
A Quality-of-Service Enhanced Socket API in GNU/Linux

Hasan Abbasi, Christian Poellabauer, Karsten Schwan, Gregory Losik
College of Computing,

Georgia Institute of Technology,

Atlanta, GA 30332

{habbasi,chris,schwan,losik}@cc.gatech.edu

Richard West
CS Department

Boston University

Boston, MA 02216

richwest@cs.bu.edu

Abstract

With the increase in available network bandwidth and reduction in network latency, more emphasis has
been placed on end-host QoS to provide quality of service guarantees for distributed real-time applications,
such as video streaming servers, video conferencing applications, and VoIP applications. End-host QoS
requires support from the underlying operating system (OS) in the form of network schedulers and traffic
controllers. GNU/Linux supports a variety of network schedulers for the provision of end-host QoS,
but no easy-to-use API is provided between applications and system-level traffic controllers. Moreover,
existing APIs lack the ability to link QoS attributes with stream or datagram sockets and to associate
QoS information with individual packets allowing sophisticated network schedulers to make scheduling
decisions based on such information or to link different streams such that their QoS management is
coordinated. We propose an extension to the standard Berkeley socket interface that enables applications
to easily create and manage connections with QoS requirements. This new API – called QSockets –
includes per-socket traffic classification that allows the application developer to link a socket connection
with a scheduler so that all data going out on this socket is scheduled accordingly. We further allow
an application to pass packet-specific parameters to the scheduler for fine-grained scheduler control. We
evaluate our approach with a multimedia application using QSockets and a real-time packet scheduler.

1 Introduction

1.1 Background

There are a considerable number of applications to-
day that require some form of guarantee from the
Network Subsystem with regards to Quality of Ser-
vice (QoS) parameters for reliable operation. Such
applications are usually continuous media applica-
tions for soft real-time video and audio streaming,
video-conferencing and Internet telephony. There
has been a consistent push toward creating an Inter-
networking infrastructure that can provide seamless
guarantees to such applications. The two most com-
monly accepted proposals are Integrated Services and
Differentiated Services [2].

These proposals, however, require substantial mod-
ifications to the underlying network model for pro-
viding end-to-end guarantees. With high speed in-

tranets available today, it is possible to obtain rea-
sonable guarantees for delay and bandwidth using
only end-system QoS. While these guarantees are
not absolute they do provide a good approximation
without requiring any major changes to the physical
network.
In [3] the authors show that even in the presence of
network level QoS support, it is often necessary for
the end-system to provide not only service differenti-
ation but also traffic shaping. Moreover this shaping
has to be provided on a per-application basis to pro-
vide maximum functionality for the application and
system developers.
Despite having comprehensive scheduling functional-
ity in GNU/Linux [7], there is no support (in terms
of either API or classifiers) for exposing this func-
tionality to the application. Instead the traffic con-
troller functionality is designed for use as a node on
a DiffServ network. The lack of application level

differentiation as well as a comprehensive API for
addressing the shaping of application traffic forces
the developer to resort to application level rate con-
trol. Such rate control is inefficient but highly flexi-
ble. Each stream and even individual messages can
be shaped according to the needs of the application.
While flexible, using such methods can be inefficient
and does not scale well for high system loads, es-
pecially when each stream and individual messages
have to be shaped (eg. scheduled) according to the
application’s needs [9].

1.2 Contributions

We provided a comprehensive API for creating and
attaching socket streams to end-system QoS at-
tributes. The API called QSockets is based on the
BSD socket API and follows the same semantics.
We argue that using this API for end-system QoS
does not impose any substantial overhead in terms of
socket creation, destruction, or usage. We also argue
that there is no substantial programmatic overhead
associated with using our API. In fact we provide
functionality for using the API with minimum mod-
ifications to the core application.
An interesting characteristic of QSockets is its pro-
vision of functionality for dynamically retrieving
scheduling and transmission information for use by
adaptive multimedia applications. For instance,
QSockets-based network feedback can be used to
throttle or speed up an application’s rate of packet
transmission. Similarly, using a socket based classi-
fier for the GNU/Linux traffic controller, we demon-
strate how outgoing traffic may be classified on
a per-socket basis, thereby allowing us to provide
per-stream QoS attributes for scheduling network
streams (using the socket-to-socket connection ab-
straction). Moreover, by associating per-packet QoS
attributes, stream scheduling can be made ‘smarter’,
by re-ordering a packet stream according to packet
priority, reliability, or deadlines. With this func-
tionality, QSockets approaches the functionality of
application-level rate control, but offers the efficiency
of system-level packet scheduling.
Interesting aspects of the GNU/Linux QSockets im-
plementation include the following. First, our experi-
ence is that kernel-level packet scheduling performs
at levels of granularity and predictability that far
outpaces previous user-level approaches [9]. This is
particularly important for interactive media applica-
tions that have smaller packet sizes, like VOIP. Sec-
ond, it turned out to be awkward to use the existing
GNU/Linux QoS infrastructure for the application-
level traffic scheduling required by our multimedia
codes. This is because the Linux infrastructure was
intended for DiffServ networking and was therefore,

placed ‘under’ Linux TCP and UDP protocol stacks.
This makes it difficult to implement the application-
level framing necessary for ‘lossy’ media scheduling,
where frames that are likely to miss their dead-
lines upon arrival are discarded at the source in-
stead of the sink, thereby reducing network band-
width needs. Finally, expanding the selective lossi-
ness implemented by our kernel-level packet sched-
uler [9], an extension of QSockets being implemented
now permits end users to place application-specific
packet filters and manipulations into the network
path, using safe ‘kernel plugins’. Our future work
will use QSockets with a variety of applications and
in the context of a broader research effort addressing
kernel-level support for QoS management for stan-
dard Linux kernels, called Q-fabric [4].

1.3 Related work

An effort similar to QSockets can be found in [5].
However this approach was tailored to work only
with CBQ. Moreover, this approach did not allow
applications to create a socket connection that could
be scheduled. In [3] and other papers, researchers
have shown that it is useful to have a traffic con-
troller in the kernel, however no significant API has
been provided for using this functionality to the ap-
plication developer. Furthermore, the concentration
of such efforts is on traffic controller for nodes in a
DiffServ network. Migrating Sockets [10] describes a
similar mechanisms to ours, but for end-to-end QoS.
However migrating sockets uses custom scheduling in
Solaris, whereas we concentrate on using an available
scheduling infrastructure in GNU/Linux. Another
approach to the same problem is presented in [6],
which uses an extension to the existing socket in-
terface for addressing QoS support for multimedia
applications. However this approach was designed
to work only on Integrated Service networks, which
already provide QoS support. The new socket API
was only used for packet marking.

1.4 Overview

The remainder of this paper is structured as follows.
In Section 2 we give an architectural overview of the
current GNU/Linux traffic controller interface, an
architectural overview of the QSockets infrastructure
and an overview of the QSockets API. In Section 3
we describe how to use the QSockets API for modify-
ing both existing and new applications. Evaluation
of the work, including micro-benchmarks and appli-
cation benchmarks are presented in Section 4. Fi-
nally we present our conclusions and discuss future
research directions in Section 5.

2 Traffic controller

The GNU/Linux traffic controller was designed to
provide Differentiated Services in a GNU/Linux net-
work. The traffic controller handles packets that are
being queued for transmission on a network device
(Figure 1)

Network
InterfaceDevice Queue

Traffic
Controller

Packet
Classifier

Packets to be
queued for
transmission

FIGURE 1: Flow of data packets through
the traffic controller

Once the IP layer has processed the packet it hands
the packet over to the device for output queuing.
At this point the packet is processed by the traffic
controller. The traffic controller classifies the pack-
ets and queues them according to rules established
previously. The output queuing process can be used
to rate limit network traffic, to re-order the output
queue and to provide delay/bandwidth guarantees
for the network link (Figure 2).

The traffic controller consists of three major compo-
nents:

• Queuing Disciplines

• Classes

• Filters

For each network device in a system that supports
output queuing, there exists a queuing discipline,
Qdisc, attached to this device. It is this queue to
which all packets to be sent on this device are queued
for transmission. The Qdiscs supports methods for
enqueuing and dequeueing a packet. The Qdisc may
be associated with a set of classes and filters (also
called classifiers). The filters are used as a classifi-
cation mechanism for assigning an outgoing packet
to a specific class and each class contains a Qdisc
also. In this way a hierarchical set of Qdiscs, classes
and filters can be created for maximum flexibility in
scheduling of outgoing traffic. A more thorough de-
scription of the traffic controller can be found in [1].

Root qeueing discpline

Socket filters

Per-socket queues

s1

s2

Incoming
data

Best-effort
data

FIGURE 2: Traffic controller overview

2.1 Architectural overview

The QSockets architecture works on top of the traffic
controller infrastructure. A new system call is added,
sys qsocketcall which works as a multiplexer (sim-
ilar to sys socketcall). The QSockets architecture
(Figure 3) is divided into three functional parts:

User

Kernel

QSocket
Library

 QSocket
 Kernel Module

Scheduler
Module

Socket
Layer

Linux Traffic
Controller

FIGURE 3: QSockets structure

1. QSockets manager. The QSockets manager
is the controller module for QSockets opera-
tions. It provides the actual QSockets interface
to applications. The manager module provides
scheduler independent setup functionality. The
bulk of the work however is done in the sched-
uler modules.

2. Scheduler module. The manager mod-
ule provides a registration functionality for
scheduler modules. The scheduler module ex-
poses functionality to the manager module
for adding, removing, and changing scheduled
streams. Use of the scheduler modules allows
QSockets to provide equivalent functionality

for many different scheduler types. This func-
tionality can be further extended to support
multiple types of schedulers simultaneously, al-
though currently QSockets is limited to provid-
ing support for a single scheduling discipline in
a system. Each scheduler module defines a set
interface for adding a stream, for removing a
stream, for changing a stream, and for initial-
izing itself as the root Qdisc.

3. Socket classifier. We have provided a socket
classifier which allows us to classify outgoing
traffic using the associated socket as a clas-
sification attribute. The socket classifier al-
lows an application to use the already avail-
able socket abstraction for identifying a data
flow. The classifier works on the inode num-
ber of the socket descriptor (although this is
hidden from the application). Using the nat-
ural socket abstraction allows an application
developer to add advanced features into the ap-
plication for differentiating flows and smarter
scheduling. For example a video streaming ap-
plication can stream multiple flows to the same
client at different rates. In the presence of an
overloaded network the application can adapt
by reducing the frame rate of a low priority
flow. Although, as stated earlier, QSockets
does not necessarily allow end-to-end QoS sup-
port, it can be used for service differentiation
at the end-host, resulting in similar effects.

2.2 API overview

The QSockets API follows the BSD Socket API
closely, following the same functional semantics, but
new functionality is added through further exten-
sions.

2.2.1 Socket creation

Sockets are created using the qsocket call. Apart
from the domain, type and protocol an additional
parameter is specified in struct qos params. The
structure contains information about which device
to attach the classifier to, the scheduler type and the
scheduling attributes. At socket creation a socket
classifier is also created which classifies outgoing
packets according to the associated socket inode.

2.2.2 Changing scheduler attributes

One of the advantages of using a simple API for
specifying QoS parameters is that the scheduling at-
tributes can be modified with changing application
requirements. In QSockets the parameters are mod-
ified with the qchange call. The qchange call takes

the file descriptor of the socket and the new QoS
parameters in a qos params structure.

2.2.3 Passing message specific parameters to

the scheduler

One of the major contributions of this work is the
ability to let the application specify per-message
scheduling information. This scheduling information
can be used for making smart scheduling decisions.
For example, a video streaming application can spec-
ify a frame boundary for transmitted video frames.
The scheduler can use this information to schedule
the entire frame as a group. In the case of a lossy
packet scheduler, the scheduler can use this informa-
tion to drop entire frames instead of pieces of a frame.
An application can also associate more information
with each buffer. A drop priority can inform a sched-
uler not to drop certain messages (for instance the
I-frames in an MPEG video stream). Also a dead-
line attribute can be used for creating per-message
deadlines.
The calls qsend and qsendto are used for passing
packet specific flags to the scheduler. The calls mir-
ror the socket API send and sendto calls, but an
additional parameter is passed containing a set of
packet flags.

2.2.4 Retrieving scheduling information

A scheduler can provide the application with very de-
tailed information about the transmission rate, the
queuing delays, the packet drop rates as well as var-
ious other scheduler specific information. These at-
tributes can be retrieved with the qinfo call. Apart
from scheduler information, information from the
network stack can also be retrieved for even more
flexible adaptation. Such information includes buffer
sizes, receive windows, etc.

3 API usage

In this section we describe common usage scenar-
ios for QSockets with code excerpts. For the pur-
pose of our examples we use the DWCS queueing
discipline [8], ported to Linux kernel version 2.4.17.
DWCS provides soft real time guarantees for contin-
uous media streams, and also allows the developer to
specify a loss tolerance in the presence of transient
overload situations. DWCS supports three parame-
ters, ipg, oln and old. The stream rate is defined by
ipg and the loss tolerance by old and oln. A lossy
stream is allowed to lose oln packets out of every old
packets queued. DWCS also supports non-deadline
constrained streams by providing a best-effort FIFO

queue. We also added functionality to DWCS to sup-
port per-packet attributes such as frame boundaries,
packet deadlines, and drop priorities. Using these at-
tributes we can use DWCS as an EDF scheduler by
specifying packet deadlines. Although DWCS is the
only scheduler currently supported we plan to add
support for more schedulers (such as SFQ and CBQ)
in the future.

3.1 New application

When developing a new application, QSockets can
be used for providing additional functionality such
as adaptation and rate control without the overhead
of building a new scheduling discipline.

3.1.1 Initialization

The application developer must use the qsockinit
call to initialize the root queueing discipline on a
device. This is required because of the current limi-
tation within the QSockets architecture which allows
the system to use only a single type of queueing disci-
pline system wide. Since it effects the entire system,
qsockinit is a privileged call and requires root ac-
cess.

struct qos_params params;

int err = 0;

strncpy(params.dev, "eth0", IFNAMSIZ);

strncpy(params.name, "dwcs", IFNAMSIZ);

params.attributes = NULL;

err = qsockinit(¶ms);

This needs only be done once for all subsequent us-
ages of QSockets. An error code indicating the con-
dition is returned to indicate success or failure. An
application must check the return value to deter-
mine whether the root queueing discipline has been
installed successfully. If an incompatible queueing
discipline is already instantiated, an error code is re-
turned.

3.1.2 Socket creation

The following code snippet describes the creation of
a scheduled socket end point.

struct qos_params params;

struct q_dwcs_attr attrs;

int fd;

/*set device name*/

strncpy(params.dev, "eth0", IFNAMSIZ);

/*set scheduler name */

strncpy(params.name, "dwcs", IFNAMSIZ);

/*set scheduling attributes*/

attrs.oln = 0;

attrs.old = 10;

attrs.ipg = 10;

attrs.stream_flags = DWCS_NON_DROPPABLE;

params.attributes = &attrs;

/*create scheduled socket*/

fd=qsocket(domain,type,protocol,¶ms);

On success a new socket identifier is returned to the
application that can be used like another socket de-
scriptor. Additional functionality can be exploited
by the application, however, by using the qsend and
qsendto calls for sending data on this socket end
point. The qinfo call can also be used for retrieving
information from the scheduler. The qchange call
can also be used to modify the scheduling parameters
of an existing application.

3.1.3 Passing message specific parameters

To add this functionality to an application the
qsendto call must be used instead of the normal
sendto socket call. We pass a packet flags struc-
ture in with the qsendto call. In the example below
we specify a non-droppable flag for the message as
well as a packet specific deadline.

struct packet_flags pflags;

/*mark the packet as non-droppable*/

pflags.drop_flag = DWCS_NON_DROPPABLE;

/*attach a packet deadline to this message*/

pflags.deadline = deadline

/*call qsendto and send the

packet information down to the scheduler*/

if(qsendto(sockfd, &next_frame,

sizeof(next_frame), 0,

(struct sockaddr*)&name,

size, &pflags)< 0)

perror("qsendto");

3.2 Adding to an existing application

An existing application can be easily modified to use
QSockets without the addition of many new lines of
code. Instead of creating a new socket and associ-
ating a scheduler with it, an existing socket can be
associated with a new scheduler using the qattach
call. Message specific parameters can also be passed
down to the scheduler using qsendto in the way de-
scribed above. When qattach is called it does not

create a new socket to associate with a scheduler, but
rather it uses and already existing socket. This al-
lows the application developer to separate the socket
creation functionality from the QSockets functional-
ity.

struct qos_params params;

struct q_dwcs_attr attrs;

/*fd is the socket descriptor*/

/*set device name*/

strncpy(params.dev, "eth0", IFNAMSIZ);

/*set scheduler name */

strncpy(params.name, "dwcs", IFNAMSIZ);

/*set scheduling attributes*/

attrs.oln = 0;

attrs.old = 10;

attrs.ipg = 10;

attrs.stream_flags = DWCS_NON_DROPPABLE;

params.attributes = &attrs;

/*create scheduled socket*/

qattach(fd, ¶ms);

4 Evaluation

Evaluation of an API requires consideration of two
things. The API should be able to provide its func-
tionality without significant overhead. And secondly
the API’s additional functionality should be useful
for applications.

4.1 Micro Benchmarks

QSockets adds the following new calls: qsockinit,
qsocket, qchange, qinfo, qsendto, qclose and
qattach. We compare the execution time of each call
with the execution time of the equivalent socket calls.
In the case of qsockinit, qinfo, qchange and qattach
there are no equivalent socket calls, but we show that
the time taken for these calls is minuscule. The re-
sults displayed are the average of 10 runs. All times
are in seconds. The experiments were performed on
a dual P2-400 with a 10Mbps network interface.

Call Sockets QSockets

qsockinit N/A 0.046406
qsocket 0.000871 0.000944
qattach N/A 0.000085
qchange N/A 0.000097
qinfo N/A 0.000020
qsendto 0.001272 0.001475
qattach N/A 0.000049
qclose 0.000063 0.000089

TABLE 1: Execution time of API calls

As can be seen from table 1 the QSockets call over-
head is very small. The only call which has a sig-
nificant execution overhead is qsockinit but this is
called only once to initialize the QSockets interface.
Since this is a privileged call it should not be placed
in an application, but rather called by the system at
startup. The call qsocket which is the replacement
for the socket creation call has a very small overhead.
The most frequently used call (qsendto) only has an
overhead of 8.3% higher than the regular sendto call.
We can also see that the new calls qinfo, qchange and
qattach have very low execution times.
The reason for the high overhead of qsockinit is the
creation of a scheduling discipline. However the over-
head for qsendto is harder to explain. Compared to
a normal sendto call, there is additional work that
happens during the execution of the qsendto call.
The additional work includes processing of the socket
classifier, the copying of the packet specific flags, as
well the enqueueing of the packet into the DWCS
queues. We feel that the 15.9% overhead is justified
by additional functionality provided by the new call.

4.2 Application benchmarks

We use two separate classes of applications that re-
quire delay guarantees from the end-host. A video
server needs to transmit generated frames with a cer-
tain rate (a rate based deadline). The server must
transmit the data in a timely manner or the client
receives a low frame rate and high levels of jitter. We
show that by using a rate based scheduler (DWCS)
in a video application we can achieve a more consis-
tent frame rate and lower jitter. We also consider a
data acquisition application example where a sensor
provides data to a remote client. The sensor data is
deadline constrained, i.e if the data is outdated it is

useless. We demonstrate that by attaching the dead-
line to the data we can obtain significantly higher
number of valid data frames. The applications used
simulated traffic which we generated random data..
The video server generated a frame with a random
type and transmitted that over the network. The
data acquisition application generated both the data
and the deadline randomly and transmitted it to the
client. In both cases the client recorded values at 5
second intervals.

4.2.1 Streaming video server

A video server must be able to preserve its guaran-
teed QoS level to the clients at all times, even in the
presence of significant network perturbation. At the
level of the end-host it requires being able to trans-
mit data at a specific rate with low variations. To
test this we developed a simulated server which gen-
erated frames randomly.

�

�

��

��

��

��

� � � � � ��

	
��
���
����� ��
�����

FIGURE 4: Performance of QoS managed
stream compared to unmanaged stream

In Figure 4 we ran the video server twice, using the
QSocket API and without the QSocket API, trans-
mitting a 20fps stream. We also created two network
perturbations (at times 15 and 30). The perturba-
tion was created by started a large ftp transfer on the
host machines. As can be seen the QSocket enabled
video server was able to maintain a frame rate close
to the ideal frame-rate of 20fps (frames per second).
Without QSocket the frame-rate dropped consider-
ably when the perturbation started. The small de-
crease in the frame rate occurs because some frames
are being dropped by DWCS. In such a situation
we preferred that only P and B type frames are
dropped, since they have a lower impact on the qual-
ity of the MPEG video stream. We achieved this by
marking the I frames as non-droppable.

�

����

����

����

����

���

����

����

� � 	
 � �� �� �	 �
 �� �� �� �	 �
 �� �� �� �	 �
 �� �� �� �	 �
 �� 	� 	� 		 	
 	�

�
��������������������� �
���������������

FIGURE 5: Jitter in a QoS managed
stream compared to jitter in an unmanaged
stream

Comparing the jitter in the two streams we see that
the QSocket enabled video server is able to provide
a much lower jitter rate. As can be seen in Figure 5
the time between consecutive frames never increases
significantly even when the perturbations start.

�

�

��

��

��

��

� � � � � ��

	
��
����������� 	
��
�����������
��
����������

FIGURE 6: Running video streams at dif-
ferent rate over QSocket

Finally we show that when the network is overloaded
multiple video streams can be sent with the required
QoS level, but unmanaged streams suffer as a result.
In Figure 6 we see that two managed video streams
at 20fps and 15fps respectively achieve their required
QoS but an unmanaged stream at 20fps is transmit-
ted at a much lower rate. However it should be noted
that there is no starvation of the best effort stream
since most video streams are not work conserving.

4.2.2 Remote data acquisition application

The remote data acquisition application is comprised
of a remote sensor and a client which acquires data

from this client. The sensor sends out data to the
client aperiodically and hence a rate based scheduler
cannot be used. Instead we use an earliest deadline
first scheduler (EDF). The deadlines for each mes-
sage are indicated by the message parameters. We
record the number of missed deadlines at the client
side (where the data is too late to be useful) as well as
the number of frames dropped. We use two versions
of the EDF scheduler (which is based on DWCS), viz.
a lossy version and a lossless version. The lossless
version tries to preferentially send out data over the
network. In the case of a late packet, the data will
still be sent, but best effort flows cannot cause sig-
nificant delays in the deadline constrained streams.
The lossy version of the scheduler drops late pack-
ets, since it is assumed that the late data is useless.
However by dropping late packets the system is able
to send packets with achievable deadlines in time.
To create the effect of network traffic a perturbation
was started at time 30. Similar to the earlier exper-
iments this perturbation was created by a starting a
large FTP transfer on the host machine.

�

�

��

��

��

��

��

��

��

��

��

� � � � � �� 	�

��
���������� ���������������������� �������������������������������

FIGURE 7: Missed deadlines for every 5
second interval in a remote data acquisition
application

In Figure 7 we see that the number of late or lost data
frames are much lower when using QSocket. Further-
more by dropping late frames we achieve very good
results. Looking at the breakdown of late or lost
frame per-interval we see that after the perturbation
is started the non-lossy and the non-QSocket flows
both have significant increases in the number of late
packets. However the lossy flow suffers from no late
packets and is able to drop fewer data frames then
the other two flows. This is a significant reduction
in the number of deadlines missed by the scheduler.

4.3 Results discussion

As can be seen from the experiments QSockets is
a useful API for developing scheduled applications

on top of the standard Linux traffic controller in-
terface. Using some of the additional functionality
within QSockets we can develop applications that
are better able to achieve their desired levels of QoS.
From the results in Figure 7 and 6 we see that it is
possible to obtain even better levels of QoS by using
a scheme for packet dropping. This gives the ap-
plication developer more flexibility in dealing with
situations where the network cannot handle the gen-
erated traffic at the desired level of QoS.

5 Conclusion and future work

We presented QSockets, an API for end-host QoS
support in GNU/Linux, using the existing function-
ality of the traffic controller, instead of creating our
own. QSockets also extends the functionality of the
traffic controller by allowing the developer to pass in
a per-packet attribute with each message to be used
in making a smarter scheduling decision. We showed
that QSockets provides significant advantages to con-
tinuous media and remote sensor data applications,
and provides these advantages at a low overhead cost.
In the future we would like to add additional sched-
ulers to the QSockets framework, including CBQ and
SFQ. This will allow QSockets to be used for more
general purpose applications which require band-
width guarantees. We would also like to add further
functionality into the traffic controller infrastructure
for finer grained traffic classification using applica-
tion specified, dynamically compiled filters.
We also have plans to compare the performance over-
heads of positioning the scheduler at a level above
the protocol stack, where additional application spe-
cific information can be provided to the scheduler.
During the deployment of QSockets we realized that
because of the positioning of the scheduler below
the protocol stack, the traffic controller cannot make
traffic shaping decisions on the basis of the message
content. We want to compare the costs and the bene-
fits of using an alternate implementation of the traffic
controller.

References

[1] W. Almesberger. Linux network traffic control
— implementation overview.

[2] W. Almesberger, J. Salim, A. Kuznetsov, and
D. Knuth. Differentiated services on linux, 1999.

[3] M. Bechler, H. Ritter, G. Schafer, and
J. Schiller. Traffic shaping in end systems at-
tached to qos-supporting networks. In Com-
puters and Communications, 2001. Proceedings.

Sixth IEEE Symposium on , Vol., 2001, pages
296– 301.

[4] C. Poellabauer, H. Abbasi, and K. Schwan. Co-
operative run-time management of adaptive ap-
plications and distributed resources. In Proceed-
ings of the 10th ACM Multimedia Conference,
2002.

[5] G. Vaddi and P. Malipatna. An API for Linux
QoS Support.

[6] P. Wang, Y. Yemini, D. Florissi, J. Zinky, and
P. Florissi. Experimental QoS Performances
of Multimedia Applications. In Proceedings of
IEEE Infocom 2000.

[7] A. Werner. Linux traffic control — im-
plementation overview. Technical Re-

port SSC/1998/037, EPFL, November
1998. ftp://lrcftp.epfl.ch/pub/people/
almesber/pub/tcio-current.ps.gz.

[8] R. West and K. Schwan. Dynamic window-
constrained scheduling for multimedia applica-
tions. In ICMCS, Vol. 2, pages 87–91, 1999.

[9] R. West, K. Schwan, and C. Poellabauer. Scal-
able Scheduling Support for Loss and Delay
Constrained Media Streams. In Proc. 5th Real-
Time Technology and Applications Symposium,
Vancouver, Canada, 1999.

[10] D. K. Y. Yau and S. S. Lam. Migrating sockets
— end system support for networking with qual-
ity of service guarantees. IEEE/ACM Transac-
tions on Networking, 6(6):700–716, 1998.

