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Abstract—Device interrupts have long been a problem in real-
time systems. Handling an interrupt in the context of a critical
task potentially leads to a missed deadline. While modern systems
have proposed techniques to schedule interrupts, the challenge is
to determine the correct priority based on the task that triggers
their occurrence. One approach is to assign an interrupt with
the highest priority among all tasks waiting on a corresponding
device. However, this does not fully eliminate priority inversion,
as the interrupt may be handled at a much higher priority than
the task with which it is associated.

To solve this problem, we present a solution for devices con-
nected to a Universal Serial Bus (USB). USB has properties that
make it potentially suitable for tackling high bandwidth sensor
data processing and low-latency input/output (I/O) control. We
describe the implementation of an xHCI (USB 3.x) driver in the
Quest RTOS, which guarantees throughput and delay require-
ments for USB devices and their I/O requests using time-budgeted
interrupt handling servers. Our paper is the first to introduce
differentiated USB interrupt servicing. Experiments show how
our approach outperforms a Linux xHCI driver running on
a PREEMPT_RT-patched system with SCHED_DEADLINE tasks.
Differentiated USB interrupt handling is shown to improve the
performance of Quest’s default xHCI driver, which is purposely
designed to provide real-time I/O guarantees.

Index Terms—Universal Serial Bus (USB), Message Signaled
Interrupts (MSIs), Differentiated Service, Real-Time I/O

I. INTRODUCTION

Embedded single board computers connect with input/out-
put (I/O) devices using relatively low-bandwidth interfaces
based on RS232 [1], Serial Peripheral Interface (SPI) [2],
I2C [3], or Controller Area Network (CAN) [4] bus proto-
cols, among others. However, new classes of real-time and
embedded systems are emerging with the need to process high-
bandwidth data from sensors such as cameras, LIDARs and
RADARs. Examples include those in the automotive domain,
where an array of cameras might work together with a LIDAR
or RADAR unit to provide sensory inputs for a semi- or full-
autonomous advanced driving assistance system (ADAS). Var-
ious standards are being developed to support host connectivity
of high-bandwidth devices, including GSML [5] and Ethernet
MAC-PHY chips [6]. However, none of these are as prevalent
as Universal Serial Bus (USB), which is increasingly popular
on many industrial grade board computers.

USB allows multiple different devices to be attached to a
host via a shared bus instance managed by a host controller.
The host controller generates interrupts on completion of
device transfers at a moderated rate. USB has the bandwidth to

handle modern sensor devices such as cameras, while meeting
the latency requirements of many control buses. For example,
USB 3.2 is capable of reaching bus rates of 20 Gbps, with
USB 4.0 rising to 40 Gbps, and USB/Thunderbolt 5.0 expected
to reach as high as 120 Gbps. At the same time, transfer
requests are schedulable in microframes of 125 microseconds,
making USB potentially suitable for latency-sensitive transfers
typically associated with CAN buses.

While USB appears to be a viable bus technology for han-
dling I/O requests for both low- and high-bandwidth devices,
with relatively low latency bounds, it poses several challenges.
First, the host controller driver needs to be able to schedule
I/O requests according to real-time guarantees, but evidence
suggests that most such drivers are not sufficiently predictable
to meet real-time requirements in timing-critical domains [7]–
[9]. Second, many devices now connect to hosts with different
service-level guarantees, dictated by task criticality levels.

To understand the importance of mixed-criticality sys-
tems [10] and real-time I/O, consider the direction being taken
by automotive systems. These systems are tending towards
centralized or zonal architectures [11], which replace separate
electronic control units (ECUs) with either a centralized main
computer or several domain controllers managing multiple
vehicle functions. These functions include chassis, body, pow-
ertrain, infotainment and ADAS services, and increasingly
are being consolidated onto one or several computers where
they run as software tasks. Consequently, we are now seeing
the emergence of software-defined vehicles (SDVs) [12]–[16]
comprising multiple functions of different criticality levels on
the same host machine. These host machines feature powerful
multicore CPUs, capable of handling hundreds of software
tasks, each interacting with the physical environment through a
network of sensors and actuators. It becomes critical to ensure
real-time information exchange between sensors and actuators
connected to the same host machine.

The problem addressed by this paper is to consider how
USB is able to manage the real-time exchange of information
between host tasks and devices such as those connected to
traditional CAN bus networks or high-bandwidth sensors. In
tackling this problem we consider the importance of meeting
throughput and delay constraints associated with tasks of
different criticality levels.

While prior work has investigated the use of USB for real-
time I/O [7]–[9], [17], [18], we are unaware of any reports



of how to ensure differentiated service guarantees for I/O
requests, beyond the basic endpoint service-level agreements
supported by a device. While a USB request might select a
particular transfer requirement based on the endpoint capa-
bilities (e.g., number of bytes to transfer over a window of
time), no prior work has looked at how to differentiate the
handling of interrupts from USB devices according to their
service requirements.

Significantly, USB has the ability to associate specific
interrupts with different service requests, by including an
interrupter value in the request. This is similar to early
demultiplexing [19], [20], which associates each interrupt with
the task that led to its occurrence [21]–[23]. However, most
approaches either assign a highest priority among a set of
waiting tasks to the handling of interrupts, or they require
software assistance to determine the match of an interrupt with
the task that caused it to occur. Here, we investigate USB
capabilities to support differentiated services.

In this paper, we present the following contributions: (1)
we describe the design and implementation of a USB dif-
ferentiated services framework, which uses multiple USB
interrupters to associate different I/O requests with specific
interrupt handlers; (2) we show how to guarantee service-level
constraints on I/O requests by scheduling USB interrupts along
with tasks that depend on them; (3) we compare our approach
in the Quest RTOS [24] against a Linux system that features
one USB interrupter for all I/O requests. This work is the first,
to our knowledge, to implement multiple USB interrupters into
a real-time scheduling framework. Experimental results show
how our approach is able to guarantee differentiated services
support while prior solutions, including Linux, are not.

The next section provides background to the problem ad-
dressed in this work. It includes pertinent details about USB,
interrupters and how interrupts are typically handled in modern
operating systems. This is followed by technical details behind
our USB differentiated services approach in Section III . Sec-
tion IV describes the evaluation of USB differentiated services
in comparison to prior approaches, including Linux. Related
work is discussed in Section V, followed by conclusions and
future work in Section VI .

II. BACKGROUND

One of the main challenges for real-time USB transfers
is the timely handling of interrupts when such transfers are
completed. Simply preempting the currently executing task
to handle an interrupt is often unacceptable. Systems such
as Linux charge the preempted task for time spent handling
interrupts, even though the task is not actually making progress
during that time, potentially causing it to miss an impor-
tant deadline. What is needed is an approach that correctly
accounts and charges interrupt processing time to an entity
associated with the task that initiated the USB request.

In Linux, the interrupt handling is divided into a top and
bottom half. The top half acknowledges the interrupt as soon
as it is triggered, and then defers the bulk of the handler to a
bottom half. Normally, the bottom half is executed as soon as

the top half of a handler finishes, with interrupts enabled. If
a bottom half is preempted by interrupts and restarted MAX -
SOFTIRQ RESTART times, it defers execution to a per-core
ksoftirqd thread. MAX SOFTIRQ RESTART defaults to 10 to
achieve a trade-off between low-latency interrupt handling and
CPU time needed by preempted tasks. Each ksoftirqd thread
is scheduled using the SCHED FIFO class, to handle deferred
interrupts.

As others have noted [21], [22], the Linux interrupt-handling
approach leads to a mismatch between the priority of the task
requesting I/O and the priority associated with the interrupt
handler on I/O completion. To begin, interrupt bottom halves
take highest priority until they have interfered with task
processing too many times, which leads to their demotion to
an entirely different priority. It makes sense in a real-time
system to manage interrupts at the priority of the entity, either
a kernel or application task, that generated the request.

In our case, we wish to differentiate between USB requests,
so that host controller interrupts are matched to the correct
bottom half processing priority. In the rest of the section, we
will discuss how eXtensible Host Controller Interface (xHCI)
interrupters and Message Signaled Interrupts (MSIs) provide
the basis for correct prioritization of interrupts resulting from
USB requests.

A. USB & xHCI

Universal Serial Bus (USB) is a master-slave protocol that
allows multiple devices to be connected to a host computer.
All USB transfers are initiated by the host acting as the master.
Different bus speeds include low, full, high, superspeed, and
superspeed+ versions 3.1 and 3.2, supporting device through-
puts of 1.5Mbps, 12Mbps, 480Mbps, 5Gbps, 10Gbps and
20Gbps, respectively.

A USB device is defined by a set of descriptors that are
readable by the host. The descriptors correspond to the device,
its configurations, interfaces and supported endpoints. A de-
vice has one device descriptor, with at least one configuration.
A configuration contains at least one interface, which defines
zero or more endpoints.

A device descriptor contains general information, such as
the USB version, vendor and product IDs, the device class,
and the number of supported configurations. A configuration
descriptor includes information such as the maximum bus
power consumed by the device, and the number of interfaces
supported by the current configuration. Only one configuration
is active at a time. An interface descriptor serves as the header
for a defined number of endpoints, used for communication
with the host. Each endpoint descriptor then defines the type
and direction of transfer, polling interval, and maximum packet
size of the endpoint. There are four endpoint transfer types:
(1) Control, for lossless transmission of device configuration
data, (2) Bulk, for lossless transmission of non-real-time data,
(3) Interrupt, for lossless real-time data, and (4) Isochronous,
for loss-tolerant real-time data.

All USB transfers are managed by the host controller, which
has undergone four standards, at the time of writing: the Open



Host Controller Interface (OHCI), Universal Host Controller
Interface (UHCI), Enhanced Host Controller Interface (EHCI),
and Extensible Host Controller Interface(xHCI). These speci-
fications are intended to work with USB 1.1, USB 1.x, USB
2.0, and USB 3.x respectively. All specifications are backward
compatible with earlier standards.

xHCI defines three types of ring buffer, for communication
between USB devices, host and host controller: Command
Ring, Event Ring and Transfer Ring. A single Command Ring
per extensible host controller (xHC) instance is used to pass
commands to the xHC. An xHC supports up to 1024 Event
Rings. Each Event Ring is used by the xHC to pass various
event notifications to the host, such as transfer completion.
Event rings are managed by interrupters (discussed in Sec-
tion II-B). One Transfer Ring per USB endpoint is used by
the host to exchange data with a device.

B. Interrupters & PCI Interrupts

Traditionally, a device asserts a signal on a physical pin to
trigger an interrupt to the host. Legacy x86-based platforms
use up to two cascaded 8259 Programmable Interrupt Con-
troller (PIC) chips, which support up to 15 device interrupts,
each with fixed priority.

The 8259 PIC’s limited number of interrupts and lack of
support for symmetric multiprocessing (SMP) led to it being
replaced by the Advanced Programmable Interrupt Controller
(APIC). The APIC consists of one Local APIC (LAPIC) per
core and one optional IO-APIC that directs external interrupts
to specific cores. An IO-APIC supports up to 240 interrupt
lines, with each line capable of being assigned an independent
interrupt vector. However, most IO-APICs such as Intel’s
82093AA [25] only support 24 interrupt lines. When an
interrupt line is asserted, the IO-APIC writes the interrupt
vector associated with the line into the LAPIC. Then, the
LAPIC will deliver the interrupt to its processor core.

The Peripheral Component Interconnect (PCI) bus is com-
monly found in personal computers (PCs), and provides a
means to connect hardware devices to the host computer. PCI
is used to deliver interrupts through an IO-APIC. When using
an IO-APIC, all functions on a PCI device share four interrupt
lines: INTA#, INTB#, INTC# and INTD#. Each interrupt is
then mapped to an interrupt number on the CPU by the BIOS.
Due to limited interrupt lines provided by the IO-APIC, it is
often necessary for a PCI device to share the same interrupt
number with other PCI devices. Therefore, the host must
query the PCI device to determine the function that caused
an interrupt.

PCI revision 2.2 introduced Message Signaled Interrupts
(MSIs) to allow devices to bypass an IO-APIC and write
directly to a target LAPIC. MSIs allow each device to have
up to 32 interrupts without needing a physical interrupt pin.
Intel’s tests with Linux [26] show that an IO-APIC reduces
interrupt delivery latency by a factor of around three compared
to a PIC, while MSIs reduce the latency by a factor of around
seven relative to a PIC. MSI-X was introduced in PCI 3.0, to
allow up to 2048 interrupts per device. Unlike MSI, where all

interrupts from one device are directed to the same LAPIC,
MSI-X allows each interrupt to target different LAPICs. In
this paper, we focus on MSI, as our test platform’s xHC does
not support MSI-X capabilities.

The xHC must support MSI if it features more than one
interrupter. An xHCI supports up to 1024 interrupters, with
each interrupter managing events and their notification to the
host. Each interrupter consists of an Interrupter Management
Register, an Interrupter Moderation Register and an Event
Ring. The Interrupter Management Register allows the host
to enable and disable individual interrupters. The Interrupter
Moderation Register allows the host to moderate the frequency
of interrupts generated by an interrupter. Each interrupter will
generate an interrupt to the host if it is enabled and there is
something in its event ring that requires interrupt handling.

The MSI capability in the xHC’s PCI configuration space
must be programmed, to establish interrupt vectors and han-
dlers with each interrupter. The MSI capability allows the host
to set the total number of interrupts to be enabled. The host
sets the vector for interrupter zero, with subsequent vectors
being automatically assigned to higher numbered interrupters.
For example, if the starting vector is set to be 32, then the
first interrupter will generate vector 32, the second interrupter
will generate vector 33, and so on. Therefore, with MSI, it
is possible to associate a unique interrupt (and corresponding
interrupter) with each separate USB device (and corresponding
xHC Event Ring).

III. TECHNICAL DETAILS

To support the correct prioritization of interrupts resulting
from USB requests, we use the Quest real-time operating
system (RTOS) [27] in this work. In Quest, interrupt handling
is divided into top and bottom halves, as with Linux. However,
a top half will acknowledge an interrupt and schedule a bottom
half on Quest’s Virtual CPUs (VCPUs) [24]. Each VCPU
is given a budget of C, and period of T, time units. There
are two types of VCPUs in Quest: Main and I/O VCPUs.
Application and system tasks are assigned to Main VCPUs,
which are implemented as Sporadic Servers [28]. Interrupt
bottom halves are executed on I/O VCPUs, which operate as
bandwidth preserving servers with a utilization factor, UIO.
A task executing on a Main VCPU may issue a blocking I/O
request that completes interrupt processing on a specific I/O
VCPU, before the task is unblocked and rescheduled on its
Main VCPU.

The budget and period of an I/O VCPU are dynamically
calculated as a function of UIO and the period of a specific
Main VCPU for a task awaiting I/O completion, as described
shortly. Significantly, an I/O VCPU has a single replenishment,
which is available at a future eligibility time. This guarantees
its bandwidth utilization never exceeds UIO on the underlying
physical CPU (or core). This approach is effective for short-
lived interrupt handlers, as it avoids frequent reprogramming
of replenishment timers needed to accurately manage budget
usage of a Sporadic Server [29].



We establish a baseline system configuration that uses one
I/O VCPU for all interrupt bottom half processing associated
with Quest’s xHCI driver. In the current version of Quest,
the top half xHCI interrupt handler sets the period, TIO, of
its I/O VCPU to be the same as the smallest period, TMain,
of all Main VCPUs currently waiting for USB requests to
be completed. As Quest defaults to using Rate-Monotonic
Scheduling (RMS) [30] for all VCPUs, a smaller period
implies a higher priority. The budget of the I/O VCPU is then
set to UIO×TMain, thus preserving bandwidth UIO over the
Main VCPU’s period.

A. USB Interrupt Differentiated Service

While the above approach leads to an I/O VCPU inheriting
the priority of one of the Main VCPUs it serves, it does not
entirely eliminate priority inversion. It is still possible for a
USB request associated with a low-priority Main VCPU to
be handled at the highest priority among all waiting Main
VCPUs. To eliminate this problem, we extend Quest’s xHCI
driver to use one I/O VCPU per USB interrupter, with our
test machine having an xHC capability of up to 8 interrupters.
Using different interrupters for USB requests ensures the
correct I/O VCPU is selected when handling a bottom half.
This, in turn, leads to improved differentiated service support
for USB requests of different priorities.

To illustrate the importance of differentiated service, let us
consider a uni-processor system with three threads, τH , τM
and τL. Each thread is assigned high, medium and low
priority, respectively. Suppose τH issues an I/O request and
then suspends itself until an interrupt fires. Suppose also that
τM and τL are CPU-bound tasks. Let us assume the system
is running Linux with the PREEMPT_RT patch. τH , τM and
τL are scheduled under SCHED_DEADLINE. However, the
interrupt bottom half is executed under SCHED_FIFO with
a priority of 50, which is a lower priority class than the
SCHED_DEADLINE tasks.

Consider τH , τM and τL have total execution times of two,
three and one time units, respectively, with top and bottom
half interrupt handling taking one time unit in each case, per
I/O request. As shown in Figure 1, with Linux, τH misses its
deadline (at t=6) because the bottom half for τH is delayed by
τM and τL. The same setup with Quest, shown in Figure 2,
shows no deadline misses as the bottom half inherits the
priority of τH .

Now let us reconsider the setup with the same number of
threads. This time, both τH and τL issue I/O requests after
1 time unit, while τM remains a CPU-bound task. As shown
in Figure 3 with adjusted ready times, Linux still leads to
deadline misses. Quest also leads to deadline misses as shown
in Figure 4, because the high priority bottom half handles the
low priority task’s request and thus delays τM and τH .

With our USB differentiated service framework, individual
bottom halves will handle requests with matching priorities.
As shown in Figure 5, two bottom halves are created – one
for τH and another one for τL. Because bottom halves execute
with correct priority, there are no deadline misses using Quest.
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Ready To Run Deadline I/O RequestTime Slice
0 5 10

t

Fig. 1: Linux: TH Misses Deadline
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Ready To Run Deadline I/O RequestTime Slice
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Fig. 2: Quest (No Differentiated Service): No Deadline Misses
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Fig. 3: Linux: TH Misses Deadline with More I/O Requests

B. USB Interrupt Differentiated Service API

Our interrupt differentiated service API allows user-space
programs to bind USB device interrupts to I/O VCPUs. This is
done by a call to usb_set_iovcpu, which includes the file
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Fig. 4: Quest (No Differentiated Service): Deadline Misses
with More I/O Requests
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Fig. 5: Quest (Differentiated Service): No Deadline Misses
with More I/O Requests

descriptor of the USB device and user_iovcpu_class:

static inline int usb_set_iovcpu(int fd,
user_iovcpu_class iovcpu_class);

On success, usb_set_iovcpu returns 0, otherwise it
returns -1. A successful function call results in all interrupts
generated from I/O requests using the file descriptor fd to be
handled with the selected I/O VCPU scheduling parameters.

The number of I/O VCPU classes is configurable, up to
the total number of interrupters. Each of the values in the
type user_iovcpu_class is one-to-one mapped to an I/O
VCPU class in the kernel. For this paper, we define 8 classes
as shown in init_params. These each have their own
configurable utilization, U = C/T (ranging from 1% to 12%
in this example), to accommodate different I/O throughput and
latency constraints. Not all I/O VCPUs need to be in use, only
those that are selected for the specific throughput and delay
requirements. If the system has too many active I/O VCPUs, it

is possible to encounter infeasible schedules due to the additive
utilization requirements they need to handle interrupts [24].

typedef enum {
USER_IOVCPU_CLASS_USB0, USER_IOVCPU_CLASS_USB1,
USER_IOVCPU_CLASS_USB2, USER_IOVCPU_CLASS_USB3,
USER_IOVCPU_CLASS_USB4, USER_IOVCPU_CLASS_USB5,
USER_IOVCPU_CLASS_USB6, USER_IOVCPU_CLASS_USB7

} user_iovcpu_class;

static struct sched_param init_params[] = {
{ .type = IO_VCPU, .C = 1, .T = 100,
.io_class = IOVCPU_CLASS_USB0 },

{ .type = IO_VCPU, .C = 2, .T = 100,
.io_class = IOVCPU_CLASS_USB1 },

{ .type = IO_VCPU, .C = 3, .T = 100,
.io_class = IOVCPU_CLASS_USB2 },

{ .type = IO_VCPU, .C = 4, .T = 100,
.io_class = IOVCPU_CLASS_USB3 },

{ .type = IO_VCPU, .C = 5, .T = 100,
.io_class = IOVCPU_CLASS_USB4 }.

{ .type = IO_VCPU, .C = 6, .T = 100,
.io_class = IOVCPU_CLASS_USB5 }

{ .type = IO_VCPU, .C = 8, .T = 100,
.io_class = IOVCPU_CLASS_USB6 },

{ .type = IO_VCPU, .C = 12, .T = 100,
.io_class = IOVCPU_CLASS_USB7 }

};

C. API Implementation

The USB interrupt differentiated service framework dynam-
ically binds a file descriptor to an I/O VCPU, which in turn is
statically bound to an interrupter. The relationship is illustrated
in Figure 6.

USB file
descriptor

Quest
I/O VCPU

xHCI
interrupter

Dynamic
Bind Static Bind

Fig. 6: Mapping of USB fds to I/O VCPUs and Interrupters

The mapping between I/O VCPUs and interrupters is
defined by xHCI_interrupter_to_IOVCPU_map in
Quest’s USB host controller driver xhci_hcd.c as follows:

iovcpu_class xHCI_interrupter_to_IOVCPU_map[] = {
IOVCPU_CLASS_USB0, IOVCPU_CLASS_USB1,
IOVCPU_CLASS_USB2, IOVCPU_CLASS_USB3,
IOVCPU_CLASS_USB4, IOVCPU_CLASS_USB5,
IOVCPU_CLASS_USB6, IOVCPU_CLASS_USB7, 0

};

xHCI_interrupter_to_IOVCPU_map defines a map-
ping from interrupters to I/O VCPUs, which may be surjec-
tive or bijective. xHCI_interrupter_to_IOVCPU_map
requires that all its fields are assigned to a corresponding I/O
VCPU class. The number of entries in the map is one more
than the maximum number of interrupters implemented for
the target platform’s USB host controller. The last entry is
always 0, to mark the end of the structure. There are nine en-
tries in the above xHCI_interrupter_to_IOVCPU_map
because our xHCI hardware supports up to eight interrupters.

As shown in Figure 7, a thread is created for each inter-
rupter during xHCI initialization. These threads are bound
to I/O VCPUs according to the xHCI_interrupter_-
to_IOVCPU_map. The interrupt handler function in the



host controller driver (xhci_hcd.c) is able to tell which
interrupter generated a device interrupt by checking the MSI
vector number. The corresponding interrupter thread is woken
up to run with the shortest period among all tasks currently
waiting on the interrupter’s event.

USB request blocks (URBs) capture all information nec-
essary to perform USB transactions. An URB is a system
abstraction that is converted to a transfer request block (TRB)
when service requests are submitted to the host controller.
A field in each URB contains the index of the interrupter
associated with an I/O request. The correct interrupter index
is determined by querying the xHCI_interrupter_to_-
IOVCPU_map with the I/O VCPU associated with the request-
ing task’s file descriptor. The binding between a file descriptor
and I/O VCPU is recorded in the caller’s task structure field,
fd_iovcpu_bind.

The host controller driver is not aware of the file descriptor
used by the current task to submit USB requests. However, for
each USB request, a corresponding task structure field, called
current_iovcpu, is updated with the value of the fd_-
iovcpu_bind member. The host controller driver uses this
entry in the task structure to determine the I/O VCPU to handle
the interrupt on completion of the I/O request. An overview of
how a file descriptor binds to an I/O VCPU is shown in Figure
8 for a usb_read request. A similar approach is taken for
usb_write calls.

xHC (Host
Controller)

xHCI Top
Half

Interrupt
Handler

1 Interrupter x
puts event TRB

into Event Ring x

Event
Ring 0

Event
Ring (N-1)

2 Generate unique
interrupt vector for

Interrupter x

Bottom half
thread for

Interrupter 0

Bottom half
thread for
Interrupter

(N-1)
3 Wake up bottom

half thread for
Interrupter x

4 Thread for
Interrupter x

processes TRBs
on Event Ring x

I/O VCPU
USB0

I/O VCPU
USBy

0 Each thread binds to a
class-specific I/O VCPU
during xHCI initialization

Fig. 7: Thread to I/O VCPU and Interrupter Binding

D. Throughput & Latency Model

The throughput of a task is defined as the number of bytes
transferred per unit time. The latency, as defined in this paper,
is the time it takes for a USB request to complete and then
return to user-space. We make the following assumptions in
order to model the expected throughput and latency for a given
task with our USB differentiated service framework in Quest:

• A task always issues read and write requests to the USB
device directly, instead of using an intermediate buffer.

• A USB device’s throughput is never less than the task’s
request rate; whenever a request is made to the device,
data is immediately available for transfer between the
USB device and host.

• The system’s USB software stack has a bounded worst-
case overhead for each USB request.

• Each task is mapped to an unique I/O VCPU and corre-
sponding interrupter.

We assume a task’s throughput and latency are affected by:
1) its Main VCPU’s budget, CMain, and period, TMain,
2) the chosen I/O VCPU’s utilization factor, UIO,
3) the number of bytes, β, in each USB read/write request,
4) the USB software overhead, ΩMain, which consumes

Main VCPU budget and which is assumed to have a
bounded worst-case value,

5) the USB software overhead, ΩIO, which consumes I/O
VCPU budget and is also assumed to have a bounded
worst-case value.

Given a real-time task in Quest, its I/O VCPU’s budget
CIO is calculated as TMain×UIO. The task consumes Main

User
thread

syscall code

0 Set I/O VCPU of a file
descriptor via usb_set_iovcpu

1 Read from device via
usb_read using file

descriptor

USB device driver

xHCI driver

2 Submit URB to
xHCI

xHC

3 Submit a Transfer Request Block
with interrupter target field
set according to I/O VCPU

mapping

User-space

Kernel-space

Fig. 8: File Descriptor to I/O VCPU Mapping



VCPU budget for all its execution time except bottom half
interrupt handling, which is charged to the I/O VCPU. For
I/O requests, the Main VCPU is typically used to allocate and
free USB TRBs. The throughput and latency of I/O requests
are dictated by the I/O VCPU processing delays, followed by
the Main VCPU processing delays when the task is awoken
on completion of the bottom half interrupt handler.

There are two cases to consider that affect the latency: one
where ΩMain≤CMain and the other where ΩMain > CMain.
Ideally, a task’s Main VCPU budget, CMain, should always
be set greater than ΩMain, but for proper analysis we consider
the situation where this is not the case.

Case 1 (ΩMain≤CMain):

latency ≤ ΩIO

UIO
+ TMain (1)

Case 2 (ΩMain > CMain):

latency ≤ ΩIO

UIO
+ ⌈ΩMain

CMain
⌉TMain (2)

Either case:

throughput =
β

latency
(3)

Equations 1 and 2 are based on the fact that each I/O
VCPU is a bandwidth preserving server. This accounts for
the overhead ΩIO

UIO
. When I/O VCPU bottom half processing

completes, the Main VCPU is awoken to finish the I/O request.
In Case 1, the task might not get to complete execution of
its budget until the end of its Main VCPU period. Hence,
the latency in Equation 1 is extended by a worst-case value
TMain. In Case 2, multiple budgets and, hence, periods of the
Main VCPU are needed to complete I/O processing after the
bottom half is handled. In either case, the throughput is shown
in Equation 3, from the calculation of latency. A task should
set its Main VCPU’s period to a frequency that matches the
data generation rate of the device. Then, the above equations
should be used to choose an appropriate UIO for its I/O VCPU
to meet the task’s latency and throughput requirements.

IV. EXPERIMENTAL EVALUATION

Test Setup. In this section, we evaluate our Quest USB dif-
ferentiated service framework and compare it with Linux. The
host machine used in all experiments is a Cincoze DX1100
embedded PC with a 2.4GHz Intel Core i7-8700T CPU [31].
For Linux, we use Ubuntu 20.04.2 with a PREEMPT_RT
patched kernel, version 5.4.19 rt.

Teensy 4.1 controller boards, shown in Figure 9, connect
to the DX1100 via one or more USB serial interfaces. These
boards provide a means for the host machine to connect to an
array of different bus protocols and pins, to support general-
purpose I/O (GPIO), CAN, LIN, I2C, SPI, USART and PWM
signaling, among others.

Each Teensy board features an NXP iMX RT1062 System-
on-Chip (SoC) with an ARM Cortex-M7 600 MHz processor,
and USB 2.0 connectivity with speeds up to 480 Mbps. We
use Teensy controllers as programmable USB Communication

Device Class, Abstract Control Model (CDC-ACM) devices.
Each Teensy is configurable to operate in single, dual or triple
serial mode, presenting one, two or three USB interfaces,
respectively, to the host machine. This allows us to emulate
up to three USB devices with one controller. Unless stated
otherwise, all USB read and write requests are 512 bytes at a
time.
Quest and Linux CDC-ACM Drivers. We measure the per-
formance of our Quest xHCI differentiated services framework
communicating with a CDC-ACM device driver, to exchange
data between the DX1100 and the Teensy boards. We created
a custom Linux USB CDC-ACM driver, to circumvent several
problems with the original version.

The original Linux USB CDC-ACM driver submits a burst
of 16 USB read requests to a device all at once, as soon
as a user process opens the device. Whenever a USB read
request completes, the data read from device is pushed to an
intermediate layer called a line discipline. Then, the driver
will submit another request to the device. Consequently, when
a user process issues a USB read request, it goes to the line
discipline layer instead of the USB CDC-ACM driver. The
rationale behind Linux’s approach is to increase throughput
by reducing user-to-kernel context switching overhead.

Linux’s default CDC-ACM driver makes it challenging to
accurately measure the end-to-end latency of USB requests. By
end-to-end latency, we mean the time difference between when
a USB request is submitted and when the data is either read by
a user process, or has been sent to a device. Measuring latency
from user-space will only capture the delay from the buffered
line discipline layer. Likewise, measuring latency inside the
CDC-ACM driver will not include the delay to transfer data
between user- and kernel-space.

To accurately determine the the end-to-end latency of I/O
requests, the device driver must be modified in one of the two
ways. Either the line discipline layer is removed, ensuring data
is transferred directly between a device and user process, or
the driver tags data with specific USB requests. We chose to
take the first approach with our custom Linux driver, because
it is simpler to remove the line discipline layer. This makes it
easier to measure the latency of individual I/O requests without
adding extra code that could increase delays to Linux.

While the original Linux driver may increase throughput, it
negatively impacts the freshness of data. For example, if data
is buffered in the line discipline it may be stale by the time
it is read by a user process. Therefore, our custom Linux and
Quest drivers both submit USB requests directly to the driver
without buffering.

Fig. 9: Teensy 4.1



A. Read Latency

In the first experiment, we compare the USB read latency
in Quest with that of Linux. A Teensy board is connected
to a DX1100 USB port. A program sketch is loaded onto
the Teensy to output USB traffic as quickly as possible. A
corresponding Quest program runs on a Main VCPU with
a period of 20,000 microseconds and budget of 2,000 mi-
croseconds. The program is associated with an I/O VCPU
that has a utilization, UIO, of 1% for all USB read and write
requests. The I/O VCPU inherits its period from the program’s
Main VCPU (TIO = TMain), while its budget is calculated
as the I/O VCPU period multiplied by its utilization, which is
200 microseconds. The Quest program issues one USB read
within its period and goes to sleep until its next period. For
Linux, a similar program runs the same parameters using the
SCHED DEADLINE policy.

Using the hardware timestamp counter, we measure the
time for both Quest and Linux to complete USB read requests.
USB read latencies are shown in microseconds in Figure 10.
There are four categories – Quest (No kfree) With
IOVCPU, Quest (No kfree) Without IOVCPU,
Linux and Quest (kfree) With IOVCPU. Quest
(kfree) With IOVCPU is the regular version Quest,
which releases kernel memory used for USB requests every
time they complete. The Quest (No kfree) versions
defer memory reclamation and will be discussed later in this
section. We compare the overheads of using I/O VCPUs
versus handling bottom half processing directly on a Main
VCPU (as labeled Without IOVCPU). Note that because
each program only issues one read per period, we are
measuring the lowest possible latency here for each system.

Average(µs) Standard
Deviation(µs) Max(µs) Min(µs)

Quest (kfree)
With IOVCPU 213.83 7.18 237.97 187.09

Linux 112.26 21.68 188.57 35.95
Quest (No kfree)

With IOVCPU 66.01 7.64 131.64 39.45

Quest (No kfree)
Without IOVCPU 61.68 6.90 123.21 36.50

TABLE I: USB Read Latency Statistics (in Microseconds)

Table I summarizes the USB read latency statistics.
While the average read latency for Quest (kfree) With
IOVCPU is slightly higher than Linux’s, there is less vari-
ability. The difference in average latency between Quest
(kfree) With IOVCPU and Linux is due to how each
system frees USB resources after a read. In both systems, a
USB request consumes memory to submit TRBs to different
queue structures, namely Event, Transfer and Command Rings.
The USB stack will release those resources once the request
has completed.

In Linux, at the end of the USB request completion routine,
the release of memory resources is assigned to a tasklet, which
will be scheduled to execute at some point in the future. In
Quest (kfree) With IOVCPU, the USB stack releases

Fig. 10: Quest (kfree) With IOVCPU vs Linux

Fig. 11: Quest (No kfree) With IOVCPU

Fig. 12: Quest (No kfree) Without IOVCPU

the resources as soon as a request is completed. Therefore,
there is added latency to perform the memory reclamation.

To confirm the cause of the added latency, we conduct the



Quest experiment again with kfree removed from the USB
completion routine. The results for Quest (No kfree)
With IOVCPU in Figure 11 and Table I show that Quest’s
read latency is both lower and less variable than Linux’s. We
believe the spikes around 120 microseconds in the graph are
due to read transactions sometimes failing to complete within
a 125 microsecond USB microframe, and are therefore placed
in the next microframe by the xHC. While we cannot defer
kfree indefinitely, as that will lead to a memory leak, it is
possible to schedule resource reclamation at a suitable time
in the future that does not impact the predictability of I/O
requests. We leave the study of when to reclaim memory to
future work.

The experiment is conducted once again, with the I/O VCPU
disabled to identify whether it is affecting the latency. We
change the program to run on a Main VCPU with a period
of 400 microseconds and budget of 200 microseconds. The
budget matches that of the case when an I/O VCPU is used,
and the reduced period of the Main VCPU means its budget
is replenished more frequently according to the rules of how
a Sporadic Server operates. The result is shown in Figure 12.
Compared to Figure 11, shows that the use of an I/O VCPU
brings negligible overhead. As will be seen, I/O VCPUs
bring about benefits when supporting differentiated service for
separate classes of I/O requests.

B. I/O Task Service Guarantee

Our next experiment compares Quest with a single inter-
rupter (the default implementation) against Linux, and also a
version of Quest with multiple interrupters. The objective of
this experiment is to guarantee service to a high priority I/O
task in the presence of low priority I/O tasks.

Two Teensy controllers are connected to the DX1100. Both
Teensy boards operate in triple-serial mode, resulting in a total
of six CDC-ACM device interfaces. Seven tasks, divided into
three separate categories, are created in both Quest and Linux.
The three categories encompass low, medium and high priority
tasks, with constraints as shown in Table II.

Five tasks are assigned to the low priority class, and each
read from a unique CDC-ACM interface until they run out
of their 1000 microsecond budgets. A single medium priority
task runs in an infinite loop without using any I/O devices. Ad-
ditionally, a single high priority I/O task issues a read request
from a Teensy device once every 10, 000 microseconds.

The read latency for the high priority task is measured using
the hardware timestamp counter. All tasks, regardless of prior-
ity, share the same USB interrupter and bottom half handling
thread in Linux and in the Quest (single interrupter) system.
However, in a Quest system with two USB interrupters, it is
possible to differentiate I/O requests for low and high priority
tasks – these tasks have their own interrupter and bottom half
handling thread dedicated to a separate I/O VCPU, with its
own budget and period.

The results for Linux and Quest with a single interrupter
are shown in Figures 13a and 13b, respectively. For Linux,
the read latency increases dramatically from what is shown in

Figure 10. The reason is that all bottom halves will eventually
be processed using a deferrable ksoftirqd thread, when the
interrupt frequency passes a threshold. While all the tasks in
Linux are set to run with SCHED DEADLINE, ksoftirqd is
still running with SCHED FIFO, which by design has a lower
priority. Therefore, the medium priority CPU-bound task takes
precedence over ksoftirqd, causing substantial delay as shown
in Figure 13a.

Even if Linux’s ksoftirqd task is altered to operate under
SCHED DEADLINE, there will still be a potential mismatch
of its priority and the priority of a task requesting I/O. To
confirm this, we conduct the experiment again on Linux.
Command line tool chrt is used to schedule ksoftirqd under
SCHED DEADLINE with a period of 10, 000 microseconds
and budget of 1000 microseconds. The result, shown in
Figure 14, suggests the situation is worse than expected, as
bottom half processing still experiences large variability in
latency. Similar results occur when attempting to set the period
of ksoftirqd to 5, 000 microseconds. We conclude that Linux’s
bottom half processing needs significant modification, to work
correctly at the priority of the task issuing the I/O request. This
is an area for future investigation.

# Tasks Period(µs) Budget(µs)
Low Priority I/O Task 5 20000 1000

Medium Priority CPU Task 1 15000 1000
High Priority I/O Task 1 10000 1000

TABLE II: Priority Inversion Experiment Task Parameters

Although the latency variation is generally lower with Quest
using one interrupter than with Linux, it still peaks at around
1200 microseconds, as shown in Figure 13b. Here, Quest
allows a bottom half to be executed on an I/O VCPU at
the (inherited) priority of the highest priority blocked task
awaiting I/O completion. Both high and low priority tasks
issuing I/O requests will share the same I/O VCPU, meaning
a low priority request might delay the servicing of one that is
higher priority. Each of the five low priority tasks delays the
high priority task by around 200 microseconds, on average, in
this experiment. Therefore, in total, the five low priority tasks
delay the high priority task by around 1000 microseconds.
Combined with the high priority task’s own 200 microseconds
average read latency, we see several latency spikes close to
1200 microseconds in Figure 13b.

When Quest uses two interrupters, as shown in Figure 13c,
the presence of medium and low priority tasks does not affect
the latency, previously shown in Figure 10. This shows that
correct interrupt priority assignment using hardware inter-
rupters is important to ensure temporal isolation between tasks.

C. Differentiated Service Effects on Throughput

In this experiment, the DX1100 runs a version of Quest with
multiple USB interrupters. A task with a Main VCPU period of
20,000 microseconds and budget of 2,000 microseconds reads
from a single Teensy device. The task continuously issues
512 byte read requests until it is out of budget. The time it



(a) Linux (ksoftirqd with SCHED FIFO) (b) Quest (One Interrupter) (c) Quest (Two Interrupters)

Fig. 13: High Priority Task Read Latency for (a) Linux, using ksoftirqd with SCHED FIFO, (b) Quest with One Interrupter,
and (c) Quest with Two Interrupters

Fig. 14: High Priority Task Read Latency for Linux using
ksoftirqd with SCHED DEADLINE

takes for each USB read to complete is once again measured,
using different I/O VCPU utilizations of 1%, 2% and 4%. The
throughput for each case is then calculated.

Using the model in Section III-D, we set ΩMain to 20
microseconds and ΩIO to 200 microseconds, as determined
from empirical data. In this case, the kfree operation to
reclaim the memory of used TRB data structures is executed
in the bottom half, which runs on an I/O VCPU. We compare
three different I/O VCPU utilizations of 4%, 2% and 1%.
Using Equations 1 and 3, where ΩMain≤CMain leads to
pessimistically low predicted throughputs, as the worst-case
latency assumes ΩMain will not complete in the context of
the Main VCPU until the end of its period. In practice, we
see that as ΩMain is relatively small compared to the Main
VCPU budget and period, we assume a more typical delay of
ΩIO

UIO
+ ΩMain. Applying this to Equation 3, our throughputs

using the three different I/O VCPUs are estimated as:

throughput4% =
512

( 0.00020.04 + 0.00002)
= 101992 bytes/s

(4)

throughput2% =
512

( 0.00020.02 + 0.00002)
= 51097 bytes/s (5)

throughput1% =
512

( 0.00020.01 + 0.00002)
= 25574 bytes/s (6)

The empirical throughput results are shown in Figure 15.
The ratio between each throughput corresponds to the ratio

of their I/O VCPU parameters. Additionally, the throughputs
with 4%, 2% and 1% I/O VCPU utilizations closely match the
expected calculations in Equations 4, 5, and 6. We conclude
that our framework is able to provide analyzable differentiated
services by using different I/O VCPU parameters.

Fig. 15: USB Read Throughput for Different I/O VCPU
Utilizations of 1%, 2% and 4%

D. Round Trip Experiment

A round trip experiment is now described, which uses
a single Teensy controller connected to the DX1100. The
Teensy board echos back the data read from the host. A pair
of reader and writer tasks running on Quest with multiple
interrupter support are each assigned to a separate Main
VCPU having a budget of 2,000 microseconds and a period
of 10,000 microseconds. A separate interrupter is used for the
I/O requests from the two tasks. The writer continually writes
512 bytes to a file descriptor connected to the Teensy, which
relays the data that is then received by the reader.

Throughput measurements are shown for two experiments
with I/O VCPU utilization of 1% and 2% in Figure 16. Varying
the I/O VCPU parameters causes the throughput to change in
proportion to the ratio between the I/O VCPU utilizations.
Additionally, in each case, the write and read rate match.



Therefore, our framework is able to provide differentiated
service for both reading and writing under load. In this case,
ΩIO is 20 microseconds, as kfree is deferred until the
experiment completes. Assuming negligible I/O processing
delay using a task’s Main VCPU (ΩMain = 0), the expected
throughputs with the two I/O VCPUs are shown below:

throughput2% =
512

( 0.000020.02 )
= 512000 bytes/s (7)

throughput1% =
512

( 0.000020.01 )
= 256000 bytes/s (8)

Fig. 16: Average, Maximum and Minimum USB Round Trip
Throughputs with I/O VCPU Utilizations of 1% and 2%

These values match the experimental results, confirming the
predictable nature of our differentiated services framework.

E. High Bandwidth Experiment

In this experiment, we aim to show that Quest provides
differentiated service for high bandwidth traffic, while main-
tain service guarantees for latency sensitive control traffic.
Two Teensy controllers are used. One Teensy is configured
with 3 CDC-ACM interfaces, to simulate three high bandwidth
camera traffic streams, while the other one is used to simulate
low throughput but latency sensitive control traffic (e.g., USB-
CAN data that might be processed on a SDV central com-
puter represented by our DX1100). According to the website
cctvcalculator [32], a 60 FPS HD camera transmitting data in
MJPEG format consumes bandwidth around 12,500,000 bytes
per second. We use this as the target bandwidth for our most
critical camera.

Four threads are created in Quest: τH , τM , τL and τC .
Threads τH , τM , τL correspond to high, medium and low
bandwidth cameras, respectively, while τC represents a control
task. IOVCPU_CLASS_USB0 to IOVCPU_CLASS_USB3 are
used for each thread, with 3%, 2%, 1% and 1% utilizations,
respectively. τH , τM , τL continuously read blocks of 9000
bytes of data from the first Teensy, while τC reads 512 bytes
from the second Teensy once every period.

Initially, τH is mapped to IOVCPU_CLASS_USB0, τM
is mapped to IOVCPU_CLASS_USB1, τL is mapped to
IOVCPU_CLASS_USB2 and τC is mapped to IOVCPU_-
CLASS_USB3. After a certain number of read requests,
τH will make a mode change so that it is remapped to

IOVCPU_CLASS_USB2. At the same time, τL is remapped
to IOVCPU_CLASS_USB0. This mode change simulates the
scenario where the criticality of cameras changes over time,
thus leading changes to their service requirements. This could
be representative of a front-facing vehicular camera used for
active cruise control initially being highest criticality, only for
a side-facing camera later becoming more important when
handling a lane change. A summary of the setup of threads is
shown in Table III.

Period(µs) Budget(µs)
τH 10000 2500
τM 10000 1000
τL 10000 2500
τC 10000 500

TABLE III: High Bandwidth Experiment Thread Parameters

The throughput results for τH , τM , τL and τC are shown in
Figures 17a, 17b, 17c and 18, respectively. The read latency
graph for control traffic is shown in Figure 19.

As shown in Figure 17a, the throughput of τH starts
around 13,500,000 bytes per second. After the mode switch,
τH ’s throughput quickly drops to around 6,000,000 bytes
per second, and the throughput for τL switches the opposite
way, as shown in Figure 17c. τL’s throughput starts around
6,000,000 bytes per second and quickly reaches 13,500,000
bytes per second after the mode switch. Meanwhile, τM and
τC’s throughputs are not affected by the mode switch at all,
as shown in Figures 17b and 18. Additionally, Figure 19
shows that the read latency of τC is not affected by other
traffic. Thus, this experiment demonstrates that Quest is able
to provide differentiated service for high bandwidth traffic
while maintaining latency service guarantees for critical low
bandwidth control traffic.

V. RELATED WORK

Linux/RK [33] is one of the first systems to support pro-
cessor capacity reserves [34], as a way to manage CPU time
for tasks and interrupts. This is similar to the use of time-
budgeted virtual CPUs for task and interrupt scheduling in our
USB differentiated services framework. This has similarities
to Linux systems supporting fine-grained preemption [35]
and SCHED_DEADLINE tasks, which reserve CPU bandwidth
according to a Constant Bandwidth Server algorithm [36].
However, as with other RTOSs [37]–[39] that attempt to
provide temporal isolation between tasks, there is no proper
integrated scheduling of interrupts with resource reservations
or correct prioritization.

Works such as klmirqd [40] and process-aware interrupt
scheduling [22] attempt to address real-time interrupt handling
by identifying the process waiting for the I/O device and then
letting the interrupt bottom half inherit the priority of the
process. In the case where there are multiple processes waiting
for a device, the bottom half will inherit the highest priority
of all the waiting processes. However, once again, none of
those works constrain interrupt handling to CPU reservations.
Motivated by process-aware interrupt scheduling [22], and



(a) τH Throughput (b) τM Throughput (c) τL Throughput

Fig. 17: Throughputs for τH , τM and τL with Mode Changes for τH and τL

Fig. 18: τC USB Control Data Throughput

Fig. 19: τC USB Control Data Read Latency

the use of reservations [41], Quest [24] provides unified
scheduling and temporal isolation for both tasks and interrupts.
It does this using time-budgeted virtual CPUs.

Other related work has addressed real-time Universal Serial
Bus scheduling [7]–[9], [17], [18]. However, none of this work
has investigated how to provide USB differentiated service.
This is because all USB-related interrupt handling is limited
to one interrupter for all devices connected to the host. With
our USB differentiated service framework, the mapping of
a device interrupt to a time-budgeted server is handled by
hardware. Using Quest’s VCPUs, our framework is able to
provide temporal isolation between tasks and interrupt bottom
halves as well as fine-grained control of delay and throughput
bound for I/O tasks.

While related work has looked at combined scheduling of
interrupts and tasks [21]–[23], or the handling of all threads

as interrupts [42], this is the first work to our knowledge
to investigate differentiated interrupt management for USB
devices.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces a USB differentiated service frame-
work, to correctly associate interrupt bottom half handling
with I/O requests from tasks of different criticalities. We
implemented CDC-ACM drivers for the Quest RTOS and
Linux, to support Teensy devices connected to a USB host
controller. Experiments show the benefits of using multiple
USB interrupters in combination with Message Signaled In-
terrupts to process I/O events. Each I/O event that triggers an
interrupt is correctly associated with a time-budgeted server,
to guarantee throughput and delay constraints. Bottom half in-
terrupt handlers are therefore scheduled at rates corresponding
to the tasks that led to their execution.

Applying USB differentiated services to Quest shows how
it is able to avoid added delays to high priority tasks caused
by priority inversion. This contrasts with priority inversion
experienced by both Quest and Linux using only one USB
interrupter. Even when Linux tasks are scheduled using
SCHED DEADLINE, priority inversion still exists, because
Linux does not adequately schedule interrupt bottom halves.

As part of future work, we plan to investigate real-time
garbage collection techniques to both bound and reduce the
delay of our USB software stack. Lessons learned from this
work will be used in the context of differentiated services for
real-time networks. We plan to compare USB differentiated
services with those of protocols related to Time-Sensitive
Networking [43], including IEEE 802.1Qbv time-aware traffic
shaping [44].
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