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Abstract

Real-time media servers need to service hundreds
and, possibly, thousands of clients, each with their own
quality of service (QoS) requirements. To guarantee
such diverse QoS requires fast and efficient scheduling
support at the server. This paper describes the practi-
cal issues concerned with the implementation of a scal-
able real-time packet scheduler resident on a server,
designed to meet service constraints on information
transferred across a network to many clients. Specifi-
cally, we describe the implementation issues and per-
formance achieved by Dynamic Window-Constrained
Scheduling (DWCS), which is designed to meet the
delay and loss constraints on packets from multiple
streams with different performance objectives. In fact,
DWCS is designed to limit the number of late pack-
ets over finite numbers of consecutive packets in loss-
tolerant and/or delay-constrained, heterogeneous traffic
streams. We show how DWCS can be efficiently im-
plemented to provide service guarantees to hundreds of
streams. We compare the costs of different implemen-
tations, including an approximation algorithm, which
trades service quality for speed of execution.

1. Introduction

Background. Real-time media servers need to service
hundreds and, possibly, thousands of clients, each with
their own quality of service (QoS) requirements. Many
such clients can tolerate the loss of a certain fraction
of the information requested from the server, result-
ing in little or no noticeable degradation in the client’s
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perceived quality of service when the information is
received and processed. Consequently, loss-rate is an
important performance measure for the service quality
to many clients of real-time media servers. We define
the term loss-rate[10, 5] as the fraction of packets in
a stream either discarded or serviced later than their
delay constraints allow. However, from a client’s point
of view, loss-rate could be the fraction of packets either
received late or not received at all.

One of the problems with using loss-rate as a perfor-
mance metric is that it does not describe when losses
are allowed to occur. For most loss-tolerant applica-
tions, there is usually a restriction on the number of
consecutive packet losses that are acceptable. For ex-
ample, losing a series of consecutive packets from an
audio stream might result in the loss of a complete sec-
tion of audio, rather than merely a reduction in the
signal-to-noise ratio. A suitable performance measure
in this case is a windowed loss-rate, i.e. loss-rate con-
strained over a finite range, or window, of consecutive
packets. More precisely, an application might tolerate
x packet losses for every y arrivals at the various ser-
vice points across a network. Any service discipline at-
tempting to meet these requirements must ensure that
the number of violations to the loss-tolerance specifica-
tion is minimized (if not zero) across the whole stream.

Some clients cannot tolerate any loss of informa-
tion received from a server, but such clients often re-
quire delay bounds on the information. Consequently,
these types of clients require deadlines which specify
the maximum amount of time packets of information
from the server can be delayed until they become in-
valid.

To guarantee such diverse QoS requires fast and ef-
ficient scheduling support at the server. This paper
describes the practical issues concerned with the imple-
mentation of a scalable real-time packet scheduler res-
ident on a server, designed to meet service constraints



on information transferred across a network to many
clients. Specifically, we describe the implementation
issues and performance achieved by Dynamic Window-
Constrained Scheduling (DWCS), which is designed to
meet the delay and loss constraints on packets from
multiple streams with different performance objectives.
In fact, DWCS is designed to limit the number of late
packets over finite numbers of consecutive packets in
loss-tolerant and/or delay-constrained, heterogeneous
traffic streams. We show how DWCS can be efficiently
implemented to provide service guarantees to hundreds
of streams.
The DWCS Scheduler. DWCS is designed to maxi-
mize network bandwidth usage in the presence of mul-
tiple packets each with their own delay constraints
and loss-tolerances. The per-packet delay and loss al-
lowances must be provided as attributes after gener-
ating them from higher-level application constraints.
The algorithm requires two attributes per packet, as
follows:
• Deadline – this is the latest time a packet can com-
mence service. The deadline is determined from a
specification of the maximum allowable time be-
tween servicing consecutive packets in the same
stream.

• Loss-tolerance – this is specified as a value xi/yi,
where xi is the number of packets that can be lost
or transmitted late for every window, yi, of consec-
utive packet arrivals in the same stream, i. Hence,
for every yi packet arrivals in stream i, a minimum
of yi −xi packets must be scheduled for service by
their deadlines.

At any time, all packets in the same stream have
the same loss-tolerance, while each successive packet
in a stream has a deadline that is offset by a fixed
amount from its predecessor. Using these attributes,
DWCS: (1) can limit the number of late packets over
finite numbers of consecutive packets in loss-tolerant
or delay-constrained, heterogeneous traffic streams, (2)
does not require a-priori knowledge of the worst-case
loading from multiple streams to establish the neces-
sary bandwidth allocations to meet per-stream delay
and loss-constraints, (3) can safely drop late packets in
lossy streams without unnecessarily transmitting them,
thereby avoiding unnecessary bandwidth consumption,
and (4) can exhibit both fairness and unfairness prop-
erties when necessary. In fact, DWCS can perform fair-
bandwidth allocation, static priority (SP) and earliest-
deadline first (EDF) scheduling.

The DWCS algorithm is described in detail in an ac-
companying paper[16]. We will only mention the nec-
essary details in this paper, so that the reader under-
stands the implementation issues on which this paper

focuses. DWCS has been implemented as part of the
Dionisys QoS infrastructure, designed to support end-
to-end quality of service guarantees[1] on information
to many clients. Both Dionisys and DWCS are imple-
mented on the Solaris 2.5.1 operating system.

The following section describes related work, while
Section 3 describes the DWCS algorithm. Implemen-
tation issues are then described in Section 4. Section 5
presents an experimental evaluation of DWCS, showing
the effects of different implementations and the cost of
approximating DWCS, which trades quality of service
for scalability. Finally, the conclusions and future work
are discussed in Section 6.

2. Related Work

Recent research has put substantial effort into the
development of efficient scheduling algorithms for me-
dia applications. Compared to such work, given the
presence of some underlying bandwidth reservation
scheme, the DWCS algorithm has the ability to share
bandwidth among competing clients in strict propor-
tion to their deadlines and loss-tolerances. This is simi-
lar to (weighted) fair scheduling[4, 18, 6, 2, 9, 14], which
attempts to allocate bandwidth in proportion to stream
weights. Similar proportional share algorithms have
been targeted at CPU scheduling[13, 15]. However, the
idea of ‘windowing’ in DWCS is closer to the work of
Hamdaoui and Ramanathan[7] who have simulated an
algorithm that services multiple streams, in an attempt
to ensure at least m customers (packets or threads) in
a stream (or process) meet their deadlines for every k
consecutive customers from the same stream (or pro-
cess). In comparison, DWCS can also perform static
priority and earliest-deadline first scheduling, support-
ing both deadline and non-deadline constrained traffic.
Furthermore, DWCS can meet explicit delay and ‘win-
dowed’ loss constraints, using only two attributes that
enable a diverse range of service specifications.

Almost all fair scheduling algorithms use a sin-
gle weight for each stream, to compute weighted-fair
bandwidth-allocations. DWCS complements this work
by not only being able to perform fair scheduling but
also being able to meet explicit delay and ‘windowed’
loss constraints. Toward this end, DWCS uses two
attributes per stream, which enables a diverse range
of service specifications. Unlike the above work on
scheduling, this paper is focused on the practical is-
sues of implementing a specific algorithm (in our case,
DWCS) to meet the service constraints of large num-
bers of clients.

There has also been a significant amount of research
on the construction of scalable media servers[3]. For



example, recent work by Jones et al. concerns the con-
struction and evaluation of a reservation-based CPU
scheduler for media applications[8] such as the au-
dio/video player used in their experiments. These re-
sults demonstrate the importance of explicit scheduling
when attempting to meet the demands of media appli-
cations.

We now describe DWCS in more detail.

3. Dynamic Window-Constrained
Scheduling

Algorithm Outline. Dynamic Window-Constrained
Scheduling (DWCS) orders packets for transmission
based on the current values of their loss-tolerances and
deadlines. Precedence is given to the packet at the head
of the stream with the lowest loss-tolerance. Packets
in the same stream all have the same original and cur-
rent loss-tolerances, and are scheduled in their order
of arrival. Whenever a packet misses its deadline, the
loss-tolerance for all packets in the same stream, s, is
adjusted to reflect the increased importance of trans-
mitting a packet from s. This approach avoids starv-
ing the service granted to a given packet stream, and
attempts to increase the importance of servicing any
packet in a stream likely to violate its original loss
constraints. Conversely, any packet serviced before its
deadline causes the loss-tolerance of other packets (yet
to be serviced) in the same stream to be increased,
thereby reducing their priority.

The loss-tolerance of a packet (and, hence, the cor-
responding stream) changes over time, depending on
whether or not another (earlier) packet from the same
stream has been scheduled for transmission by its dead-
line. If a packet cannot be scheduled by its deadline, it
is either transmitted late (with adjusted loss-tolerance)
or it is dropped and the deadline of the next packet in
the stream is adjusted to compensate for the latest time
it could be transmitted, assuming the dropped packet
was transmitted as late as possible.

Table 1 shows the rules for ordering pairs of packets
in different streams. Recall that all packets in the same
stream are queued in their order of arrival. If two pack-
ets have the same non-zero loss-tolerance, they are or-
dered earliest-deadline first (EDF) in the same queue.
If two packets have the same non-zero loss-tolerance
and deadline they are ordered lowest loss-numerator xi

first, where xi/yi is the current loss-tolerance for all
packets in stream i. By ordering on the lowest loss-
numerator, precedence is given to the packet in the
stream with tighter loss constraints, since fewer con-
secutive packet losses can be tolerated. If two pack-
ets have zero loss-tolerance and their loss-denominators

Pairwise Packet Ordering
Lowest loss-tolerance first

Same non-zero loss-tolerance, order EDF
Same non-zero loss-tolerance & deadlines,

order lowest loss-numerator first
Zero loss-tolerance & denominators,

order EDF
Zero loss-tolerance, order

highest loss-denominator first
All other cases: first-come-first-serve

Table 1. Precedence amongst pairs of packets

are both zero, they are ordered EDF, otherwise they
are ordered highest loss-denominator first. If it is
paramount that a stream never loses more packets than
its loss-tolerance permits, then admission control must
be used, to avoid accepting connections whose QoS con-
straints cannot be met due to existing connections’ ser-
vice constraints.

Every time a packet in stream i is transmitted, the
loss-tolerance of i is adjusted. Likewise, other streams’
loss-tolerances are adjusted only if any of the pack-
ets in those streams miss their deadlines as a result of
queueing delay.
Loss-Tolerance Adjustment. We now describe how
loss-tolerances are adjusted. Let xi/yi denote the orig-
inal loss-tolerance for all packets in stream i. Let x′

i/y′
i

denote the current loss-tolerance for all queued packets
in stream i. Let x′

i denote the current loss-numerator,
while xi is the original loss-numerator for packets in
stream i. y′

i and yi denote current and original loss-
denominators, respectively. Before a packet stream
is serviced, its current and original loss-tolerances are
equal. For all buffered packets in the same stream i as
the packet most recently transmitted before its dead-
line, adjust the loss numerators and denominators as
follows:
(A) Loss-tolerance adjustment for a stream
whose head packet is serviced before its dead-
line:

if (y′
i > x′

i) then y′
i = y′

i − 1;
if (x′

i = y′
i = 0) then x′

i = xi; y′
i = yi;

For all buffered packets in the same stream i as the
packet most recently transmitted, where packets in i do
not have deadlines, do not adjust their loss-tolerances.
That is: y′

i = yi; x′
i = xi.

(B) Loss-tolerance adjustment for a stream
whose head packet misses its deadline: For all
buffered packets, if any packet in stream j|j �= i misses



its deadline:

if (x′
j > 0) then
x′

j = x′
j − 1; y′

j = y′
j − 1;

if (x′
j = y′

j = 0) then x′
j = xj ; y′

j = yj ;
else if (x′

j = 0) then (see (C) below)
x′

j = 2xj − 1; y′
j = 2yj + (y′

j − 1); (method 1)
or

x′
j = xj ; y′

j = yj ; (method 2)
The pseudo-code for DWCS is as follows:

while (TRUE) {

/* Using precedence rules in Table 1 */

find stream i with highest priority;

service packet at head of stream i;

adjust loss-tolerance of stream i according to

rules in (A);

/* Set deadline of new head packet in stream i */

/* by adding an offset, interpacket_gap(i), */

/* to the old deadline. */

deadline(i) = deadline(i) + interpacket_gap(i);

for (each stream j missing its deadline) {

while (deadline missed) {

adjust loss-tolerance for j according to

rules in (B);

if (packet is droppable) {

drop head packet in stream j;

/* Make next packet in stream j the */

/* head packet. */

}

deadline(j) = deadline(j) +

interpacket_gap(j);

}

}

}

(C) Loss-tolerance adjustment for a stream that
violates its original loss-tolerance: The problem
with adjusting loss-tolerances as shown above is what
to do if a packet misses its deadline when its current
loss-tolerance is 0/y′. In this situation, DWCS can
be configured to favor the adversely affected packet
stream, bringing the amortized loss for packets in that
stream back to the original loss-tolerant value, over
a larger window of packets. To achieve the original
loss-tolerance over, say, 3y packets, the current loss-
tolerance of 0/y′ is changed to x′/y′, where x′ = 2x−1
and y′ = 2y + y′ − 1. A more simple approach, which
is used throughout this paper, is to reset the loss-
tolerances of streams that violate their original loss-
tolerances. Further details about loss-tolerance ad-
justments for streams that violate their original loss-
tolerances is beyond the scope of this paper, but can
be found in an accompanying paper[17]. We now de-
scribe the implementation issues regarding DWCS.

4. DWCS Implementation Issues

The efficient implementation of the DWCS packet
scheduler for scalable media servers successfully copes

with several important issues any such scheduler must
address. These issues concern: (1) concurrency, (2)
efficient packet schedule representation, and (3) scala-
bility, which are now described in more detail.
Concurrency. Given that multiple threads are in-
volved in generating media streams, packetizing them,
and submitting packets, it is critical to avoid unneces-
sary synchronization overheads between packet gener-
ators, schedulers, and dispatchers. In our implementa-
tion of DWCS, we combine packet scheduling and dis-
patching in a single scheduler thread that selects the
next packet for service, while each stream also has its
own server thread that queues a packet to be sched-
uled. Synchronization between server and scheduler
threads is necessary because without it, the scheduler
can have an inconsistent view of the number of queued
packets for each stream. The current DWCS imple-
mentation eliminates such synchronization by using a
circular queue for each of the n streams, at the cost of
at most one wasted slot in each queue. Specifically, let
fpi be the (front) pointer to the head packet in stream
i, and bpi be the (back) pointer to the next free slot
in the queue for stream i. The server (arrival) pro-
cess performs the following pseudo-code to enter a new
packet into the queue for stream i:

while (fp == bp->next); /* full queue */

add new packet to queue position

pointed to by bp;

bp = bp->next;

The scheduler performs the following when attempting
to remove a packet from a queue:

if (fp == bp); /* empty queue */

else {

remove head packet from queue position

pointed to by fp;

fp = fp->next;

}

It is important to note that the entries in the circular
queues are simply pointers to the packets themselves;
the packet bodies are buffered in a shared memory area
accessed by the DWCS scheduler.
Packet Schedule Representation. To attain high
performance, DWCS does not separate the data struc-
tures used for packet scheduling from those used for
packet dispatching, in contrast to what is often done
for multi- or uni-processor CPU task schedulers[12].
Moreover, rather than evaluating the large number of
packets associated with streams, DWCS manages the
streams with which these packets are associated. There
are two heap data structures used by DWCS for stream
management, as shown in Figure 1(a).

The first heap concerns streams’ timing attributes;
it orders streams in earliest deadline first order. Us-
ing this heap, DWCS can efficiently determine which
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Figure 1. (a) A fast implementation of DWCS
uses two heaps: one for deadlines and an-
other for loss-tolerances. (b) Using a circular
queue for each stream eliminates the need for
synchronization between the scheduler and
the server queueing packets.

streams need to have their packet loss-tolerances ad-
justed when the packets at the head of one or more
streams miss their deadlines. In fact, the scheduler
need only check those streams with packet deadlines
less than the current time. As soon as a stream is
reached that has an earliest packet deadline greater
than the current time, the scheduler can stop check-
ing any more streams. All those streams with missed
packet deadlines have their identifiers removed from
the loss-tolerance heap, the corresponding stream loss-
tolerances are adjusted, and the stream identifiers are
then reinserted back into the loss-tolerance heap. New
deadlines are also calculated for the head packets in
these streams, and the deadline heap is modified ac-
cordingly. DWCS now services the head packet of the
stream at the top of the loss-tolerance heap. Streams
with equal packet loss-tolerances are ordered according
to the rules in Table 1.
Scalability by Use of Flexibility in Scheduling.
Packet streams will differ in terms of the scheduling
rates and latencies they require, ranging from high rate
scheduling for small packets containing audio samples
to scheduling larger packets at somewhat lower rates
for raw or compressed video streams. Clearly, schedul-
ing at high rates can result in significant scheduling
overheads. We address this issue by associating with
each DWCS scheduler a policy that governs its rate of
execution relative to the packet rates of the streams
it services or even relative to the fidelity of scheduling
currently being experienced. For instance, this policy
may choose to run an approximation of DWCS when

scheduling latency must be improved, by reducing the
frequency with which DWCS checks streams for missed
deadlines and therefore, also reducing the quality of
stream scheduling.

Ordinarily, DWCS checks streams for packets that
have missed their deadlines every time a packet has
been serviced. If a stream has one or more late pack-
ets, the stream’s corresponding packet loss-tolerance
must be adjusted. In the worst case, every stream can
have late packets every time the scheduler completes
the service of one packet, requiring O(n) time to find
the next packet for service from n streams. If the sched-
uler only checks missed deadlines and, hence, adjusts
loss-tolerances at most once after p packets have been
serviced, the execution time of the algorithm can be
reduced.

The next section describes the overheads and per-
formance of different implementations of DWCS.

5. Experimental Evaluation

DWCS Scalability. All experiments were performed
on SparcStation Ultra II Model 2148s machines, run-
ning at 170MHz.

In the first experiment, we ran the scheduler with
increasing numbers of streams and measured both the
number of deadlines missed and the number of loss-
tolerance violations. A stream’s original loss-tolerance,
x/y, is violated when more than x packet deadlines
have been missed for every y consecutive packets in
the same stream. Figure 2(a) shows the number of
deadlines that are missed as the number of streams
is increased from 80 to 760. There are eight traffic
classes, with equal numbers of streams in each class.
The classes have loss-tolerances that range from 1/80
to 1/150 (so that all streams in the same class have the
same loss-tolerance) and the packet deadlines for con-
secutive packets in each stream are all 500 time units
apart. The traffic model is such that there are always
backlogged packets in each stream, and the scheduler
takes one time unit to service a packet, with at most
one packet serviced when the scheduler executes. The
results show the effects of servicing a total of 5 million
packets.

Note that in Figure 2(a), a packet can miss its dead-
line more than once. In fact, the y-axis really shows the
number of times each packet in a traffic class misses its
deadline (in this case, the number of times a packet is
delayed by more than 500 time units). This is actually
a measure of the relative lateness of packets in each
traffic class. In any case, Figure 2(a) shows that for
less than 500 streams, each traffic class has fewer than
(a cumulative total of) 5000 missed deadlines, and the
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Figure 2. (a) The number of deadlines missed, and (b) the number of loss-tolerance violations, versus
number of streams.

time, t
0 2 3 4 5 6 7 8 9 10 11 12 13 14 151

DWCS

FIFO

1 2 3 4 5

Figure 3. An example showing possible loss-
tolerance violations for a single stream using
FIFO and DWCS in overload conditions, when
the original loss-tolerance is 1/3. (Note that
‘X’ denotes a late packet.)

actual number of missed deadlines is proportional to
the loss-tolerance of the corresponding class. When the
number of streams rises above 500, there is no possible
way to meet all packet deadlines. For example, sup-
pose there are 560 streams and each packet in a stream
has a deadline 500 time units later than its predeces-
sor; if the scheduler services each stream equally, then
after 500 time units 60 streams will have packets that
have missed their deadlines. Figure 2(a) shows that the
number of missed deadlines rapidly increases above 500
streams but streams in each class still miss deadlines
in proportion to their loss-tolerances. Hence, no mat-
ter what the load, the number of deadlines missed is
proportional to the loss-tolerances of the corresponding
classes.

Observe that when the number of streams is less
than 350, the total number of missed deadlines across
all 8 traffic classes is greater with DWCS than FIFO.
FIFO is servicing each class equally, irrespective of
the loss-tolerances and deadlines. It so happens, in
these experiments, similar sized bursts of packets in

each stream arrive for service at the same time. The
average burst size is 20 packets and bursts from each
stream (and each class) are arriving close together. The
average arrival time between bursts is 100 microsec-
onds in these experiments. If the burstiness was more
pronounced (with larger average burst sizes and larger
variations in the time between bursts), the performance
of FIFO would be far worse, since FIFO would service
whole bursts of arrivals from one stream without re-
specting the deadlines of packets in other streams. In
contrast, the performance of DWCS is less sensitive
to burstiness. Moreover, DWCS maintains service to
streams in proportion to their delay and loss require-
ments.

Figure 2(b) shows the number of loss-tolerance vi-
olations for increasing numbers of streams. Again,
packet deadlines, for consecutive packets in the same
stream, are 500 time units apart. Few violations occur
using DWCS until the number of streams reaches 500.
Above 500 streams, it is impossible for any scheduler
to meet all deadlines (assuming the service time per
packet is one time unit and only one packet can be ser-
viced at a time), so loss-tolerance violations start to oc-
cur. However, DWCS still manages to control the num-
bers of violations in proportion to the loss-tolerances of
each class. Observe that the total number of violations
for all 8 classes is greater with DWCS than FIFO when
we reach about 500 streams. Figure 3 shows an exam-
ple of what is happening. DWCS is servicing streams in
proportion to their loss-tolerances but, for every win-
dow of y packets in a stream, the loss-tolerance is being
violated more times than with FIFO. However, DWCS
spreads out where the missed deadlines occur, so it still
minimizes the number of consecutive late packets for
a given finite window of packets that require service.
FIFO, however, can result in many consecutive dead-
lines being missed. This is bad for media streams, such
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streams.

as audio and video, where too many consecutive late
packets result in loss of complete sequences of audio
samples or video frames, rather than just a drop in
signal-to-noise ratio.

To see how fast we could execute DWCS on a host
processor, we measured the numbers of packets ser-
viced in real-time for increasing numbers of streams
with the same traffic classes (having the same loss-
tolerances and deadlines) as before. The DWCS sched-
uler was implemented in the Dionisys QoS infrastruc-
ture, on Solaris 2.5.1, using two heaps, and circular
queues for each traffic stream to eliminate the need
for synchronization primitives, such as semaphores or
locks. The results show the raw scheduler speed dis-
counting the effects of transmission delay. In our exper-
iments, all packets are ultimately serviced, but drop-
ping late packets avoids unnecessary transmission de-
lays in a real system.

Figure 4 shows the numbers of packets serviced per
second when there are (a) 480 streams, and (b) 560
streams. Interestingly, when there are 480 streams,
the service rate approaches 25 packets per second for

each and every stream and, hence, each and every class.
Initially, service is granted to streams in each class in
proportion to the corresponding loss-tolerances. How-
ever, as time goes on, there is more slack time to ser-
vice packets before they miss their deadlines. Eventu-
ally, all the streams reach a state in which their loss-
tolerances converge and the average packet service rate
is the same for all streams.

In Figure 4(b), there are 560 streams. There is
no possible way the scheduler can meet all dead-
lines. Since deadline-misses keep affecting the cur-
rent loss-tolerances, in this example, the loss-tolerances
of streams in each class never converge to the same
value. Consequently, the service granted to streams
in each class is in direct proportion to their original
loss-tolerances.

Figure 5(a) shows the actual scheduling overheads
for increasing numbers of streams. The performance
of DWCS actually depends upon the time between
the deadlines of consecutive packets in a given stream.
This is because loss-tolerances will be adjusted more
frequently if deadlines are missed more frequently. The
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Figure 6. Real-time scheduling overheads (in microseconds) as the number of scheduler cycles
between checking deadlines is increased. All packet deadlines are 200 time units apart in the left-
hand graph (a), and 500 time units apart in the right-hand graph (b).
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Figure 7. Number of deadlines missed as the number of scheduler cycles between checking deadlines
is increased. The ‘Y’ axis is the number of scheduler cycles between checking deadlines.

figure shows the case when deadlines are 500 time units
apart and the scheduler increments a logical clock 1
time unit every time it services a packet. Thus, all
deadlines are measured in logical time, as in the above
experiments. The overheads of a two-heap implementa-
tion (as described in Section 4) of DWCS are compared
with a linear-list based implementation. Clearly, im-
plementing deadlines and loss-tolerances in a priority
queue structure, such as a heap, greatly improves the
performance of DWCS. This shows that the average-
case performance of DWCS can be far better than the
worst-case O(n) time would suggest.

Effects of Synchronization. Figure 5(b) shows
the synchronization overheads (in microseconds) as
the number of streams is increased. In this example,
DWCS is applied to a real video application and each

stream-generating process has to acquire a System-
V UNIX semaphore before the packets in the stream
can be placed into the scheduler queue. Eliminating
synchronization primitives, as explained in Section 4,
greatly improves the speed of execution of DWCS.

Flexible Scheduling by Approximation. DWCS
can also be approximated in an attempt to increase
its speed of execution. That is, the scheduler can re-
duce the frequency with which it checks streams for
missed deadlines. Recall that DWCS checks streams
for packets that have missed their deadlines every time
a packet has been serviced. If a stream has one or
more late packets, the stream’s corresponding packet
loss-tolerance must be adjusted to account for every
deadline missed.

Figure 6 shows the scheduling overheads for DWCS
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Figure 8. Number of loss-tolerance violations as the number of scheduler cycles between checking
deadlines is increased. The ‘Y’ axis is the number of scheduler cycles between checking deadlines.

as the number of scheduler cycles between checking
deadlines is increased. The deadlines are in logical
time and for each scheduler cycle, a logical clock is in-
creased by one time unit. Thus, all packets are serviced
in one logical time unit. As the number of streams is
increased, the scheduling overhead increases. Schedul-
ing latency is reduced by minimizing the frequency of
checking deadlines for the case when there is a large
number of streams and consecutive packet deadlines
(in a given stream) are closer together. This is because
fewer insertions, deletions and reordering operations
are required on the corresponding stream data struc-
tures (in this case deadline and loss-tolerance heaps),
when the algorithm reduces its frequency of checking
deadlines.

Figures 7 and 8 show the number of deadlines
missed, and the number of loss-tolerance violations, re-
spectively, as the number of scheduler cycles between
checking deadlines is increased. The results are shown
for different numbers of streams when (a) the packet
deadlines are 200 time units apart (left-hand graph),
and (b) 500 time units apart (right-hand graph). More
deadlines only start to be missed when DWCS checks
deadlines less frequently, and when consecutive packet
deadlines, for packets in the same stream, are closer to-
gether. However, there is little difference between the
number of loss-tolerance violations when deadlines are
checked only once every 12 cycles and when they are
checked every cycle. Figure 6(a) shows that schedul-
ing times are reduced for large numbers of streams as
the frequency of checking deadlines is reduced. This
causes more deadlines to be missed but does not af-
fect the loss-tolerance violations too much. Since loss-
tolerance is arguably a more important service objec-
tive that just a delay objective for applications that

can benefit from DWCS scheduling, it is probably bet-
ter to approximate DWCS (by increasing the number
of scheduler cycles between checking deadlines) when
the system is heavily loaded, there are a large number
of streams, and deadlines are close together between
consecutive packets in the same stream.

6. Conclusions and Future Work

This paper describes the practical issues con-
cerned with the implementation of a scalable real-time
packet scheduler, called Dynamic Window-Constrained
Scheduling (DWCS). DWCS is designed to meet delay
and loss constraints on information transferred across
a network to many clients. In fact, DWCS has the
ability to limit the number of late packets over finite
numbers of consecutive packets in loss-tolerant and/or
delay-constrained, heterogeneous traffic streams.

By using one heap for deadlines and another heap for
loss-tolerances, the scheduling overhead of DWCS can
be minimized (compared to an implementation using
linear lists). Furthermore, by using a separate circu-
lar queue to buffer packets for each stream, expensive
synchronization costs can be eliminated.

DWCS can also be approximated by reducing the
frequency with which streams are checked for missed
deadlines. The results show that approximating DWCS
only reduces the scheduling overhead, thereby in-
creasing scalability, when there are large numbers of
streams, and deadlines are frequently missed. This
is because the frequency with which DWCS adjusts
deadlines and loss-tolerances and, hence, the number
of heap insertions and deletions DWCS has to do, is
reduced. Even though more deadlines are missed when
the algorithm checks streams less frequently for missed



deadlines, the number of loss-tolerance violations can
often be close to that achieved when DWCS checks
for missed deadlines every cycle. This is an impor-
tant observation, because applications that can bene-
fit most from DWCS are those which require minimal
loss-tolerance violations, or at least minimal consecu-
tive late packets, as opposed to minimal numbers of
missed deadlines overall.

When DWCS is under-loaded, few packets miss their
deadlines, and any deadlines that are missed are missed
in proportion to the original loss-tolerances of the cor-
responding streams. When DWCS cannot service all
packets by their deadlines, it still provides service to
streams in proportion to their deadlines and original
loss-tolerances. This characteristic is similar to fair
scheduling algorithms, such as WFQ[18], which are de-
signed to allocate bandwidth in proportion to stream
weights. The proportional-share property of DWCS
is maintained, even when the load on the scheduler is
so high that loss-tolerances are violated. Furthermore,
when loss-tolerances are violated, DWCS minimizes the
number of consecutive late packets over any finite win-
dow of packets in a given stream.

There are several issues still to be addressed in our
on-going research involving DWCS. We have shown
DWCS can service packets in an end-system but we
believe DWCS can also support CPU scheduling. We
shall investigate the ability of DWCS to support com-
bined thread and packet scheduling. In fact, we are
currently adjusting DWCS to guarantee a least upper-
bound on resource (CPU or bandwidth) utilization of
100%. Suppose li is the loss-tolerance, Ci is the packet
or thread service time, and Ti is the time between dead-
lines for a packet stream or periodic thread, i, where
1≤i≤n. If

∑n
i=1

(1−li)Ci

Ti
≤1.0, all loss-tolerances are

guaranteed, with minor modifications to DWCS as pre-
sented in this paper. Finally, we shall investigate when
and how DWCS can adapt[11] to changes in service de-
mands from multiple clients with dynamically changing
service requests.
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