
A Virtual Deadline Scheduler for Window-Constrained Service Guarantees

Yuting Zhang, Richard West and Xin Qi

Computer Science Department
Boston University
Boston, MA 02215

{danazh,richwest,xqi}@cs.bu.edu

Abstract

This paper presents a new approach to window-
constrained scheduling, that is suitable for multimedia and
weakly-hard real-time systems. Our algorithm called Vir-
tual Deadline Scheduling (VDS) attempts to service m out
of k job instances by their virtual deadlines, that may be
some finite time after the corresponding real-time dead-
lines. By carefully deriving virtual deadlines, VDS outper-
forms our earlier Dynamic Window-Constrained Schedul-
ing (DWCS) algorithm when servicing jobs with different
request periods. Additionally, VDS is able to limit the extent
to which a fraction of all job instances are serviced late,
while maximizing resource utilization. Simulations show
that VDS can provide better window-constrained service
guarantees than other related algorithms, while having as
good or better delay bounds for all scheduled jobs. Finally,
an implementation of VDS in the Linux kernel compares fa-
vorably against DWCS for a range of scheduling loads.

1. Introduction

The ubiquity of the Internet has led to widespread deliv-
ery of content to the desktop. Much of this content is now
stream-based, such as video and audio, having quality of
service (QoS) constraints in terms of throughput, delay, jit-
ter and loss. More recently, developments have focused on
large-scale distributed sensor networks and applications, to
support the delivery of QoS-constrained data streams from
sensors to specific hosts [11], hand-held PDAs and even ac-
tuators. While many stream-based applications such as live
webcasts, interactive distance learning, tele-medicine and
multi-way video conferencing require the real-time capture
of data, they can tolerate certain late or lost data delivery as
long as a minimum fraction is guaranteed to reach the des-
tination in a timely fashion. However, there are constraints
on which pieces of the data can be late or lost. For ex-

ample, the loss of too many consecutive packets in a video
stream sent over a network might result in significant pic-
ture breakup, rather than a tolerable reduction in signal-to-
noise ratio. Similarly, CPU-bound threads used to process
real-time data might tolerate a certain fraction of missed
deadlines, as long as a minimum service rate is guaranteed.

To deal with the above classes of applications, we
have developed a number of algorithms such as Dynamic
Window-Constrained Scheduling (DWCS) [16, 14, 15].
DWCS attempts to guarantee no more than x out of a fixed
window of y deadlines are missed for consecutive job in-
stances. Moreover, DWCS is capable of utilizing all re-
sources to guarantee a feasible schedule as long as every
job has the same request period. Although this seems re-
strictive, a similar constraint applies to pinwheel sched-
ulers [7, 5, 1], and it can be shown by careful manipula-
tion of service constraints that minimum resource shares
are guaranteed to each job in finite and tunable windows
of time.

Mok and Wang extended our original work by showing
that the general window-constrained problem is NP-hard
for arbitrary service time and request periods [12]. While
they also developed a solution to the window-constrained
scheduling problem for unit service time and arbitrary re-
quest periods, it is only capable of guaranteeing a feasible
schedule when resources are utilized up to 50%. This has
prompted us to devise a new algorithm, called Virtual Dead-
line Scheduling (VDS), that guarantees resource shares to a
specific fraction of all job instances, even when resources
are 100% utilized and request periods differ between jobs.

In order to generate a feasible schedule for the window-
constrained problem, both the request deadlines and
window-constraints of jobs must be considered. Instead of
considering these two factors separately as in DWCS, VDS
combines them together to determine a virtual deadline that
is used to order job instances. Virtual deadlines are set at
specific points within a window of time, to ensure each job
is given a proportionate share of service. Unlike other ap-
proaches that attempt to provide proportional sharing of re-



sources, VDS dynamically adjusts virtual deadlines as the
urgency of servicing a job changes. This enables VDS to
meet the loss-rate, delay and jitter requirements of more
jobs that it services.

From experimental results, VDS is able to outperform
other algorithms that attempt to satisfy the original window-
constrained scheduling problem. However, VDS is specif-
ically designed to satisfy a relaxed form of the window-
constrained scheduling problem, in which m out of k job
instances must be serviced by their virtual (as opposed to
real) deadlines. In effect, this guarantees a fraction of re-
source usage to each job over a finite interval of time, while
bounding the delay of each job instance. Although a job
instance may miss its real deadline, VDS is still able to en-
sure a minimum ofm job instances are serviced in a specific
window of time. This is suitable for applications that can
tolerate some degree of delay up to some maximum amount.

In the next section, we define the window-constrained
scheduling problem, in both its original and relaxed forms.
The VDS algorithm and an analysis of its characteristics are
then described in Section 3. In Section 4, we simulate the
performance of VDS, and compare it with other window-
constrained scheduling algorithms. Additionally, we show
the performance of VDS for real-time workloads when op-
erating as a CPU scheduler in the Linux kernel. This is fol-
lowed by a description of related work in Section 5. Finally,
conclusions and future work are described in Section 6.

2. Window-Constrained Scheduling

Given a set of n periodic jobs, J1, · · · , Jn, a valid
window-constrained schedule requires at least mi out of
ki instances of a job Ji to be serviced by their deadlines.
Deadlines of consecutive job instances are assumed to be
separated by request periods of size Ti, for each job Ji, as
in Rate Monotonic scheduling [10]. One can think of a job
instance’s request period as the interval between when it
is ready and when it must complete service for a specific
amount of time. Moreover, the ready time of one job in-
stance is also the deadline of previous job instance. There-
fore, the request period Ti is also the interval between dead-
lines of successive instances of Ji. Thus, if the jth in-
stance of Ji is denoted by Ji,j , then the deadline of Ji,j

is di,j = di,j−1 + Ti.
We assume that every instance of Ji has the same service

time requirement, Ci
1, although in general this need not be

the case. This implies that a window-constrained sched-
ule must (a) ensure at least mi instances of Ji are serviced
by their respective deadlines, and (b) the minimum service
share for Ji ismiCi time units, every non-overlapping win-
dow of kiTi time units. Although this differs from the slid-

1Ci can be thought of as the worst-case execution time of any instance
of Ji.

ing window model used by the DBP algorithm [6], we have
previously shown that non-overlapping (or fixed) windows
can be converted to sliding windows, and vice versa [16].
For any fixed window-constraint, (mi, ki), the correspond-
ing sliding window-constraint is (mi, 2ki −mi).

Based on the above, a window-constrained job, Ji, is de-
fined by a 4-tuple (Ci, Ti,mi, ki). A minimum of mi out
of ki consecutive job instances must each be serviced for
Ci time units every window of size kiTi, for each job Ji

with request period Ti. The means the minimum utiliza-
tion factor of each job Ji is Ui = miCi

kiTi
. Additionally, the

minimum required utilization for a set of n periodic jobs is
Umin =

∑n
i=1

miCi

kiTi
. When the system is overloaded, the

total resource utilization U =
∑n

i=1
Ci

Ti
> 1.0, and it is

therefore impossible to service every instance of all n jobs.
However, if the minimum required utilization Umin ≤ 1.0,
a feasible window-constrained schedule may exist.

It can be shown that a feasible window-constrained
schedule must exist if each and every job Ji meetsmi dead-
lines every kiTi window of time during the hyper-period of
size lcm(kiTi). However, the general window-constrained
problem with arbitrary service times and request periods
has been shown to be NP-hard [12]. With arbitrary service
times, it may be impossible to guarantee a feasible window-
constrained schedule for all job sets even if the minimum
required utilization Umin ≤ 1.0. Figure 1 shows an exam-
ple job set for which a feasible window-constrained sched-
ule cannot be produced. It should be clear that J1 and J3

cannot both satisfy their window-constraints. However, if
the service time of each and every job instance is constant,
and all request periods are a fixed multiple of this constant,
then a feasible window-constrained schedule exists when
Umin ≤ 1.0 [16].

J3 J3 J2 J3 J3 J2J1 J1 J2

J1 J1 J2 J3 J3 J2J1 J1 J2
Job (C,T,m,k)

time
0 91 2 3 4 5 6 7 8

J1 (2,3,2,3)

J2 (1,3,1,3)

J3 (2,3,2,3)

Umin 1

T1 T2 T3

J1 violates

J3 violates

Figure 1. Example of an infeasible window-
constrained schedule when service times are
different

Relaxing the window-constrained scheduling problem:
If we consider a schedule that starts at time t = 0, then Ji

requires service for at leastmiCi units of time by t = kiTi.
However, as stated earlier, each job can be serviced at most
for Ci time units in every request period. This prevents Ji

from receiving a continuous burst of service of miCi units
from t = kiTi − miCi to t = kiTi. In effect, a window-
constrained schedule prevents large bursts of service to one
job at the cost of others. However, a relaxed version of the



problem, in which job instances may be serviced within a
delay bound after their deadlines (as long as a job receives
at least miCi units of service every interval kiTi) may be
acceptable for some real-time applications. This is true for
many multimedia applications and those which can tolerate
a bounded delay, as long as they receive a minimum fraction
of service in fixed time intervals. For example, packets car-
rying multimedia data streams can experience finite buffer-
ing delays before transmission, or processing at a receiver.

This has prompted us to relax the original window-
constrained problem, to allow job instances to be serviced
after their “real-time” deadlines but in the current window,
as long as we guarantee a minimum fraction of service to
a job. As will be seen later, Virtual Deadline Scheduling
(VDS) can guarantee a feasible schedule according to these
relaxed constraints up to 100% utilization. However, VDS
still prevents a job being serviced entirely at the end of a
window of size kiTi, by spreading out where the mi in-
stances of a job must be serviced in that interval. In effect,
VDS adopts a form of “proportional fair” scheduling of at
leastmi instances of each job, Ji, every interval kiTi.

For clarification, Figure 2 shows the difference between
the original and relaxed window-constrained scheduling
problems. Case (a) describes the original window-
constrained problem, in which at most one instance of a
job, Ji, is serviced every request period. A feasible sched-
ule results in service for Ji in at least mi out of ki periods,
every adjacent window of kiTi time slots. Case (b) shows
the relaxed window-constrained scheduling problem. Up to
α instances of a given job can be serviced in a single period
of size, Ti, if α − 1 instances have missed their real-time
deadlines in the current window of size kiTi. In case (b) of
Figure 2, up to 2 instances of Ji can be serviced in period
Ti,5, according to the relaxed window-constrained problem.
However, case (c) shows that with the relaxed window-
constrained scheduling model, only one job instance can
be serviced in period Ti,4, because no deadlines have been
missed in the current window.

In previous work, we show how the DWCS algorithm
can meet window-constraints for n jobs when the mini-
mum required utilization factor, Umin =

∑n
i=1

miCi

kiTi
≤1.0,

if all service times are a constant, and request periods are a
fixed multiple of this constant. That is, DWCS is capable
of producing a feasible window-constrained schedule when
resources are 100% utilized, if scheduling is performed at
discrete time intervals, ∆, when Ci = ∆ and Ti = q∆,
for all i, such that 1≤i≤n and q is a positive integer [16].
However, when jobs have different request periods, DWCS
may not generate a feasible schedule even if Umin is very
small. This has motivated us to develop the VDS algorithm,
to provide service guarantees to jobs with potentially differ-
ent request periods, while maximizing resource utilization.

Job Ji: Ci=1, Ti=4, mi=2, ki=3; Ti,j: jth request period of job Ji

= serviced
Ci

(a)

kiTi kiTi

Ti,1

Ti,1
kiTi kiTi

(b)

Ti,5

(c)

Ti,4Ti,1
kiTi kiTi

Figure 2. Original versus relaxed versions of
the window-constrained scheduling problem.

3. Virtual Deadline Scheduling

Virtual deadline scheduling (VDS) is able to provide ser-
vice guarantees according to the relaxed and original forms
of the window-constrained scheduling problem. In both
cases, strategic deadlines may be missed when the utiliza-
tion of a set of jobs exceeds 100%, so that a minimum of
mi out of ki deadlines are still met every non-overlapping
window of kiTi real-time. Under such overload conditions
it should be clear that it is impossible to meet all deadlines,
no matter what scheduling policy is in operation.

3.1. Virtual Deadlines

VDS derives “virtual deadlines” for each job instance
from the corresponding window-constraint and request pe-
riod, and the job instance with the earliest such deadline
is scheduled first. In effect, a virtual deadline is used to
loosely enforce proportional fairness on the service granted
to a job in a specific window of time. This means the
amount of service currently granted to a job in a specific
window of real-time should be proportional to the minimum
fraction of service required in the entire window.

A job’s virtual deadline with respect to real-time, t, is
shown in Equation 1. The start time of current request pe-
riod at time t is tsi(t). In effect, this can be considered
the arrival time of the latest instance of job Ji. Similarly,
(m′

i, k
′
i) represents the current window-constraint at time t.

This implies that window-constraints change dynamically,
depending on whether or not a job instance is serviced by
its deadline.

V di(t) =
k′iTi

m′
i

+ tsi(t) |m′
i > 0 (1)

The exact rules that control the dynamic adjustment of
window-constraints will be described later. At this point, it



is worth outlining the intuition behind a job’s virtual dead-
line. If at time t, J ′

is current window-constraint is (m′
i, k

′
i),

then mi − m′
i out of ki − k′i job instances have been ser-

viced in the current window. There are stillm′
i job instances

that need to be serviced in the next k′iTi time units. If one

instance of Ji is serviced every interval k′
iTi

m′
i

, then m′
i job

instances will be serviced in the current remaining window-
time, k′iTi. This assures proportional fairness guarantees
to Ji with respect to other window-constrained jobs. Ad-
ditionally, the delay bound is minimized, by preventing at
least mi instances of Ji being serviced in a single burst at
the end of a given real-time window.

Figure 3 gives an example of the virtual deadline calcu-
lation. We can see that, if a job’s current window-constraint
does not change within a request period, its virtual deadline
will not change either. This example corresponds to the re-
laxed window-constrained model, where more than one job
instance can be served in one request period.

T
kT kT

T

C=1, T=4, 
m=2, k=3

= served

C

Current time, t=16, Vd(16) = 20

• Vd(t=16) = (k’ *T /m’) + ts(t) =(2*4/2) + 16 = 20
• Vd(t=17) = (2*4/2) + 16 = 20
• Vd(t=18) = (2*4/1) + 16 = 24
• Vd(t=19) = (2*4/1) + 16 = 24
• Virtual deadline remains at 24 until start of next window,
at t=24, because m’=0 at t=20

. . . . .t=0

Figure 3. Example showing how to calculate
virtual deadlines.

3.2. The VDS Algorithm

Although VDS gives precedence to the job with the ear-
liest virtual deadline, it will only do so if that job is eligible
for service. There are several cases that preclude a job from
being scheduled, as follows:

1) A job instance cannot be serviced before the start of its
request period, even if it arrives early for service. It follows
that if all currently available instances of a job have been
serviced, the job is ineligible until a new arrival is ready.

2) If Ji has been serviced at leastmi times in its current
window, it is given lower priority than a job yet to meet
its window-constraint. Only if all jobs have achieved their
minimum level of service can they again be considered in
their current windows.

When a job is serviced its current window-constraint
is adjusted. Job Ji has an original window-constraint of
(mi, ki) that is set to a current value of (m′

i, k
′
i), to reflect

how many more instances require service in the remainder

of the active window. Figure 4 shows how current window-
constraints are updated.

if ((C′
i == 0) || (m′

i ≤ 0))
job Ji is ineligible for service ;

Serve eligible job Ji with lowest virtual deadline & update m′
i, C′

i:
C′

i = C′
i − ∆;

if ( C′
i == 0)

m′
i = m′

i − 1 ;

For every job Jj , check violations and update constraints:
if ((V dj <= ∆ + t) && (j! = i))

Tag Jj with a violation;
if (A new job instance arrives) {

k′
j = k′

j − 1; C′
j = Cj ;

if (k′
j == 0) {
m′

j = mj ; k′
j = kj ;

Discard the remaining job instances in the previous window
}

}
if (m′

j > 0)

Update V dj according to Equation 1

// Only for the relaxed model
if (((kj − k′

j) ≥ (mj − m′
j))&&(C′

j == 0))

C′
j = Cj ;

Figure 4. Updating service constraints using
VDS.

Here, the assumption is that scheduling decisions are
made once every time-slot, ∆. Unless stated otherwise, we
assume throughout the rest of the paper that ∆ represents
a unit time-slot. In Figure 4, C ′

i represents the remaining
service time. Every time job Ji is serviced, its remaining
service time, C ′

i, is decremented by ∆. At the start of a
new request period when a new job instance arrives, J ′

is re-
maining service time, C′

i, is reset to its original value, Ci. If
C ′

i decreases to 0, Ji is ineligible for service until the start
of the next request period. We assume a new job instance
arrives every request period Ti. Accordingly, we need to
update the value of tsi in Equation 1 once every Ti, to de-
termine Ji’s new virtual deadline, V di.

The last few lines of the pseudo-code in Figure 4 show
how constraint adjustments differ between the relaxed and
original models. In the relaxed model, if there are outstand-
ing instances of Ji in the previous request period of the cur-
rent window, C ′

i is reset. In the original model, C ′
i is reset

only at the beginning of each request period, which reduces
the number of job instances that can be serviced over time.

When an instance of Ji is serviced, m′
i is decreased by

1, because fewer instances need to be serviced in current
window. If m′

i reaches 0 in the current window, Ji has
met its window-constraint and becomes ineligible for ser-
vice until the start of the next window, unless all other jobs
have met their current window-constraints. The value of k′i
is decreased by 1 every request period, Ti, until it reaches



0, which indicates the end of the current window. At this
point, Ji’s current window-constraint (m′

i, k
′
i) is reset to its

original value, (mi, ki). A window-constraint violation is
observed if any job instance misses its virtual deadline.

3.3. VDS versus Other Algorithms

The Earliest-deadline-first (EDF) algorithm produces a
schedule that meets all deadlines, if such a schedule is
known to theoretically exist. For the window-constrained
scheduling problem, if each job Ji requires that mi = ki,
then every real-time deadline must be met. In this case, the
virtual deadlines of job instances serviced by VDS are the
same as their corresponding real-time deadlines. In effect,
VDS and EDF behave the same when mi = ki for each Ji.
This implies that VDS shares the same optimal characteris-
tics of EDF, when it is possible to meet all deadlines. Now,
whenmi = 1 for each and every Ji, virtual deadlines using
VDS are at the end of the current request window of size
kiTi. Here, VDS behaves the same as an EDF scheduler
for jobs with request periods of length kiTi. Furthermore,
when ki is a multiple of mi for each and every Ji, the cor-
responding window-constraint can be reduced to (1, ki

mi
).

Once again, this is equivalent to servicing jobs using EDF
with deadlines at the ends of periods of length kiTi

mi
.

DWCS was our first algorithm designed explicitly to
support jobs with window-constraints. In ordering jobs
for service, DWCS compares deadlines and window-
constraints separately. In one version of the algorithm [16,
14], DWCS first compares the deadlines of jobs, giving
precedence to the one with the earliest such deadline. If
two or more jobs have the earliest deadline, their current
window-constraints are then compared. In this case, the

job, Ji, with the highest ratio, m′
i

k′
i

, is given precedence. It
can be shown that if all jobs have the same request periods,
DWCS can generate a feasible window-constrained sched-
ule, even when Umin = 1.0. This implies that a feasible
window-constrained schedule is possible even when all re-
sources (e.g., CPU cycles) are utilized.

Comparing VDS to DWCS, if all request periods are
equal, then each job’s virtual deadline only depends on its
current window-constraint. Moreover, if all jobs have the
same request periods then their current instances have the
same real-time deadlines. In this case, DWCS will give

precedence to the job with the highest value of m′
i

k′
i

. Like-

wise, VDS will select the job with highest ratio m′
i

k′
i

, since
(from Equation 1) it has the earliest virtual deadline. Con-
sequently, VDS is also able to produce a feasible window-
constrained schedule that utilizes 100% of resources when
all job request periods are equal.

Now, when jobs have different request periods and
window-constraints, DWCS may fail to produce a valid

schedule. As an example, consider Figure 5, which
compares four algorithms for a job set with Umin =∑n

i=1
miCi

kiTi
= 8

9 over the hyper-period (0, 9]. This example
is for the original window-constrained scheduling problem
and assumes jobs are eligible for service as defined earlier.
As can be seen, J3 cannot be scheduled in the first win-
dow using either EDF or DWCS, so it violates its window-
constraint. Observe that EDF and DWCS both choose J1

first, because it has the earliest deadline, rather than J2 or
J3 that have “tighter” window-constraints. In contrast, VDS
produces a schedule that satisfies the service constraints
of all jobs. This is because VDS combines deadlines and
window-constraints to derive a virtual deadline and, hence,
priority for ordering jobs.

By setting deadlines at the ends of windows, an alter-
native to VDS is to use a deadline-driven scheduler that we
call “Eligibility-based Window-Deadline-First” (EWDF). It
behaves similar to EDF but gives precedence to the job with
the earliest window deadline that is eligible for service. Sec-
tion 3.2 describes the two conditions preventing a job from
being eligible for service. With EWDF, ki instances of Ji

all have deadlines at the end of the current window of size
kiTi, rather than each instance having a separate deadline
at the end of its request period. As can be seen from Fig-
ure 5, EWDF is able to service all three jobs according to
their window-constraints.

In general, EWDF is able to guaranteemiCi units of ser-
vice every kiTi for each job Ji, if Umin≤1.0. However, it
may delay the service of a job until the end of a window,
kiTi. In the worst case, all mi instances of Ji may be ser-
viced in a single burst during the lastmi∆ time units in the
current window. Hence, the worst-case delay of a job in-
stance with EWDF is kiTi − miCi. This compares to the
maximum delay with VDS of (ki−mi+1)Ti−Ci, as shown
in the next section.

J2 J3 J1 J2 J3 J1 VDSJ2 J3 J1

J2 J3 J1 J2 J3 J1 DWCSJ1 J1 J2

EDFJ2 J3 J1 J2 J3 J1J1 J1 J2

time
0 91 2 3 4 5 6 7 8

EWDFJ2 J3 J1 J2 J3 J1J2 J3 J1

J
3
 violates

J3 violates

J1

J2

J3

Job (C,T,m,k)

(1,1,2,9)

(1,3,1,1)

Umin 0.889

(1,3,1,1)

Figure 5. A comparison of scheduling algo-
rithms.

Figure 6 shows an example of the differences in delays
experienced by jobs using the VDS and EWDF algorithms,
for the relaxed window-constrained scheduling problem.
Using EWDF, all three job instances for J1 are serviced



EWDF

VDS

delay = 24

time

delay = 13

J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J1 J1 J1 J2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J2 J1 J2J1 J1

Job (C,T,m,k)

J1

J
2 (1,1,24,27)

Umin 0.996

(1,7,3,4)

Figure 6. Example service delays for VDS versus EWDF.

in the last request period of the current window. The first
instance of J1 experiences a delay of 24, and only the last
instance meets its request deadline. However, using VDS,
the first instance of J1 incurs a queueing delay of 13, and
all 3 job instances are serviced in their own request periods.

EWDF does not consider mi, but only window-size,
kiTi, to decide the scheduling priority. In general, it is not
really suitable for the original window-constrained schedul-
ing problem, and it may cause worse delays to jobs than
VDS for the relaxed problem.

3.4. VDS Properties

This section describes some of the key properties of
VDS. These are summarized as follows:

• If a feasible schedule exists, such that at any time no
virtual deadlines are missed, then VDS ensures that the
maximum delay of each job is bounded.

• If a feasible schedule exists, it follows that VDS guar-
antees each job a minimum share of service in a finite
interval.

• If the minimum required utilization, Umin, is less than
or equal to 1.0, and service times are all constant, then
a feasible schedule is guaranteed using VDS. This is
based on the assumption that each job is serviced at the
granularity of a fixed-sized time slot, ∆ (i.e., ∀i, Ci =
∆), and all request periods are multiples of such a time
slot (i.e., ∀i, Ti = qi∆ | qi ∈ Z+).

• The algorithmic complexity of the VDS algorithm is a
linear function of the number of jobs needing service,
in the worst case.

Lemma 1. If a feasible VDS schedule exists, the current
window-constraint (m′

i, k
′
i) of job Ji always satisfies the

condition that k′i ≥ m′
i.

Proof. The proof is by contradiction. We will show that
if there exists a job Ji, whose current window-constraint is
such that k′i < m′

i, then there is a service violation in the
VDS schedule.

If at some time there exists the condition k′i = m′
i − 1,

then in the previous request period, k′i = m′
i, and Ji was

not serviced. If we let t be the time at the beginning of

the last ∆ time units of the previous request period, then
tsi(t) = t− Ti + ∆ and Ji’s virtual deadline is:

V di(t) =
k′i
m′

i

Ti + tsi(t) = Ti + t− Ti + ∆ = t+ ∆;

We know that Ji was not serviced in the interval [t, t +
∆], so there must be a violation according to the VDS algo-
rithm.

Hence, by contradiction, if a feasible VDS schedule ex-
ists, the current window-constraint (m′

i, k
′
i) of job Ji always

satisfies the condition that k′i ≥ m′
i.

Delay Bound

Theorem 1. If a feasible schedule exists, the maximum de-
lay of service to a job, Ji | 1 ≤ i ≤ n, is (ki−mi+1)Ti−Ci.

Proof. From Lemma 1, we know that if a feasible VDS
schedule exists, the current window-constraint (m′

i, k
′
i) of

job Ji at any time satisfies the condition k′i ≥ m′
i. Hence, if

no instance of Ji has been serviced by the (ki −mi + 1)th
period of the current window, then k′i = m′

i = mi. An
instance must be served during this period, otherwise k′i <
m′

i in next period. This implies the worst case delay for Ji

is (ki −mi + 1)Ti − Ci in a feasible VDS schedule.

Service Share

Theorem 2. If there is a feasible VDS schedule, every job
has at least mi instances serviced in each kiTi window of
real-time. Hence, the minimum service share of each job is
miCi

kiTi
in every request window.

Proof. Again from Lemma 1, we know that if a feasible
VDS schedule exists, the condition k′i ≥ m′

i must hold.
Now, in the last request period of a given window, k′i = 1
and m′

i ≤ 1 is true. If m′
i = 1 = k′i, then an instance of

Ji must be serviced in this last period of the window. If
m′

i ≤ 0 in the last period of a given window, then Ji has
already been be served at leastmi out of ki times before the
window has ended. Hence, each job, Ji, receives at least
miCi

kiTi
service in every request window.



Feasibility Test

Theorem 3. If Umin =
∑n

i=1
miCi

kiTi
≤ 1.0, Ci = ∆

and Ti = qi∆,∀i | qi∈Z+ then VDS guarantees a feasi-
ble schedule according to the relaxed window-constrained
model.

Proof. The details of this proof are shown in the Appendix.

Schedulability Analysis with Dynamic Arrivals and De-
partures

The previous theorem states the feasibility requirements
assuming a static set of n jobs. However, in many practi-
cal situations jobs may arrive and depart at different times.
Suppose there are n jobs with a minimum utilization re-
quirement, Umin, when a new job Jn+1 arrives. To test for
feasibility, we need only check that 1 − Umin≥mn+1Cn+1

kn+1Tn+1
,

assuming no existing jobs depart from the system. How-
ever, if there are both dynamic arrivals and departures we
need to check more than the minimum utilization bound
over current existing jobs before admitting any new jobs.
Intuitively, this is because departing jobs may have already
finished their minimum service share and departed before
the end of their windows. The following theorem states the
conditions under which a feasible schedule can be guaran-
teed when jobs arrive and depart dynamically.

Theorem 4. Assume n jobs arrive at time 0 and Umin =∑n
i=1

miCi

kiTi
≤ 1.0. Suppose job Jj departs and Jn+1 ar-

rives at time t > 0. If the minimum utilization of the new
job set, Umin =

∑j−1
i=1

miCi

kiTi
+

∑n+1
i=j+1

miCi

kiTi
≤ 1, then the

time at which Jn+1 can be safely admitted into the system,
to guarantee a feasible schedule, is pkn+1Tn+1, where p is
the smallest integer such that pkn+1Tn+1 ≥ � t

kjTj
�kjTj .

Proof. The critical case is when Umin is 1.0 both be-
fore and after t. That is,

∑n
i=1

miCi

kiTi
= 1 before t, and

∑j−1
i=1

miCi

kiTi
+

∑n+1
i=j+1

miCi

kiTi
= 1 after t. This implies that

mjCj

kjTj
= mn+1Cn+1

kn+1Tn+1
. In what follows, we show this condi-

tion to be true for the critical case, and therefore must hold
for all feasible schedules.

When Umin = 1 both before and after t, job Jn+1 will
receive the same service share previously allocated to Jj . If
we first imagine that Jn+1 takes the place of Jj in the sched-
ule at time 0, then if

∑j−1
i=1

miCi

kiTi
+

∑n+1
i=j+1

miCi

kiTi
= 1, there

must be a feasible schedule. Therefore, during the inter-
val (0, pkn+1Tn+1], job Jn+1 is serviced for pmn+1Cn+1

units of time. However, in reality Jj is serviced during the
interval (0, t], instead of Jn+1. Since

∑n
i=1

miCi

kiTi
= 1,

the maximum service time for Jj in the interval (0, t] is
� t

kjTj
�mjCj . If � t

kjTj
�mjCj ≤ pmn+1Cn+1, there is a

feasible schedule by interchanging Jn+1 and Jj . It follows
that:

pkn+1Tn+1 ≥ � t

kjTj
�kjTj ⇒ pkn+1Tn+1

kjTj
≥ � t

kjTj
� ⇒

pmn+1Cn+1

mjCj
≥ � t

kjTj
� ⇒ pmn+1Cn+1 ≥ � t

kjTj
�mjCj

Algorithmic Complexity

Theorem 5. The complexity of the VDS algorithm is O(n),
where n is the number of jobs requiring service.

Proof. The VDS algorithm is based on virtual deadline
ordering. The cost of ordering such deadlines can be
O(log(n)) if a heap structure is used. However, when VDS
either services a job or switches to a new request period,
it must update the corresponding virtual deadline. In the
worst-case all n jobs require their virtual deadlines to be re-
calculated at the same time. This is an O(1) operation on
a per-job basis, implying that the scheduling complexity is
O(n) for n jobs.

4. Experimental Evaluation

4.1. Simulations

This section evaluates the performance of VDS, via a
series of simulations comprising a total of 1, 300, 000 ran-
domly generated job sets. We assume that all jobs in each
set are periodic with unit processing time, ∆ = 1, although
they may have different request periods, qi∆ | qi≥1. Each
job Ji has a new instance arrive every request period, Ti,
and a scheduling decision is made once every unit-length
time slot, ∆. A range of minimum utilization factors, Umin,
up to 1.3 are derived by randomly choosing the number of
jobs in a set, as well as values for job request periods and
window-constraints (such that n, qi,mi, ki ∈ [1, 10]). Uti-
lization factors are incremented in steps of 0.1, resulting in
13 such values with 100, 000 job sets in each case. Schedul-
ing is performed for each job set over its hyper-period, to
capture all possible window-constraint violations. In each
test case, VDS is compared to several other algorithms, and
violations are determined for both the original and relaxed
window-constrained scheduling problems.
Performance Metrics: The following metrics are defined
to measure the performance of each algorithm:

• V tests: This is the number of simulation tests that vio-
late the service requirements of each job, according to
the relaxed window-constrained scheduling problem.
That is, if there is any job Ji that has less than mi in-
stances serviced in any window of kiTi real-time, the
corresponding test violates the service requirements. It
should be noted that one test consists of a schedule for
all jobs in a single set, serviced over their entire hyper-
period.



• V testd: This is the number of simulation tests that vi-
olate the service requirements of each job, according to
the original window-constrained scheduling problem.
That is, if there is any job Ji that has less than mi job
instances meeting their request deadlines in any win-
dow of kiTi real-time, the corresponding test violates
the service requirements.

• Vs: This is the total violation rate of all jobs, in all
tests, that fail to be serviced at least mi times in any
window of kiTi real-time.

• Vd: This is the total violation rate of all jobs, in all
tests, that fail to meet at leastmi deadlines in any win-
dow of kiTi real-time.

The violation rate of each job Ji is calculated as the ra-
tio of the number of windows with violations in the hyper-
period, to the number of windows in the hyper-period. For
each Ji, the number of real-time windows in the hyper-
period is lcm(kiTi,∀i) / kiTi.
Original Window-Constrained Scheduling Problem: In
the original window-constrained scheduling problem, each
job instance must be serviced in its current request period,
otherwise it will be late. If we assume late job instances are
simply discarded, the number of instances that meet dead-
lines must be the same as the number that are serviced. In
this case, a window-based service constraint is equivalent
to a window-based deadline constraint. Therefore, Vd = Vs

and V testd = V tests.
Figure 7(a) shows results for VDS versus DWCS and the

EDF-Pfair algorithm, with respect to the original window-
constrained scheduling problem. The latter EDF-Pfair al-
gorithm is a form of EDF-based pfair scheduling, as de-
scribed by Mok and Wang [12]. It can be seen that, when
Umin ≤ 1.0, VDS results in fewer violations than the other
scheduling algorithms. Moreover, VDS only starts to show
violations when the minimum utilization factor is above 0.9,
with only 14 out of 100, 000 tests which fail. Similarly, the
violation rate for VDS is very small. Although the EDF-
Pfair algorithm performs well, it is not as good as VDS.
By comparison, DWCS results in violations when the min-
imum utilization factor is above 0.6. Likewise, the number
of violating test cases, and the violation rate are much larger
with DWCS than VDS.
Relaxed Window-Constrained Scheduling Problem: For
the relaxed window-constrained scheduling problem, each
instance of job Ji can legitimately be serviced in the cur-
rent window of size kiTi, even if a corresponding request
deadline has passed. This means there can be less job in-
stances meeting deadlines than are actually serviced. There-
fore, Vs ≤ Vd and V tests ≤ V testd.

Figure 7(b) shows results for VDS versus EWDF, with
respect to the relaxed window-constrained scheduling prob-
lem. In this case, VDS and EWDF are able to guarantee no
service violations up to 100% utilization. In the overload

cases, VDS has more violations than EWDF, because it tries
to provide (proportionally) fair service to every job. That is,
VDS attempts to provide each job with at least miCi units
of service time every kiTi, even though this is not possi-
ble. However, compared to EWDF, VDS has (1) better de-
lay properties, as it attempts to service job instances earlier,
and (2) has fewer deadline violations.

4.2. CPU Scheduling Experiments in Linux

We have implemented VDS as part of a CPU scheduler
in the Linux 2.4.18 kernel, to evaluate its performance in a
working system. A Dell precision 330 workstation, with
a single 1.4Ghz Pentium 4 processor, 256KB L2 cache
and 512MB RDRAM is used to compare VDS and DWCS
schedulers. The experimental setup is similar to that in
prior studies involving DWCS in the Linux kernel [13].
In the results that follow, we used the Pentium timestamp
counter to accurately measure elapsed clock cycles and,
hence, scheduling performance.

Figure 8 compares the performance of VDS and DWCS
in a real system, in terms of average violations per task 2.
In these experiments, a violation occurs when fewer than
m out of k consecutive deadlines are met for periodic, pre-
emptive CPU-bound tasks. Each task runs in an infinite loop
but can be preempted every clock tick, or jiffy, to allow the
scheduler to execute. In effect, one can think of a task as
an infinite sequence of sub-tasks, each requiring one jiffy’s
worth (about 10mS on an Intel x86) of service every request
period.

It should be noted that the x-axis of Figure 8 does not
represent a linear scale. Rather, each data point represents
the utilization, Umin =

∑n
i=1

miCi

kiTi
. These values are de-

rived from a combination of up to n = 8 tasks, with ran-
domly generated scheduling parameters mi, ki and Ti for
each task. Since each task executes for one jiffy between
scheduling points (discounting any system-processing over-
heads), we can assume that service times are all unit-
length. As can be seen, when the utilization is less than
1.0, there are almost no window-constraint violations using
VDS compared to DWCS. As expected, violations occur for
both algorithms when Umin exceeds 1.0.

5. Related Work

Window-constrained scheduling is a form of weakly-
hard service [3, 4], that is similar to “skip over” [9] and
(m, k)-firm scheduling [6]. Hamdaoui and Ramanathan [6]
were the first to introduce the notion of (m, k)-firm dead-
lines, in which statistical service guarantees are applied

2For scheduling purposes, Linux treats both threads and processes as
tasks.



Umin DWCS EDF-Pfair VDS DWCS EDF-Pfair VDS
(0.0-0.1] 0 0 0 0 0 0

(0.1-0.2] 0 0 0 0 0 0

(0.2-0.3] 0 0 0 0 0 0

(0.3-0.4] 0 0 0 0 0 0
(0.4-0.5] 0 0 0 0 0 0

(0.5-0.6] 0 0 0 0 0 0
(0.6-0.7] 5 0 0 0.011045 0 0
(0.7-0.8] 130 0 0 1.146656 0 0

(0.8-0.9] 1206 0 0 12.50002 0 0

(0.9-1.0] 14555 77 14 340.4671 4.679056 0.6

(1.0-1.1] 100000 100000 100000 83917.59 79749.3281 102407.2
(1.1-1.2] 100000 100000 100000 220502.2 195115.125 260838.6

(1.2-1.3] 100000 100000 100000 326949.8 281281.25 378124.8

Vtestd,Vtests Vd,Vs

Umin Vtests Vtestd Vtests Vtestd Vs Vd Vs Vd

(0.0-0.1] 0 0 0 0 0 0 0 0
(0.1-0.2] 0 0 0 0 0 0 0 0
(0.2-0.3] 0 0 0 0 0 0 0 0
(0.3-0.4] 0 0 0 6 0 0 0 0.05
(0.4-0.5] 0 1 0 272 0 0.002 0 3.3
(0.5-0.6] 0 28 0 3649 0 0.2 0 74.6
(0.6-0.7] 0 888 0 19429 0 13.5 0 804.5
(0.7-0.8] 0 9125 0 52097 0 192.5 0 5861.2
(0.8-0.9] 0 37422 0 77643 0 2190.1 0 31481.2
(0.9-1.0] 0 72610 0 89413 0 14991.5 0 122458.5
(1.0-1.1] 100000 100000 100000 100000 94860.29 138155.2 67690.34 336293.7
(1.1-1.2] 100000 100000 100000 100000 238094.8 292439.6 168082.1 385539.3
(1.2-1.3] 100000 100000 100000 100000 347534.4 403402.9 246201.8 421908.6

VDS EWDF VDS EWDF

Figure 7. Comparisons of service violations for (a) the original, and (b) the relaxed window-
constrained scheduling problem.
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Figure 8. Violations using VDS versus DWCS
CPU schedulers in the Linux kernel.

to jobs. Their algorithm uses a “distance-based” priority
(DBP) scheme to increase the urgency of servicing a job in
danger of missing more than m deadlines, over a window
of k requests for service. Using DBP, the priority of a job
is determined directly from its window-constraint and ser-
vice in the current window, without considering real-time
deadlines. Mok and Wang [12] have shown that window-
constrained algorithms which separately consider deadline
and window-constraints may fail to produce feasible sched-
ules even when resource utilization is very low. In contrast,
VDS uses a virtual deadline scheme that combines both a
job’s window-constraint and real-time deadline, to derive a
job’s priority. This increases the likelihood of VDS meeting
the service requirements of window-constrained jobs.

There are also examples of (m, k)-hard schedulers [2]
but most such approaches require off-line feasibility tests,
to ensure predictable service. In contrast, our on-line VDS
algorithm is targeted at a specific window-constrained prob-

lem that requires explicit service of a minimum number
(mi) of instances of each job Ji in a window of kiTi time
units, such that strong delay bounds are met.

Other related research includes pinwheel scheduling [7,
5, 1] but all time intervals, and hence request periods, are of
a fixed size. In essence, the generalized pinwheel schedul-
ing problem is equivalent to determining a schedule for a
set of n jobs {Ji | 1≤i≤n}, each requiring at leastmi dead-
lines are met in any window of ki deadlines, given that the
time between consecutive deadlines is a multiple of some
fixed-size time slot, and resources are allocated at the gran-
ularity of one time slot. Both our previous DWCS algo-
rithm and VDS can be thought of as special cases of pin-
wheel scheduling. With VDS, service guarantees are pro-
vided over non-overlapping windows of ki deadlines spaced
apart by Ti time units. However, VDS guarantees feasibil-
ity when resources are 100% utilized, even when ki is finite
and different jobs have arbitrary request periods. As with
the Rate-Based Execution (RBE) model [8], VDS ensures a
minimum service time ofmiCi every window of kiTi.

6. Conclusions and Future Work

The original window-constrained scheduling problem
requires at leastm out of k instances of a periodic job to be
serviced by their real-time deadlines. Deadlines of consec-
utive job instances are assumed to be separated by regular
intervals, or request periods, as in Rate Monotonic schedul-
ing. Our earlier DWCS algorithm attempts to guarantee a
feasible window-constrained schedule when all request pe-
riods are identical and resources are 100% utilized. How-
ever, to support jobs with different request periods, we have
devised a new algorithm called virtual deadline scheduling
(VDS).

VDS derives a virtual deadline for each job it services,
based on a function of that job’s real-time deadline and
current window-constraint. VDS is able to guarantee at



least m out of k instances of a periodic job are serviced by
their virtual deadlines, which may be some finite time after
their corresponding real-time deadlines. Under this relaxed
form of the window-constrained scheduling problem, VDS
is able to produce feasible schedules for jobs with differ-
ent request periods, while utilizing all resources. Moreover,
VDS is able to outperform DWCS and other similar algo-
rithms for the original problem when jobs have different re-
quest periods. We believe this makes VDS a more flexible
algorithm, when some jobs may be late as long as they re-
ceive a minimum fraction of resources over finite windows
of time. Our future work on window-constrained schedul-
ing will focus on the provision of end-to-end service guar-
antees across multi-hop networks.

APPENDIX

Proof. of Theorem 3. For brevity we do not provide a rig-
orous proof. However, it involves a reduction to an equiv-
alent EDF scheduling problem. Note that EDF is optimal
in the sense that if it is possible to produce a schedule in
which all deadlines are met, such a schedule can be pro-
duced using EDF. In the equivalent EDF schedule, we must
guarantee that n periodic jobs are each serviced for Ci units
of time, every period kiTi

mi
. Now, if

∑n
i=1

Ci

(kiTi)/mi
≤1.0

then EDF guarantees all jobs will be serviced for Ci time
units every period, kiTi

mi
. With VDS, we require a feasible

schedule to have a minimum utilization of miCi

kiTi
. This is the

same utilization as that in the equivalent EDF schedule.
In meeting the utilization requirement, VDS must guar-

antee every serviced instance of Ji (of which there must be
at least mi such instances) meets its virtual deadline with
respect to the current time, t. Let us assume that t = 0 ini-
tially. At the beginning of the first request window, Ji’s vir-
tual deadline is set to kiTi

mi
. This is the same as the deadline

of the first instance of Ji in the equivalent EDF scheduling
problem. Now, with VDS, virtual deadlines increase over
time. Hence, if EDF can guarantee service to the first in-
stance of Ji by time t = kiTi

mi
then the first instance serviced

by VDS must have a virtual deadline greater than or equal
to this time when it is actually serviced.

The worst-case virtual deadline of each serviced job in-
stance will not be earlier than the equivalent deadline in
an EDF schedule. With the relaxed window-constrained
scheduling model, job instances are not discarded after their
request periods, so we need only select a minimum of mi

such instances for each Ji by the corresponding virtual
deadlines. That is, at least one instance of Ji is serviced
in a request window by the virtual deadline with respect to
the current time.

The requirement that Ci = ∆ and Ti = qi∆,∀i | qi∈Z+

is imposed because we assume VDS makes scheduling de-
cisions at the granularity of ∆-sized time-slots. This allows
VDS to emulate the preemptive nature of EDF.
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