. Concretely, a parent must be able to predictably and

accurately delegate scheduling of a child subsystem’s threads

to it, enable the child to map and allocate memory amongst

its own subsystems, and to delegate to the child the timely

processing of interrupts that signal data transfer destined for

that child. The parent must maintain accurate (page/cycle

granularity) accounting information on child resource con-

sumption. Controlled delegation and accurate accounting to-

gether enable parent subsystem’s ability to make hard re-

source guarantees and limitations on its children subsystems.

Traditional real-time techniques such as admission control,

resource reservation, and resource revocation are naturally

supported across subsystem layers. One intention of enabling

parent subsystems to strictly partition their resources between

children is for each sibling to be temporally isolated from each

other, thus independently analyzable. Given a resource supply

from the parent, the resource consumption and management

characteristics (e.g. the schedulability) of each child should be

parameterized independent of its siblings. We rely on previous

theoretical work [8], [9], [10] for the analysis, and this paper

primarily investigates how to provide system mechanisms to

enable temporal isolation in a HRM system.

G3: Configurable resource managers and subsystem iso-

lation. A fundamental goal of HIRES is that subsystems

must have the freedom to define custom policies that manage

resources delegated to them. We say the system supports

configurable resource managers. Each subsystem, then, uses

policies that optimally manage the resources for that sub-

system’s goals. We assume for generality, and to encourage

both fault tolerance and security, that subsystems are possibly

malicious or buggy. Though child subsystems must trust their

parent to correctly delegate resource management, a child’s

faulty management of resources or erroneous behavior must

not be able to negatively effect its parent, or siblings. Thus

child subsystems are untrusted, while also giving them the

freedom to most effectively manage their delegated resources.

This implicitly requires the system to provide spatial isola-

tion of subsystems from each other: the memory accessible

from a child subsystem is by default disjoint from that of

other subsystems. A practical goal in supporting configurable

resources managers is to also enable the reusability of specific

policies. HIRES supports this as resource managers in different

subsystems are binary compatible; the same object is reused

in subsystems as required.

G4: Mediated interactions and resource sharing between

subsystems. We make the assumption that parent subsystems

want complete control over the delegation of resources to its

children. This implies that a child should not have multiple

parents, as this would prevent each parent from having a

global view of the resources delegated to the child (a resource

management version of the confused deputy problem). Thus,

in HIRES, we construct the resource management hierarchy is

a tree rather than a general graph. However, child subsystems

must be able to share resources where appropriate (e.g. for

shared memory), and where this is appropriate, the parent

subsystem provides that functionality e.g. by implementing a

memory management component that enables shared memory.

When the parent must be involved to share a resource

between siblings, a degree of HRM overhead is inevitable.

Instead of being able to manage the resource being shared

directly, a child must request that the parent appropriately

share the resource. This has an overhead of at least the cost

of making a request to the parent. An example of HRM

overhead concerns the timer interrupt: the root subsystem

must have access to timer interrupts to multiplex the CPU

between children subsystems, but all child subsystems also

require access to notifications of the passage of time. Thus,

although timer interrupts are delivered to the root subsystem,

they must be propagated to the descendents. This propagation,

though predictable, is the HRM overhead for delivery of

timer notifications. If each subsystem could be connected to a

different hardware timer, this sharing would be removed.

HIRES encourages sharing only when absolutely required.

However, some resource sharing is inevitable. As children

subsystems make requests (for resources or other services)

from their parent, the child threads making the requests will

access parent data-structures concurrently that are shared be-

tween requests. Though these structures are spatially isolated

from the children, this access to a shared resource threatens

unbounded priority inversion that must be prevented. The

solution requires resource sharing protocols in the parent, but

is additionally complicated by the child scheduling of threads.

III. HIERARCHICAL RESOURCE MANAGEMENT IN HIRES

A. Resource Allocation Coordination

Though this paper focuses on the mechanisms that enable

the predictable and efficient delegation of resource manage-

ment across subsystems that satisfies G1-G4, in this section

we focus on the generic interface enabling parent and child

subsystems to reserve resources, thus to assign resource man-

agement and access privileges. Parent subsystems can provide

any interface for children to request resources, but we have

found that having a generic interface provides a common

means of communicating requirements and allocations be-

tween subsystems. Each parent exports this interface to its

child subsystems.

When resources are required, a subsystem makes reserva-

tions for itself or its children from its parent. When resources

are requested, admission control can be conducted in the

parent to determine if the request can be satisfied. A successful

reservation will enable the delegation of the management of a

fixed amount of resources to the child, but does not conduct

the actual delegation. Instead, it informs the resource managers

(for CPU, Memory, and I/O) how much more resources can

be requested by the child. This separation of concerns enables

the resource reservation components to focus on splitting re-

sources between children, while the resource managers control

the policy of how those resources are allocated and delegated.

Reservations are made so that the possibly costly process of

admission control, when required, is conducted only when

the reservation is created. The capability to associate a set

of resources with a subsystem out-of-band with the usage and

management of that resource is essential as it enables that

assigned resource to be freely manipulated by the subsystem

without interactions with the parent (G1).

HIRES, supports two types of reservations: hard and soft

reservations. Hard reservations ensure a strict partitioning

of resources whereby access to and control over a specific

subset of the parent’s resources are reserved to be delegated

to the child. The amount of resources is negotiated and the

child subsystem is guaranteed exactly that allocation. Soft

reservations, on the other hand, represent resources that are

delegated to a child subsystem, but that can be revoked by

the parent (via coordination with the child). Soft reservations,

then, are most useful for best-effort subsystems or to augment

hard reservations to better utilize resources.

Operation Description

res_t create(rtype_t, create handle to an empty reservation
rfam_t)

void delete(res_t) destroy reservation handle and
revoke any resources bound to it

int bind(res_t, bind specified resources to reservation
rspec_t)

rspec_t wait(res_t) wait for an update on a soft reservation

TABLE I
THE MAIN FUNCTIONS IN THE RESOURCE RESERVATION AND

NEGOTIATION API. rtype_t IS EITHER SOFTRES, OR HARDRES,
rfam_t IS THE RESOURCE FAMILY (MEMORY, CPU, OR I/O),
AND rspec_t IS A GENERIC SPECIFICATION OF A RESOURCE

ALLOCATION.

HIRES reservations are similar to reservations in previous

work [10], and the abstraction for creating and updating

reservations is depicted in Table I. However, each subsystem

implements its own independent reservation manager, aug-

menting the HRM with hierarchical reservation support. This

imposes some constraints on how the API can be used. First,

the amount of resources in a hard reservation that a child

subsystem, i, makes to its children cannot exceed the hard

reservations the parent makes to i, minus HRM overheads.

The HRM overhead in this case is the memory consumption

to maintain i’s data-structures (e.g. the runqueue), or the

timer notification propagation overhead. Second, changing the

resources allocated to a reservation is an operation that can

involve many levels in the hierarchy. When a child delegates

soft reservations to its children, and it receives a revocation

notice from its parent, and if it can’t relinquish resources, it

must propagate the revocation notice to its children.

B. HIRES Implementation in COMPOSITE

We present a prototype implementation of HIRES that

satisfies G1-G4 in our COMPOSITE component-based OS [12].

In COMPOSITE, OS policies typically found in the kernel

are instead defined in user-level components that can each

be in separate protection domains. Each component is an

implementation of a policy or abstraction whose functionality

is accessible by other components through a well-defined

functional interface. As threads make invocations between

components, the same schedulable entity continues execution

from the caller into the callee (that is, invocations use a

form of IPC called thread migration [13]). Mutable Protection

Domains (MPD) [12] enable protection domain boundaries

between components to be dynamically added or removed to

trade-off fault isolation for performance (invocations between

protection domains are mediated by the kernel and incur

overhead).

The COMPOSITE kernel defines a small set of low-level

abstractions: threads, components (which can be schedulers

that have the ability to dispatch between threads), physical

memory and mapping, MPD, I/O sources, and capabilities that

allow invocations between specific components. All higher-

level mechanisms, abstractions, and policies are implemented

in components including scheduling [14], event management,

synchronization [15], and networking.

Subsystems, as discussed previously, are defined as a collec-

tion of one or more components. Each subsystem can include

its own resource managers (RMs) for scheduling its threads,

mapping and managing its memory, and for processing device

events. Additionally, each subsystem includes a component

for managing resource reservations that implements the API

in Table I. In this paper, we use MPD to provide spatial

isolation at the subsystem granularity, as required by G3 (i.e.

all components in a given subsystem are in the same protection

domain, but interaction between subsystems requires cross

protection-domain invocations). Invocations are only possi-

ble between specific components if a capability [12] exists

denoting permission to make the invocation. Capabilities are

used to constrain communication between components, and to

force subsystem interactions and resource delegation to take

the form of a tree (thus partially satisfying G2 and G4).

Component-Based Scheduling. COMPOSITE enables the

user-level component-based definition of scheduling policies.

Specialized policies for QoS-aware scheduling and interrupt

execution have been shown to avert livelock under heavy

interrupt load [14]. Even in throughput oriented applications

such as webservers, the component-based scheduling mech-

anisms of COMPOSITE are efficient enough for the system

to be competitive with industry counterparts [12]. This paper

relies on the preexisting mechanisms for component-based

scheduling in COMPOSITE, but extends them as appropriate

to provide predictable hierarchical scheduling in HIRES. In

this section we review the mechanisms for component-based

scheduling in COMPOSITE. For more details, see [14].

Thread Dispatch. The COMPOSITE kernel does not provide

scheduling. Instead, user-level scheduling components are al-

lowed to dispatch between threads1. Towards this end, the

switch_thread(thdid,flags) system call provides

this ability to multiplex the CPU. Semantically, the current

thread’s state is saved, and the thread, τ , identified by thdid

is loaded and executed. If τ was previously preempted by an

interrupt while executing in component C, switching to it will

result in an automatic switch to C’s protection domain.

Schedulers export an interface that includes functions to

block and wake up individual threads. This basic support

is used to implement wait-queues, event notification, and

higher-level synchronization primitives such as locks with

priority inheritance and priority ceiling [15]. As all critical sec-

tions in a subsystem are arbitrated using priority inheritance,

sharing between sibling requests within a parent subsystem

avoids unbounded priority inversion (required for independent

analysability in G2, and controlled sharing in G4). The details

of how priority inversion is provided in a scheduling policy

agnostic manner is discussed in Section III-C.

C. HIRES Hierarchical CPU Management

A hierarchy of component schedulers is created explicitly.

The root scheduler is named at boot-time, and it grants

scheduling abilities to other components by making them child

schedulers. The kernel ensures that the scheduling hierarchy

is a tree.

To short-circuit the hierarchy, and provide as efficient

scheduling control in children as in parents, each scheduler

is permitted to dispatch (via switch_thread) between

threads that have been assigned to it. Thus, as multiplexing

the CPU is as efficient in a child as for a parent, this satisfies

G1. For clarity, we contrast this strategy with a system in

which child schedulers ask their parent to switch to specific

threads. To switch between threads, such a system would

require a number of subsystem invocations commensurate with

the depth of the hierarchy.

Sibling subsystems 1) cannot make invocations to each other

(as they don’t have the capabilities), 2) are spatially segregated

by hardware protection mechanisms, and 3) can only dispatch

their own threads. This combination ensures that untrusted

child schedulers cannot interfere, maliciously or accidentally,

with their parents, or their siblings, yet can still define cus-

tomized scheduling policies. This helps satisfy G3 for the CPU

resource. This is in contrast to more traditional hierarchical

scheduling frameworks whereby scheduling policies are all

implemented in the kernel where they have access to all system

resources and can trivially interfere with each other.

1Each scheduler can only dispatch to or away from threads that have been
granted to them by the parent scheduler. The root scheduler can dispatch all
threads.

Predictable Child/Parent Coordination.

HIRES requires that parent schedulers accurately and pre-

dictably delegate resource management to children schedulers

(G2). This section describes the protocol we have imple-

mented to satisfy this requirement. The proposed protocol is

additionally used to coordinate between parent and child by

notifying the child of parent events such as the passage of

time, or a child’s thread blocking or waking up in the parent

(e.g. waiting for I/O provided by the parent). All mechanisms

and protocols discussed in this section are implemented in a

scheduling library to take the burden off of the scheduling

policy implementer.

Child subsystem representation. A fundamental design deci-

sion in implementing a parent scheduler is how to represent a

child subsystem. The root scheduler that supports Application-

Level (library-based) Scheduling (ALS), or Virtual Machines

(VMs) represents all computation in the child subsystem as a

single thread. All threads in the ALS or VM are multiplexed

on top of a single parent thread. This has the unfortunately

consequence that if the parent thread blocks, all child threads

are blocked – behavior incompatible with G1. In HIRES, we

allow parent subsystems to provide complicated higher-level

abstractions to child subsystems that might require blocking,

such as advanced services for networking and file-system

access. Thus, since the parent subsystem can block child

threads, they should not be represented in the parent as a single

child thread. In contrast, if each child thread is represented in

the parent’s runqueue by a separate thread, it is not clear how

the parent should know which thread to execute to activate

the child scheduler. Hybrid models [16] use a dynamic pool

of parent threads to execute the child threads. It is not clear,

in the case, if such a model could be implemented predictably

(the parent thread pool requires dynamic memory allocation),

or how it would generalize to deep hierarchies.

cs

c1 c2

Parent Subsystem

Child Subsystem

t

Fig. 2. Two subsystems, threads, and scheduler data-structures. The grey
boxes are the data-structures for tracking threads and form the run-queue used
to schedule. The dotted lines indicate the association between a thread and the
scheduling data-structure. The dark thread is the child scheduler thread. No
other child threads are in the runqueue (white boxes). Instead, if one of them
blocks or wakes in the parent, they contain a pointer to the child scheduler
thread and it is used to deliver a notification to the child. The child scheduler
only schedules its threads.

HIRES, uses a combination of the previous approaches by

including a single thread per child subsystem that is used to

convey events to the child and a thread structure per child

thread. The parent maintains a child scheduler thread (per

CPU), cs, for each child, and it is used to activate the child

subsystem. When the parent wishes to delegate scheduling

to the child, it will switch to cs which is used to deliver

events regarding the passage of time, or child thread block

and wakeup events. cs makes invocations from the child to

the parent to retrieve these events, and when all events are

delivered, the child makes a scheduling decision and switches

to the appropriate thread.

In addition to cs, a parent scheduler maintains a thread

structure to track each individual child thread (c1 and c2).

These threads are never placed into the runqueue and the

parent does not directly schedule them. Instead, they include

a link to cs. This is depicted in Figure 2. When one of these

threads blocks or wakes up, the parent scheduler follows that

link, and places cs into the runqueue. When executed it will

deliver the child thread’s event to the child scheduler. Each

of these child threads can block independently in the parent

without adversely effecting each other.

Resource sharing protocol. When child thread invoke compo-

nents in the parent, their threads access shared data-structures

(e.g. file cache, timer queues). Though these accesses are under

the control of the parent (i.e. they are executing parent code),

child service requests must avoid unbounded priority inversion

due to these shared resource accesses. This is necessary to

provide temporal isolation between siblings, and of the parent

from its children. However, the child controls the timing

properties of its threads by scheduling them directly (G1).

This creates a difficult situation where the parent is accessing

mutually exclusive resources in a child thread that is scheduled

by the child. If the child subsystem switched away from a

thread while it happened to be executing in the parent, and

holding a resource, unbounded priority inversion is possible.

Thus we have a conflict between subsystem resource control

G1 and subsystem temporal isolation G2. In HIRES, we make

a compromise: child subsystem control their threads at all

times (though they can be preempted if a parent chooses),

unless they are holding a resource while executing in the parent

subsystem. In this case, the parent scheduler uses priority

inheritance in such cases to ensure predictability.

Traditional implementations of priority inheritance are awk-

ward in HIRES. As child thread structures are never placed in

the parent’s runqueue (i.e. the parent doesn’t schedule indi-

vidual child threads), increasing the priority of these threads

is insufficient. Instead, to implement priority inheritance, each

thread structure in the parent scheduler maintains a depen-

dency link that is set to the (possibly child) thread that holds

a requested resource. When the dependent thread contests the

mutually exclusive resource, it remains in the runqueue, and if

the scheduling policy chooses for it to execute, the scheduler

will track the dependency links and switch to the depended

on thread first, to ensure it finishes its critical section in a

bounded manner. The use of dependency links is illustrated in

Figure 3. Locks with priority inheritance within the parent are

implemented in a synchronization component [15], by using

an interface provided by the scheduler that allows the current

thread’s dependency links to be set to the holder of a contended

lock.

cs

c2c1

Parent Subsystem

Child Subsystem

lock

dependency

t

Fig. 3. Thread c
2 from the child subsystem invokes the parent, and holds

a shared resource (the black circle is a lock). One of the parent’s threads, t,
contends the lock. Though c

2 is not in the runqueue of the parent scheduler,
t’s dependency pointer will result in the parent running c

2 as in priority
inheritance.

HIRES enables children subsystems to control the schedul-

ing of their threads. However, in rare circumstances the parent

does maintain scheduling control over child threads: when

they are holding shared resources and executing in the parent.

Importantly, this does not adversely impact the schedulability

of child subsystems. The maximum resource hold time while

executing within the parent, or the maximum interference

between siblings, is bounded and a parameter of the maximum

critical section hold time in the parent, not of the each sibling.

Timekeeping in child schedulers. Keeping accurate real-

time in child schedulers requires the parent scheduler to

notify its children of the passage of time. Specifically, each

scheduler in the system maintains its own list of timing events

corresponding to when its threads wish to be woken up.

This enables each subsystem to define its own time-related

functionality. Each child scheduler publishes to its parent the

next wakeup time instead of all future wakeups. Timing events

are initiated by a clock tick and propagate up the hierarchy.

The parent delivers a timing event to a child that includes the

number of ticks that have occurred since the child was last

executed. This enables each child scheduler to maintain an

accurate representation of the real passage of time (required

for G1).

Protocol for child event delivery. In traditional hierarchical

scheduling systems, function invocations are used to pass

events amongst schedulers as all schedulers are trusted and in

the same protection domain (e.g. in the kernel). G3 prevents

parents from invoking children as such invocations might never

return, or might fault. This is another reason for coordinating

between parent and child using child scheduler threads. All

execution time spent in the child scheduler thread is accounted

to the child subsystem. In fact, in HIRES, all execution time

for all child subsystem threads is accounted to cs to make

time-keeping simple in the parent.

The details of the protocol for event delivery and coordi-

nation between parent and child are described here. A child

scheduler repeatedly asks the parent for events, and also

specifies if there are runnable child threads (i.e. if the parent

doesn’t deliver an event, should child subsystem be blocked?).

Each time the parent is invoked by the child, it returns an

event, and tells the child if there are further events. When the

child processes all its events, it switches to the next thread

according to its policy. Events (timer events and I/O) arrive

asynchronous to the delivery of events to child schedulers. This

causes a race condition that can prevent events from being

delivered to the child in a predictable manner: 1) The parent

returns the last event to the child and the child is about to

dispatch its running thread, c1, 2) an event is delivered to the

parent, and the parent returns to cs to deliver it, 3) the child

continues execution where it was preempted and switches to

c1, instead of retrieving the event from the parent. Now c1 is

executing when the event might signify the waking of c2, a

higher priority thread.

To prevent this situation in HIRES, we modify the COM-

POSITE kernel so that when a child calls switch_thread

to dispatch a thread (c1 in this example), the kernel checks

to see if a parent wishes to deliver an event (i.e. if a pevt

variable in child is set). If so, it returns an appropriate error

code designating there are still pending events. When a parent

dispatches a child scheduler thread, it passes a flag that sets

pevt for that child scheduler. This is the only synchronization

needed to ensure a protocol for the timely delivery of parent

events (G2), and does not require the parent trust the child.

D. HIRES Hierarchical I/O Processing

In HIRES, the I/O resources being managed are (1) the

bandwidth of the specific I/O device, e.g. the transmission

bandwidth for a networking card, and (2) the delivery of

processor interrupt notification for a device to the subsystem

that should process the event. In COMPOSITE, we currently

implement device drivers in the kernel (we use Linux device

drivers via our Hijack [1] technique). Thus interrupts trigger in

the kernel, and a minimal amount of processing (mainly in the

device driver) is conducted. If the interrupt was delivered due

to data delivery (e.g. via DMA), HIRES must determine which

subsystem to notify, and pass it the data. As HIRES wishes to

short-circuit the hierarchy (G1), this interrupt-time notification

should be delivered directly to the subsystem that will process

the data and involves the activation of an event thread in

that subsystem. Thus, HIRES must consider the distribution

of device interrupt notification as a hierarchical resource man-

agement decision. The main difficulties are 1) how to schedule

the execution resulting from the interrupt which requires

scheduling decisions from multiple schedulers in the hierarchy

without the costly operations of activating those schedulers

(again, to ensure we meet G1), 2) how to identify from the

data accompanying the interrupt which event thread in which

subsystem should be activated, and 3) how to maintain proper

accounting information for all parent schedulers to ensure that

the event thread’s execution is charged to the proper child

subsystem.

Interrupt Execution Scheduling: Interrupts can occur at a

high frequency (e.g. receiving packets from a GigE network),

and HIRES must minimize the overhead of scheduling the

event processessing resulting from each interrupt. Addition-

ally, because interrupts destined for processing in a child sub-

system would intuitively require parent scheduling decisions,

HIRES must find a way to short-circuit the hierarchy to avoid

directly involving multiple parent schedulers.

To avoid invoking the schedulers for every interrupt, yet still

delegating all policy decisions to the scheduler, COMPOSITE

uses the shared scheduler-kernel memory region to share

information regarding thread and event thread priority, state,

and execution time. The scheduler publishes to this region

current thread priorities, and the priority of any event thread

should it become active. When a subsystem’s event-thread

activates, the kernel compares its priority in this region to that

of the currently executing thread. It does this for all schedulers

that the preempted thread and the event thread share. If

they all determine that the event thread is of higher priority,

it is dispatched automatically without directly invoking the

schedulers. Note that this does incur overheads proportional to

how many scheduler’s shared structures must be investigated.

These costs include two cache misses and one TLB miss per

scheduler in the worst case. We consider this an acceptable

solution. When an event thread completes execution, the kernel

will automatically switch back to the previously executing

thread unless another has been awoken or any priorities have

changed in the mean time.

The shared region is used by the kernel to publish execution

times and event thread execution states to each scheduler.

Parent scheduler components maintain control over temporal

policy (G2) by dictating the importance of all threads at all

points in time, while avoiding the overhead of costly scheduler

invocations for each interrupt (thus satisfying G1).

I/O HRM Case Study: Networking. To demonstrate how

I/O is hierarchically managed, we have implemented network-

ing support in HIRES. When a NIC DMAs data into main

memory and triggers and interrupt on the CPU, the device

driver executes in interrupt context and when the transferred

data is accessible, a lightweight classification engine processes

areas of interest in the packet header. This is used to identify

which subsystem should process those packets (i.e. the subsys-

tem associated with packets with a specific destination port).

The data is copied into a ring-buffer shared in the appropriate

subsystem, and its interrupt thread is activated. As scheduler

invocations are avoided in the common case, processing of

received packets is as efficient for deeply nested resource

managers as for the root. This early demultiplexing of data

received from the I/O device enables the efficient processing of

interrupt-triggered I/O and separates a shared interrupt source

into many classified events (G4). We build the classification

engine into the kernel of HIRES.

In addition to the reception of I/O data, HIRES must

control the sending of data. The current prototype requires

that a single component that interfaces with the kernel-level

device driver must transmit all data. In this component, we

implement the following policies: (1) when a thread from a

subsystem attempts to transmit a packet, it is confirmed that

the source port in the packet has been bound (using bind)

to that subsystem, and (2) it can rate-limit the amount of data

sent from a specific subsystem (in accordance to how much

bandwidth has been bound to that subsystem).

Resource control and accurate accounting of resource allo-

cation (G2) is maintained as only parents can bind ports and

bandwidth allocations to child subsystems. HIRES provides

an interface for parent subsystems to retrieve bandwidth usage

information per child subsystem.

HIRES I/O processing generalization. The demultiplexing

layer in the kernel must be implementable for different forms

of I/O. Though we believe that many I/O sources can be

demultiplexed in a timely manner, not all interrupt sources

can. For example, the timer interrupt must be delivered to the

root subsystem to maintain isolation and system-wide time-

keeping. However, all subsystems require some notion of time,

so the timer information is propagated up the hierarchy. We

detail the costs of this in Section IV.

E. HIRES Hierarchical Memory Management

Memory is the most straightforward of the resources to

manage hierarchically. Virtual address space mappings (e.g.

provided by page-tables) ensure that memory accesses are

as efficient at any level in the hierarchy (G1). By enabling

the parent to control the mappings for any subsystem, each

parent has accurate control over resource allocations (G2).

By requiring all memory requests (binds) to make cross

protection-domain invocations, each child is spatially isolated

from its parent, thus for its siblings as well (G3).

Operation Description

int alias(paddr_t, create a mapping that aliases a
caddr_t, cid_t) parent address to a child address

void remove(caddr_t, parent removes aliases from
cid_t) child’s subtree

TABLE II
HIRES MEMORY MANAGEMENT API. A PARENT INVOKES THESE

FUNCTIONS TO GRANT MEMORY TO THE CHILD (IDENTIFIED BY ITS ID

cid_t), AND REMOVE IT.

As efficient memory access is enabled by the hardware

mechanisms, here we focus on the HIRES mechanisms for

resource delegation and assignment which are influenced by

the memory management in L4 [17]. The COMPOSITE kernel

provides a simple system call that is used to map a given

physical frame into a component at a specified address. A

single component is permitted to use this low-level API, and

it exposes a simple interface, introduced in Table II, through

which memory is mapped appropriately from parents into

children. alias and remove are similar to map and unmap

in L4 [17]. alias maps a page in the memory management

component into another at a specific location, while remove

will unmap all aliases rooted at the parent. We diverge from

the L4 mechanisms in two main ways: (1) by not providing a

grant call that not only adds a mapping to the child, but also

removes it from the parent (this breaks removes parent control

over that memory page and breaks G2), and (2) by integrating

the implementation of alias and remove with the resource

reservation API so that memory can only be mapped into a

child if amount of memory has been bound (via bind) to the

child. Additionally, in contrast to L4, we implement the logic

and data-structures to track memory mappings in a user-level

component as opposed to in the kernel.

Sharing of memory between siblings is mediated by the

parent. The parent provides an interface for aliasing physi-

cal frames between multiple siblings. However, such sharing

lessens the isolation between siblings, and we have found

that, in most cases, sharing is only required between child

and parent. We use locks that implement priority inheritance

to avoid unbounded delays due to the sharing of “mapping”

data-structures in the parent between two sibling threads [15].

This implementation of priority inheritance utilizes the explicit

tracking of task dependencies as described in Section III-C.

The careful control of resource sharing satisfies G4.

IV. EXPERIMENTAL EVALUATION

We conduct all experiments on an Intel Atom n330 clocked

at 1.6 GHz with 2 GB of memory. Only one SMT thread (and

only one core) is active. We use the hijack [1] technique to

boot into COMPOSITE, and we utilize the Linux 2.6.33 Atheros

L1C networking device driver. This system is connected to a

client via gigabit ethernet.

In this section, we wish to evaluate (1) the effectiveness

of HIRES in short circuiting the hierarchy and enabling

efficient execution at any depth, (2) the resource management

delegation overhead in HIRES, and (3) the ability of all

aspects of the system to “come together”, and provide the

expected resource usage performance for real application,

while ensuring that the parent can provide strict isolation.

First we quantify a fundamental cost in COMPOSITE, that

of an invocation between protection domains (which are on

the granularity of subsystems in this paper). An invocation of

function f in another component (subsystem) switches page

tables twice and switches between user and kernel level four

times, takes 0.815 µ-seconds. Though Linux was not designed

primarily for IPC, for the sake of context, a comparable

operation between threads communicating over a pipe takes

10.305 µ-seconds (averaged over 10K invocations).

Efficient resource access and control. HIRES is set up so

that a resource is bound to a subsystem at a specific depth

in the hierarchy. We investigate the effect that an increasing

depth has on the efficiency and predictability of accessing and

manipulating that resource. Ideally, accessing and controlling

resources from a subsystem would have a constant cost re-

gardless of the subsystem’s depth in the hierarchy, effectively

short-circuiting the hierarchy and making HRMs as efficient

as a single-level of resource managers.

Figure 4(a) plots the latency of sending an event from one

thread to another. Two threads, A and B, utilize a component

that provides event management. Thread B waits for an

event, and thread A triggers it. The event component uses the

scheduler (in the subsystem) to wakeup B when the event

is triggered, and to put it to sleep when it waits for the

next event. We measure the latency between when A triggers

the event, and when B receives it. This tests how efficiently

and predictably the scheduler can manage its threads. We

report averages over 1500 samples (the standard deviations are

always less than 0.01µs.) Figure 4(a) shows that regardless of

the depth of the subsystem in the hierarchy, the scheduler is

able to efficiently multiplex the CPU. The kernel automatically

updates the execution time accounting information in each

subsystem the threads have been granted to. We compare this

to sending a single byte between pthreads in the same process

in Linux.

Figure 4(b) measures the response latency between (i) when

the kernel has received an interrupt from the NIC and it

attempts to activate an event thread in a subsystem, and

(ii) when the high-priority event thread is activated. The depth

of the subsystem (thus where the interrupt is delivered) in the

HRM system is varied. We are interested in any variations

in response latency across depths. A client sends 450 UDP

packets/second, and we take the average and standard devia-

tion of 5000 samples. The maximum latencies are determined

by interference with the higher-priority timer tick and are in

the range [29.91,40.48] µs. The graph shows that there is

little variation across depths, thus I/O is processed predictably,

and with a low response latency regardless of the subsystems

location in the HRM system.

Figure 4(c) depicts the latency for mapping, then unmapping

(measured separately) a single page that was granted to the

memory manager in a subsystem. We vary the depth in

the HRM system. We plot the results for both an alias

implementation that zeros the page, and one that does not.

This cost is compared to the costs of mapping and unmapping

a private, anonymous page using mmap and munmap in Linux.

In this case, we ensure that the page is really mapped in,

by writing to it. We report the average across 10K samples.

As in (b), the worst case costs in HIRES are determined by

interference by timer tick and range from [22.25,37.33] µs.

This again shows that HRM is possible without penalizing

“deep” subsystems.

HRM overheads. Here we investigate the overheads imposed

by HRMs. Primarily, each subsystem unavoidably consumes

memory. Thus if a subsystem requires X memory, its parent

must reserve X + O where O is the amount required for

itself. To get a rough estimate of how much memory this

could be, a fixed priority round robin scheduler, the hierar-

chical memory manager, network I/O interface, and resource

reservation components total 102K. This gives a designer an

idea of the overhead. However, different resource management

policies use different data-structures and algorithms, and thus

 0

 1

 2

 3

 4

 5

1 2 3 4

M
ic

ro
s
e

c
o

n
d

s

HiRes event delivery latency

Linux pipe latency

Depth in the Hierarchy

(a)

 0

 1

 2

 3

 4

 5

 6

1 2 3 4

M
ic

ro
s
e

c
o

n
d

s

Depth in the Hierarchy

Event response latency and stddev

(b)

 0

 2

 4

 6

 8

 10

1 2 3 4

M
ic

ro
s
e

c
o

n
d

s

alias
alias with zeroing

remove

map
unmap

LinuxDepth in the Hierarchy

(c)

Fig. 4. The effect of hierarchical depth resource management. (a) CPU management: The latency for communication between a thread, and a second
higher-priority thread in HIRES and in Linux. (b) I/O management: The latency for delivery of an I/O event to an event-thread. (c) Memory management:
Overhead to alias, alias and zero, and remove a page.

 0

 2

 4

 6

 8

 10

 12

1 2 3 4

M
ic

ro
s
e

c
o

n
d

s

Timer notification latency

Fig. 5. Latency to receive a timer notification for different hierarchical depths.

use different amounts of memory. The overhead is specific to

the implementations chosen.

An additional source of overhead comes from shared in-

terrupt processing. Certain interrupts cannot be demultiplexed

the way that the network is. For example, the timer-tick serves

an important function in allowing the root subsystem to keep

time, and provide the requisite isolation between children. This

interrupt should be delivered to the root scheduler, but (as

detailed in Section III-C), timer tick information is propagated

up through the hierarchy via the child scheduler threads. This

approach adds latency to time-triggered wakeups. Figure 5 in-

vestigates this latency by measuring the time between (a) when

the timer interrupt occurs and COMPOSITE attempts to deliver

it to the root scheduler, and (b) when a high-priority thread

in a given subsystem receives a notification that the interrupt

occurred as delivered by the protocol in Section III-C. Though

the cost increases proportional to the depth in this case, we

still consider the cost to be low enough to be practical.

Efficient, accurate, and predictable HRM. Here we evaluate

the performance impact that hierarchical resource management

has on a complex application (G1), study the accuracy of

parent accounting and control over the child (G2), and do so

while the child subsystem is spatially isolated from the parent

(G3). We execute an application that utilizes all resources to

determine if the microbenchmarks above are translated into a

negligible overhead in more complex scenarios. Specifically,

we use a web server that is defined by the combination of 22

components and consists of 6 separate threads, one of which

is the event thread to handle packet reception. This web server

has been shown [12] to have comparable or better performance

to an industry counterpart2. The server contains components

to manage its resources (a networking stack interfaces with

the NIC, and the application presumes a specific fixed-priority

assignment). This is the type of application that would run

along-side real-time tasks in an open real-time system (e.g.

webservers are often used for system configuration). Though

web-servers do not have real-time requirements, HIRES re-

quires efficient execution to be practical, and a web-server

will test the ability of the system to exist in open real-time

environments.

Depth Connections/sec Stddev Latency 95% Latency

0 6356 205 3.5 5

1 6294 69 3.8 5

TABLE III
WEB-SERVER PERFORMANCE AT DIFFERENT LEVELS.

First, we study the efficiency of the web server when

executing normally as the root subsystem, then we evaluate it

executing as the child to a root subsystem. A client machine

uses ab (see footnote 2) to maintain 20 concurrent connections

over the span of 30 seconds. We average the connections per

second over 30 readings. Table III compares the performance

of the two setups. There is a 1% performance degradation

for executing the webserver subsystem as a child. We find

this overhead to be acceptable. ab reports the client’s average

connection latency (in ms) which is similar for both ap-

proaches. ab also reports that for both approaches, 95% of the

connections took 5 ms or less. We believe this demonstrates

that HIRES satisfies G1 for a complex application.

2httpd.apache.org

Next we investigate the ability of a parent subsystem to

accurately and predictably control its children (G2). The

root scheduler implements a deferrable scheduler policy to

constrain the execution of the best-effort subsystem (i.e. the

web-server). However, using only servers to control CPU

allocations does not help to both maintain web-server per-

formance and to ensure predictable execution of real-time

tasks. First, the web-server consists of 6 threads with many

dependencies between them (e.g. the event thread passes data

to the main thread, which passes data to the CGI thread). As

the relative execution time of these threads is not predictable,

it isn’t clear how to assign reservations to their deferrable

server threads. Second, the web-server assumes a specific

priority assignment amongst its threads which couldn’t be

accommodated if e.g. the root used rate-monotonic priority

assignments. Thus, hierarchical resource management here is

required to both maintain the semantics of the web-server

and to limit its interference with the real-time tasks. The

web-server is run as a child subsystem accounted in the

parent as a single deferrable server. Three cpu-bound threads

are also scheduled in servers with reservations (budgets and

replenishment periods) of 4 of 25, 3 of 20, and 1 of 10 timer

ticks.

 0

 10

 20

 30

 40

 50

 5 10 15 20 25

%
 u

ti
liz

a
ti
o

n

time

webserver
4/25
3/20
1/10

reservation

Fig. 6. CPU utilization of best-effort subsystem and real-time tasks.

Figure 6 depicts the CPU utilization of threads over time.

The budget of the web-server child subsystem remains 4

throughout the test. The x-axis is broken into three phases.

First, when the budget replenishment period of the web-server

is set to 8, second when it is set to 16, and third when it

is set to 32. For consistency, the webserver has the highest

priority in all scenarios. The resource utilizations for each of

the real-time threads remains consistent with their reservations,

as does the web-server’s subsystem. Even though the web-

server is triggered directly when network packets arrive (which

avoids invoking schedulers), and even though it is a highly

sporadic workload, the parent is able to maintain accurate

accounting information, and schedule accordingly. The web-

server’s throughput goes down almost exactly in proportion to

the decreases in reservation, indicating that even when the

best-effort subsystem aggressively scaled back, hierarchical

overheads don’t increase.

V. RELATED WORK

Many systems have explored how to enable application-

specific resource management policies. Exokernels [18] move

functions typically found in the kernel, into user-level libraries.

This approach distributes resource management decisions, en-

abling applications to specialize accordingly. However, with-

out central control of system resources, the task of isolating

individual applications becomes difficult. In contrast, systems

such as resource kernels [10] enable the strict control over the

allocated resources to each application, but do not explicitly

promote the use of customizable resource managers. HIRES

enables both application-specific resource management poli-

cies and parent control over allocation by providing mecha-

nisms for hierarchical resource management.

Various other systems have attempted to support HRM of

a single resource. To address CPU management, hierarchical

scheduling implementations have been researched. Some form

the hierarchy of schedulers in the kernel, requiring that they

be trusted [19], [20]. Others use CPU donations [21], [22] to

enable any thread to grant processing to any other. Though

general, this makes it difficult for a parent to control the

assignment of all resources to a child. Finally, two-level

thread management systems [16], [23] multiplex application-

level threads on top of kernel threads. Our previous work

on COMPOSITE [14] provided the foundation for HIRES

by enabling a hierarchy of schedulers to be formed, but it

did not investigate the protocols for delegation of resource

management, nor the difficulties in mediating resource sharing

in the parent.

In terms of hierarchical memory management, our interface

is similar to L4’s [17]. However, HIRES diverges by ensuring

that the mapping primitives integrate into the HRM system’s

reservation framework and into the delegation model (thus the

omission of grant).

Research has been conducted that attempts to vector I/O

appropriately to user-level [7] by performing early demulti-

plexing on device interrupts. HIRES does so while ensuring

that proper accounting and scheduling is conducted throughout

a hierarchy of schedulers.

VI. CONCLUSIONS AND FUTURE WORK

HIRES is a system for the predictable hierarchical manage-

ment of the fundamental system resources: CPU, memory, and

I/O. HIRES provides abstraction over resource management by

enabling policies to be implemented in the subsystem that best

understands how resources should be used. This encourages

the separation of concerns whereby a parent resource manager

focuses on effectively providing temporal isolation between its

children, and the children managers focus on best using their

resources to meet that subsystem’s goals. Through pervasive

spatial isolation, each subsystem freely defines customized

managers without endangering their parents or siblings. We

outline a number of goals for the construction of a predictable

HRM system, and emphasize the importance of avoiding un-

due overheads in the abstraction of resource management. Re-

sults show that HIRES is effective at avoiding such overheads,

both in microbenchmarks and for a complex application, while

also being competitive with existing systems. Additionally, we

show that parents accurately and precisely control resources

delegated to their children.

The HIRES and COMPOSITE source is located at

www.seas.gwu.edu/˜gparmer/composite.html.

REFERENCES

[1] G. Parmer and R. West, “Hijack: Taking control of cots systems for
real-time user-level services,” in Proceedings of the 13th IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS

2007), April 2007.

[2] P. Goyal, X. Guo, and H. M. Vin, “A hierarchical CPU scheduler for
multimedia operating systems,” in Proceedings of the second USENIX

symposium on Operating systems design and implementation (OSDI),
1996.

[3] S. Ruocco, “User-level fine-grained adaptive real-time scheduling via
temporal reflection,” in Proceedings of 27th IEEE International Real-

Time Systems Symposium (RTSS’06), 2006.

[4] “Real-Time Linux: http://www.rtlinuxfree.com.”

[5] J. Liedtke, H. Haertig, and M. Hohmuth, “OS-controlled cache pre-
dictability for real-time systems,” in RTAS ’97: Proceedings of the 3rd

IEEE Real-Time Technology and Applications Symposium, 1997.

[6] R. von Behren, J. Condit, F. Zhou, G. Necula, and E. Brewer, “Capriccio:
Scalable threads for internet services,” in 19th ACM Symposium on

Operating Systems Principles (SOSP), 2003.

[7] T. von Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: A user-level
network interface for parallel and distributed computing,” in Proceedings

of the 14th ACM Symposium on Operating Systems Principles (SOSP),
1995.

[8] I. Shin and I. Lee, “Periodic resource model for compositional real-
time guarantees,” in In Proceedings of the 24th IEEE Real-Time Systems

Symposium (RTSS), 2003.

[9] A. K. Mok, X. A. Feng, and D. Chen, “Resource partition for real-
time systems,” in Proceedings of the Seventh Real-Time Technology and

Applications Symposium (RTAS ’01), 2001.

[10] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein, “Analysis
of hierarchical fixed-priority scheduling,” in Proceedings of the 14th

Euromicro Conference on Real-Time Systems (ECRTS), 2002.

[11] K. Adams and O. Agesen, “A comparison of software and hardware
techniques for x86 virtualization,” in Proceedings of the 12th interna-

tional conference on Architectural support for programming languages

and operating systems (ASPLOS), 2006.

[12] G. A. Parmer, “Composite: A component-based operating system for
predictable and dependable computing,” Ph.D. dissertation, Boston Uni-
versity, Boston, MA, USA, Aug 2009.

[13] G. Parmer, “The case for thread migration: Predictable ipc in a cus-
tomizable and reliable os,” in Proceedings of the Workshop on Operating

Systems Platforms for Embedded Real-Time applications (OSPERT ’10),
2010.

[14] G. Parmer and R. West, “Predictable interrupt management and schedul-
ing in the Composite component-based system,” in Proceedings of the

29th IEEE International Real-Time Systems Symposium (RTSS), 2008.

[15] G. Parmer and J. Song, “Customizable and predictable synchronization
in a component-based os,” in Proceedings of the International Confer-

ence on Embedded Systems and Applications (ESA), 2010.

[16] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy,
“Scheduler activations: effective kernel support for the user-level man-
agement of parallelism,” in Proceedings of the thirteenth ACM sympo-

sium on Operating systems principles (SOSP), 1991.

[17] J. Liedtke, “On micro-kernel construction,” in Proceedings of the 15th

ACM Symposium on Operating System Principles (SOSP), 1995.

[18] D. R. Engler, F. Kaashoek, and J. O’Toole, “Exokernel: An operating
system architecture for application-level resource management,” in Pro-

ceedings of the 15th ACM Symposium on Operating System Principles

(SOSP), 1995.

[19] J. Regehr and J. A. Stankovic, “HLS: A framework for composing
soft real-time schedulers,” in Proceedings of the 22nd IEEE Real-Time

Systems Symposium (RTSS 2001), 2001.
[20] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril, “Towards

hierarchical scheduling on top of vxworks,” in Proceedings of the Fourth

International Workshop on Operating Systems Platforms for Embedded

Real-Time Applications (OSPERT ’08), July 2008, pp. 63–72.
[21] B. Ford and S. Susarla, “CPU inheritance scheduling,” in Proceedings

of the second USENIX symposium on Operating systems design and

implementation (OSDI), 1996.
[22] J. Stoess, “Towards effective user-controlled scheduling for microkernel-

based systems,” SIGOPS Oper. Syst. Rev., vol. 41, no. 4, pp. 59–68,
2007.

[23] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer, “Xen and the art of virtualization,” in
Proceedings of the ACM Symposium on Operating Systems Principles

(SOSP), 2003.

