Analysis of a Window-Constrained Scheduler for Real-Time and Best-Effort
Packet Streams

Richard West and Christian Poellabauer

College of C
Georgia Institute

omputing
of Technology

Atlanta, GA 30332
{west,chrig@cc.gatech.edu

Abstract

This paper describes how Dynamic Wndow-
Constrained Scheduling (DWCS) can guarantee real-time
service to packets from multiple streams with different
performance objectives. We show that: (1) DWCS can
guarantee that no more than = packets miss their deadlines
for every y consecutive packets requiring service, as long
as the minimum aggregate bandwidth requirement of all
real-time packet streams does not exceed the available
bandwidth, (2) using DWCS, the delay of service to real-
time packet streams is bounded even when the scheduler
is overloaded, (3) DWCS can ensure that the delay bound
of any given stream is independent of other streams, and
(4) a fast response time for best-effort packet streams,
in the presence of real-time packet streams, is possible.
Furthermore, if a feasible schedule exists, each streamis
guaranteed a minimum fraction of available bandwidth
over a finite window of time.

1. Introduction

Many real-time, distributed applications, such as tele-
medicine, virtual environments, video-on-demand and
streaming audio, can tolerate the loss of a certain fraction
of all information transferred across a network to one or
more clients. Information is lost if it is either received later
than desired or not received at all by a client. For many
such ’loss-tolerant’ applications, there is usually a restric-
tion on the number o€onsecutive packets of information
that can be lost. For example, losing too many consecu-
tive packets from an audio stream might result in the loss
of a complete section of audio, rather than merely a reduc-
tion in the signal-to-noise ratio. More precisely, an applica-
tion might tolerater packet losses for everyarrivals at the

discipline, for scheduling the transmission of packets from
‘loss-tolerant’ applications, must attempt to guarantee that
no more tharx packets are serviced late for everpackets
requiring service.

This paper analyzes the real-time properties of Dynamic
Window-Constrained Scheduling (DWCS) [18, 19], an al-
gorithm that is suitable for packet scheduling in real-time
communications. DWCS is designed to explicitly service
packet streams in accordance with their loss and delay con-
straints, using just two attributes per packet stream. Fur-
thermore, DWCS has the desirable property of support-
ing ‘fair’ allocation of bandwidth to packet streams, in
proportion to their loss-constraints and per-packet dead-
lines [18]. In fact, DWCS can behave as a static-priority
(SP), earliest-deadline-first (EDF), and fair scheduling al-
gorithm [6, 20, 7, 2, 8, 15, 16]. Moreover, DWCS is in-
tended to support multimedia traffic streams in the same
manner as the SMART scheduler [14], but DWCS is less
complex and requires maintenance of less state information
than SMART.

Although DWCS has a lot in common with fair schedul-
ing algorithms, it is more closely related to algorithms
which attempt to guarantee service to packet streams,
whereby at leastn out of & packet deadlines are met for
each and every stream. Hamdaoui and Ramanathan [9] were
the first to introduce the notion dfn, k)-firm deadlines,
which is similar to the concept of ‘Skip-Over’ by Koren and
Shasha [12]. However, in some cases, skip over algorithms
unnecessarily skip service to one or more activities (such as
periodic tasks or packet streams), even if it is possible to
meet the deadlines of those activities.

The (m, k)-firm deadline algorithm of Hamdaoui and
Ramanathan guarantees that a statistical number of dead-
lines will be met, by using a ‘distance-based’ priority
scheme to increase the priority of an activity in danger of
missing more thanm deadlines over a window of re-

various service points across a network. A suitable servicequests for service. By contrast, Bernat and Burns [3] sched-

ule activities with(m, k)-hard deadlines, but their approach Unless stated otherwise, we assume throughout this paper
requires such hard temporal constraints to be guaranteedhat at most one packet from any given stream is serviced
by off-line feasibility tests. Moreover, Bernat and Burns in a single time slot but, in general, it is possible for multi-
work focuses less on the issue of providing a solution to ple packets from the same stream to be aggregated together
on-line scheduling of activities wittin, k)-hard deadlines, and serviced in a single time slot, as if they were one large
but more on the support for fast response time to best-effortpacket.

activities, in the presence of activities with hard deadline The remainder of this paper is organized as follows: Sec-
constraints. tion 2 describes a version of DWCS that provides,)-

Pinwheel scheduling [10, 4, 1] is also similar to DWCS. hard service guarantees. Section 3 analyzes the perfor-
In essence, the generalized pinwheel scheduling problenrmance of DWCS, while Section 4 describes an approach to
is equivalent to determining a schedule for a sehadc- effectively servicing best-effort packet streams without vi-
tivities {a; | 1<i<n}, each requiring at least; deadlines olating the service constraints of real-time packet streams.
are met inany window of k; deadlines, given that the time ~ Finally, conclusions are described in Section 5.
between consecutive deadlines is a multiple of some fixed-
size time slot, and resources are allocated at the granular-
ity of one time slot. DWCS can be thought of as a special :
case of pinwheel scheduling, whereby DWCS guarantees Ty=2K
a minimum ofm,; deadlines are met evefixed (i.e., non- ‘
overlapping) window of; deadlines, for a given activity; .

In fact, DWCS is capable of producing a feasible schedule,
independent of an activity’s window size k;, when 100%

of available resources (such as bandwidth) are utilized. By |
comparison, Baruah and Lin [1] have developed a pinwheel ————1— T 1T T T T T T T 71 timet
scheduling algorithm, that is capable of producingafeasible 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16—
schedule when all resources are utilized, given that oco.

Other notable work includes Jeffay and Goddard’s Rate-
Based Execution (RBE) model [11]. As will be seen in this
paper, DWCS uses similar service parameters to those de-
scribed in the RBE model. However, in the RBE model, ac-
tivities are expected to be serviced with an average rate of
times everyy time units, and there is no notion of missing,
or discarding, service requests.

In contrast to the related work described above, the sig-
nificant contributions of this work are: (1) the description
and analysis of aon-line version of DWCS that can guar-
antee(m, k)-hard deadlines (or, equivalently, no more than
x missed packet deadlines for every fixed windovy abn-
secutive packets in a given stream), (2) an approach to en- We begin this section by defining the problem of guar-
sure fast response time to best-effort packet streams in thénteeing a feasible schedule for real-time packet streams,
presence of real-time packet streams, and (3) a proof thatvhich can tolerate at most missed deadlines every fixed
DWCS ensures the delay of service to packets in any givenwindow of y requests. We then describe how the DWCS
stream is bounded, even in overload situations. In fact, algorithm works, so that it can produce a feasible schedule
DWCS can ensure the delay bound of any given stream ison-line.
independent of other streams.

Note that, for the above service guarantees to be made2-1. Problem Definition
with DWCS, resources are allocated at the granularity of
onetime dot (see Figure 1), where the size of a time slot In order to define the real-time scheduling problem ad-
is typically determined by the (worst-case) service time of dressed as part of this paper, we introduce the following
the largest packet in any stream requiring service. There-definitions:
fore, it is assumed that when scheduling packets from aBandwidth Utilization. This is a measure of the frac-
given stream, at least one packet in a stream is serviced irtion (or percentage) of available bandwidth used by packet
a time slot, and no other packet (or packets) from any otherstreams to meet their service constraints. A series of packet
stream can be serviced until the start of the next time slot. streams is said tiully utilize[13] available bandwidthB, if

T, =3K

s, s, ~ TimeSlot K -

Figure 1. Example of two packets from differ-
ent streams, S; and S, being serviced in their
respective time slots. Each time slot is of
constant size K. Observe that the packet in
Si requires K — 7y service time, thereby wast-
ing 7, time units before the packet in S, is
serviced.

2. Dynamic Window-Constrained
Scheduling

all packet streams using satisfy their service constraints, tees can be made for packet streams toleratingissed
and any increase in the use Bfviolates the service con- deadlines every requests. The original algorithm is work-
straints of one or more packet streams. conserving and only guarantees a statistical number of real-
Dynamic Window-Constrained Scheduling (DWCS). time service constraints. Moreover, the work-conserving
DWCS is an algorithm for scheduling packet streams, eachnature of the original algorithm can sometimes cause a
having the following pair of service attributes, which are stream to be serviced earlier than necessary. This has the ef-
used to define each stream’s delay and loss constraints: fect of reducing the likelihood of servicing the same stream
e Request Period — A request period;, for a packet ~ at some time in the future, when it is actually more impor-
stream,S;, is the interval between the deadlines of con- tant to be serviced. However, the revised algorithm can op-
secutive pairs of packets i§y. Observe that the end of ~ €rate in a non-work-conserving mode, to guarantee that no
a request period;, determines aeadline by which a stream will be granted more than its minimum required ser-
packet in Streansi must be serviced. In this paper, all vice, when it is otherwise impOSSible to prOduce a feasible

request periods are assumed to be multiples of a timeschedule (see Section 3.2).
slot, as shown in Figure 1. The revised DWCS algorithm works as follows: pack-

o Window-Constraint — this is specified as a valug/y;, ets are ordered for service based on the values of ¢heir
where the window-numerator;, is the number of rent window-constraints and deadlines (where each dead-
packets that can be lost or transmitted late for every line is derived from the current time and the request periOd).
fixed window, y; (the window-denominator), of con- Precedence is given to packets in streams according to the
secutive packet arrivals in the same stre&mHence, ~ rules shown in Table 1. Whenever a packetSinmisses
for everyy; packet arrivals in streatsl;, a minimum of its deadline, the window-constraint fCﬂ; is modified in
y; — x; packets must be scheduled for service by their & way that reflects the increased importance of servicing

deadlines. At any time, all packets in the same stream,S: in the future. Conversely, any packet in a stream ser-
S;, have the same window-constraifit;, while each Viced before its deadline causes the corresponding stream’s

successive packet in a streaf), has a deadline that Window-constraint to be modified in a manner that effec-
is offset by a fixed amount}, from its predecessor. tively reduces the priority of servicing subsequent packets
After servicing a packet frons;, the scheduler ad- in the same stream.

justs the window-constraint of; and all other streams The window-constraint of a packet stream changes over
whose head packets have just missed their deadlinedime, depending on whether or not another (earlier) packet
due to servicings;. Consequently, a strea)’s orig- from the same stream has been serviced by its deadline. If a
inal window-constraint,J¥;, can differ from itscur- packet cannot be serviced by its deadline, it is either trans-
rent window-constraint}V’/. Observe that a stream’s mitted late or it is dropped and the next packet in the stream
window-constraint can also be thought of asoss- is assigned a deadline corresponding to the latest time it
tolerance. must complete service.

Feasibility. A schedule, comprising a sequence of packet
streams, is feasible if no original window-constraint of any
packet stream is ever violated. DWCS attempts to schedule
all packet streams to meet as many window-constraints as
possible.

Problem Statement. The problem is to produce a feasi-
ble schedule using an on-line algorithm. The algorithm
should attempt to maximize network bandwidth. In fact, we
show in Section 3 that, under certain conditions, Dynamic
Window-Constrained Scheduling can guarantee a feasible
schedule as long as tmainimum aggregate bandwidth uti-
lization of a set of packet streams does not exceed 100%
of available bandwidth. Before we analyze DWCS, we first
describe the algorithm in more detail.

Pairwise Packet Ordering
Earliest deadline first (EDF)
Equal deadlines, order lowest
window-constraint first
Equal deadlines and zero window-constraints,
order highest window-denominator first
Equal deadlines and equal
non-zero window-constraints,
order lowest window-numerator first
All other cases: first-come-first-serve

Table 1. Precedence amongst pairs of packets
in different streams.

Table 1 shows the rules for ordering pairs of packets. It
2.2. The DWCS Algorithm differs slightly from the precedence rules used in the origi-
nal design of DWCS [18]. It should be noted that DWCS is
This section describes a revised version of Dynamic more than merely an earliest deadline first (or earliest due
Window-Constrained Scheduling (DWCS) from that de- date) algorithm. Observe that earliest deadline first schedul-
scribed in [18, 19], so thadeterministic real-time guaran- ing (EDF) considers that each packet's importance (or pri-

ority) increases as the urgency of completing that packet’s
service increases. By contrast, static priority algorithms all

packets, is adjusted as follows:
(B) Window-constraint adjustment when a packet in

consider that one packet is more important to service thansS; | j # ¢ missesits deadline:

another packet, based solely on each packet's time-invariant

priority. DWCS combines both the properties of static pri-
ority and earliest deadline first scheduling by considering
each packet’s individual importance when the urgency of
servicing two or more packets is the same. That is, if two

packets have the same deadline, DWCS services the packet

which is more important. In practice it makes sense to set
packet deadlines in different streams to be some multiple
of a, possibly worst-case, packet service time. This in-
creases the likelihood of multiple head packets of differ-

if (z; > 0) then
v =2 - Ly =y — 1
if (2 = y; = 0) thenz!, = x5y = yj;
else if(z; = 0) and(y; > 0) then
Yp =5+ 6
Tag.S; with a violation;
Observe that with DWCS, window-constraints do not
change for streams whose packets do not have deadlines.
Streams comprising packets without deadlines r@oe-

slotted time system, as described earlier, deadlines can b@riorities. Consequently, the pseudo-code for DWCS is
aligned on time slot boundaries. Observe that packets areshown in Figure 2.

ordinarily serviced in earliest deadline first order. However,

if at least two packet streams have head packets with equal

deadlines, the packet from strea&hwith the lowesturrent
window-constraint’/ is serviced first. IfW; = W/ > 0,
andd; = d; for S; and S;, respectively,S; and S; are
ordered such that a packet from the stream with the low-
est window-numerator is serviced first. By ordering based
on the lowest window-numerator, precedence is given to
the packet from the stream wittghter window-constraints,

since fewer consecutive late or lost packets from that stream
can be tolerated. Likewise, if two packet streams have zero
window-constraints and equal deadlines, the packet in the

stream with the highest window-denominator is serviced
first. All other situations are serviced in a first-come-first-
serve manner.

We now describe how a stream’s window-constraints are
adjusted. As part of this approachtag is associated with
each streany;, to denote whether or n&; has violated its
window-constraini¥; at the current point in time. In what
follows, let.S/s original window-constraint b&V; = x;/y;,
where z; is the original window-numerator ang is the
original denominator. Likewise, 18V] = 2/ /y; denote the
current window-constraint. Before a packet %} is ser-
viced, W/ = W;. Upon servicing a packet if; before its
deadline,W/ is adjusted for subsequent packetsSin as
follows:

(A) Window-constraint adjustment when a packet in S;
isserviced beforeits deadline:

if (y; > 27) theny; = y; — 1;

else if(y; = «}) and(a} > 0) then
ap =a)— Ly =y — 1;

if (x; =y, =0) or (S; is tagged) then
Tp = TisY; = Y

if (S; is tagged) then reset tag;

At this point in time, the window-constrainil/;, of any
other packet streans;; | j#¢, comprising one or more late

Let Si = Streamii
di = deadline of the next packet in Si
Ti = request period of Si
W' = current wi ndow constraint of Si

while (TRUE) {
for (each packet in all streanms eligible
for service at the current tine)
find the next packet in stream Si,
with the highest priority,
according to the rules in Table 1;
servi ce next packet in Si;

adjust W' according to rules in (A);
/* Adjust deadline of next
packet in Si. */
di =di + Ti;
for (each packet in Sy, other than Si,

mssing its deadline) {
whil e (deadline mssed) {
adjust W’ according to rules in (B);
if (current packet can be dropped)
drop current packet in §;
/* Adjust deadline of head packet
ing. */
di =dj +Ti;
}
}
}

Figure 2. The DWCS algorithm.

Usually, a packet stream is eligible for service if a packet
in that stream has not yet been serviced in the current
request-period, which is the time between the deadline of
the previous packet and the deadline of the current packet
in the same stream. That is, no more than one packet in a
given stream can be serviced in a given request period, and
exactly one packet must be serviced by the end of its request
period to prevent a deadline being missed.

To support work-conservation, DWCS also allows and request periods. Consequently,is serviced twice as
packet streams to bmarked as eligible for scheduling mul- much asS, andS; over the intervad = [0, 16]. By contrast,
tiple times in the same request period. That is, the jth EDF arbitrarily schedules packets with equal deadlines, ir-
packetp; ; in a stream.S;, can be serviced before the dead- respective of which packet is from the more critical stream
line of a prior packetp; ;_; in the same stream, #; ;_1 in terms of its window-constraint. In this example, EDF se-
has been serviced before the end of its request period. Thidects packets with equal deadlines in strict alternation but
implies p; ;1 is also serviced before its deadline. For the the window-constraints of the streams are not guaranteed.
purposes ofreal-time, as opposed to best-effort streams, Note that EDF scheduling is optimal in the sense that if
this paper assumes DWCS works as a non-work-conservingt is possible to produce a schedule in which all deadlines
scheduler. However, all best-effort streams can be servicedare met, such a schedule can be produced using EDF. Con-
whenever there is available time to service such streams. sequently, ifC; is the service time for a packet in stream

In the absence of a feasibility test, it is possible that Si, then if 327, 7 < 1.0 all deadlines will be met us-
window-constraint violations can occur. A violation actu- ing EDF [13]. However, in this examplé,_ ;" ; % = 3.0
ally occurs wherWV; = z}/y; | «; = 0 and another packet ¢4 not all deadlines can be met. Singe)_, (1_VTV")C“ —

in 5; then misses /it.s deadline. Befofigis servicedy; re- 1 it is possible to strategically miss deadlines for certain
mains zero, whilg; is increased by a constanteverytime packets and thereby guarantee the window-constraints of
a packet in5; misses a deadline. The exception to this rule e4ch stream [17]. By considering window-constraints when

is wheny; = 0 (and, more specificall}; = 0/0). This geadiines are tied, DWCS is able to make guarantees that
special case allows DWCS &bways service packet streams £pEg cannot.

in EDF order, if such a service policy is desired.

If S; violates its original window-constraint, it is tagged ~ [S1[%2[Ss[s1] =] 5 5] 9 § § 3 § ¥oPsf Feor
for whenitis next serviced. Tagging ensures that a streamis
never starved of service even in overload. Theorem 2 shows
the delay bound for a stream which is tagged with window- ——————1—1—T 17T 7T T 77 tme
constraint violations. Consequently; is assured of ser- 01 23 456 7 8 9 1011 12 13 14 15 16—
vice, since it will eventually take precedence over all packet
streams with zero-valued current window-constraints. Con- St Y2(1).1/1(2).1/2(3).1/1(4).1/2(5)...
sider the case whefi; and S; both have current window- S 3/A(1).213(2),2/2(3).1/1(4),3/4(5) 2/3(6), 2/2(7), 1/1(8), 3/4(9)...
constraints}V/ and 1/, respectively, such tha! = 0/y! s 6/8(1),5/7(2),4/6(3),3/5(4),3/4(5),2/3(6),1/2(7),0/L(8),6/8(9)...
andW; = 0/y;. E\{en ?f both deadlinesf; andd;, are) .
equal, precedence is given to the packet stream with the Figure 3. Example showing the schedul-
highest window-denominator. Suppose tl§atis serviced ing of 3 streams, Si, S, and Ss, using
before S;, becausey; > y;. At some later point in time, EDF and DWCS. All packets in each stream
S; will have the highest window-denominator, since its de- ~ Nave unit service times and request periods.
nominator is increased byevery request period];, that The window-constraints for each stream are
a packet inS; is delayed, whileS;’s window-constraint shown as fractions, z/y, while packet dead-
is reset once it is serviced. For simplicity, we assume |In€s are shown in brackets.
every stream has the same valueedbut, in practice, it
may be beneficial for each stream to have its own value,2.3. DWCS Complexity
€;, to increase its need for service at a rate independent of
other streams, even when window-constraint violations oc- pwCS's time complexity is divided into two parts: (1)

cur. Unless stated OtherWise,: 1 is used throughout the the cost o@lec“ng the next packet according to the prece-
rest of this paper. dence rules in Table 1, and (2) the costdjusting stream

To complete this section, Figure 3 shows an example window-constraints and packet deadlirar servicing a
schedule using both DWCS and EDF, for three streams,packet. Using heap data structures for prioritizing pack-
S1, So, and S3. For simplicity, assume that every time a ets, the cost of selecting the next packet for service is
packet in one stream is serviced, another packet in the samé& (log(n)), wheren is the number of streams awaiting ser-
stream requires service. Itis left to the reader to verify the vice. However, after servicing a packet, it may be necessary
scheduling order for DWCS. Observe that, using DWCS, all to adjust the deadlines of the head packets, and window-
window-constraints are met over non-overlapping windows constraints, of alh queued streams. This is the case when
of y; deadlines (for each strearfi;), and no time slots are all n — 1 streams (other than the one just serviced) have
unused in this example. Moreover, the three streams arepackets that miss their deadlines. This can lead to a worst-
serviced in proportion to their original window-constraints case complexity for DWCS aP(n). However, when only

\51\52\51\53\51\52\51\53\51\52\51\53\51\52\51\53\ DWCS

aconstant number of packets in different streams miss their Proof Every time a packet il§; misses its deadline;, is de-
deadlines after servicing some other packet, a heap dat@reased by 1 untit; reaches 0. A packet misses its deadline
structure can be used to determine those packet deadlines it is delayed by7; time units without service. Observe
and stream window-constraints that need to be adjusted. Ithat, at all timesy; < z;. Therefore, service t8; can be
follows that a constant number of updates to service con-delayed by at most;7; until W/ = 0. If S; is delayed more
straints using heaps, as described in an earlier paper [19]than anothefl; — C; time units, a window-constraint vio-
requiresO(log(n)) operations. Observe that there is an lation will occur, since service of the next packetdnwill
O(1) cost per stream to update the corresponding servicenot complete by the end of its request peri@il, Hence,
constraintsafter servicing a packet. S; must be delayed at mosi; + 1)T; — C; if a feasible

An earlier paper [19] shows how DWCS can be approxi- schedule exists]
mated, to further reduce its scheduling latency, thereby im- We now characterize the delay bound for a packet stream
proving service scalability at the cost of potentially violat- when window-constraint violations occur, assuming all re-
ing some service constraints. Moreover, it may be appro-quest periods are greater than or equal to each and every
priate to combine multiple streams into one session, with packet’s service time. That ig; > C;,z; > 0,y; >
DWCS used to service the aggregate session. Such an a3, Vi |1 < i < n.
proach would reduce the scheduling state requirements and

increase scalability. Theorem 2 If window-constraint violations occur, the
Having described DWCS, we analyze the algorithm's maximum delay of service to S; is no more than 7;(z; +
performance in the following section. Ymaz + 1 — 1) + Craz, WHEI€ Ypax = mazx[yy, - -+, Yn)

and C, .. isthe maximum packet service time amongst all

3. Analysisof DWCS queued packets.

Proof The details of this proof are shown in the Appendix.

In this section we show the following important char- If T, — oo, thenS; experiences unbounded delay in the
acteristics of the DWCS algorithm (as defined in this pa- worst-case. This is the same problem with static-priority
per): scheduling, since a higher priority packet stream will al-

o If a feasible schedule is known to exist, DWCS en- ways be serviced before a lower priority packet stream. Ob-
sures that the maximum delay of service to a real-time serve that in calculating the worst-case delay experienced
packet stream is bounded. The exact value of this max-by S;, it is assumed thaly//dt = ¢/T; | ¢ = 1 (see Fig-
imum delay is characterized below. ure 5). Ife>1 or there is a unique value;>1 for each

e If window-constraint violations occur (because the streams;, then the worst-case delay experiencedhys
scheduler is overloaded), the maximum queueing de- Ii(@itymestn=1) | " If ¢ = (2; 4 ypao + n — 1)
lay of a packet stream (and, hence, packet) is still then the'worst-case delay 8f is T; + Cynaz, which is inde-
bounded. Again, the exact value of this maximum de- pendent of the number of streams. Consequently, the worst-
lay is characterized below. case delay of service to each stream can be made to be in-

o If the minimum aggregate bandwidth requirement of gependent of all other streams, even in overload situations.
all real-time packet streams does not exceed the total

available pandwidth, then a feas.ib.le. schedyle is guar-3 o gandwidth Utilization
anteed using DWCS. Moreover, if it is possible to im-

pose an upper bound on the worst-case service time of) B
each and every packet, then DWCS can guarantee that As stated earlieV; = ;/y; for streamS;. Therefore,

no more thanr packet deadlines are missed evegry a m|,n|mum O.fyi — @i packets mS.i must be serviced ‘on
requests. time’ every window ofy; consecutive packets, fét, to sat-

isfy its window-constraints. Since one packet is required

_ to be serviced every request peridd, to avoid any pack-

3.1. Delay Characteristics ets in.S; being late, a minimum of; — x; packets must be

serviced everyy,;T; time units. Therefore, if each packet

Theorem 1 If a feasible schedule exists, the maximum de- takesC; time units to be serviced, thep packets inS; re-

lay of service to a stream, S; | 1 < i < n, is at most quire at leasty; — x;)C; units of service time every,T;

(z; +1)T; — C;, where C; isthe service time for one packet time units. For a packet strearfi;, with request period,

inS;t. T;, theminimum utilization factor isU; = (Z/;;T)C which
1 — . is the minimum required fraction of available service ca-
For simplicity, we assume all packets in the same stream have the

same service time. However, unless stated otherwise, this constraint is noPacity and, hence, bandwidth by consecutive packets.in

binding and the properties of DWCS should still hold. Hence, the utilization factor fat packet streams is at least

Uu=>3%", 1?/7)0 Furthermore, théeast upper bound have fixed-length (53 byte) cells and the SAR component
on the utlllzatlon factor is the minimum of the utilization of the ATM Adaptation Layer segments application-level
factors for all packet streams that fully utilize all avail- packets into cells, which are later reassembled. Conse-
able bandwidth [13]. IfU exceeds the least upper bound quently, the scheduling granulariti, can be set to a time
on bandwidth utilization, a feasible schedule is not guaran-which is less than the worst-case service time of a packet.
teed. In fact, it is necessary tHag 1.0 is true for a feasible For fragmented packets, the per-stream service con-
schedule, using any scheduling policy. straints are translated as follows. L&t be theworst-case

We now characterize the least upper bound on bandwidthservice time of a packet in streash before fragmentation,
utilization, assuming that at most one packet from any givenand letc; = K be the constant service time of each and
stream is serviced in a single, fixed-sized time slot of size every fragment. Likewise, l€iV; andT; be the window-
K, and all request periods are multiples of such a time slot. constraint and request period, respectively, for a stream

Thatis,C;<K,T; = ¢;K,x; > 0,y; > 0,Vi |1 < i <m, before fragmentation, whilev; and ¢; are the translated

K is a constant, ang is a positive integer. window-constraint and request period, respectively, after
fragmentation. Then:

Theorem 3 Using DWCS the least upper bound on the uti- = K, t; = LEJK andw; = a;/b;, wherea; andb;

lization factor is 1.0, if all streams comprise packets with are the smallest values satisfying/b; =

the same servicetimes, and all request periodsaremultiples gy ample. Consider three streams;, S» and Sg “With the
of the packet service times. That is, DWCSis optimal in the following constraints: (C; = 3,W, = 2/3,T) = 5)

sensethat afeasiblescheduleexistsif -7, U= <1.0, (¢, — 4, W, — 23/35, T, — 6) and (Cs — 5, W —

givenC; = K and T; = ¢, K for ¢; € Z*,where Z* isthe 1/5 T3 = 7). The total utilization factor ig.0 in this ex-

set of positive integers. ample, but due to the non-preemptive nature of the variable-
length packets, a feasible schedule cannot be constructed.

Proof The details of this proof are given in a full-length However, if the packets are fragmented and the per-stream
Technical Report [17]. Observe that, in Theorem 3, each gervice constraints are translated to be = 1w, =

Tici— c(1 Wi)ts

packet is serviced for exactli(time units, which is the 4/5 ¢, = 1), (¢, = 1,wy = 27/35,¢, = 1) and (¢ =

size of one time slot. This is a necessary condition, because), = 3/7,t3 = 1), then a feasible schedule exists.
packets are indivisible entities and, hence, cannot be preqn the latter case, all fragments are serviced so that their
empted. corresponding stream'’s window-constraints are met. These
translated window-constraints are equivalent to the original
3.3. Supporting Packetswith Variable window-constraints, thereby guaranteeing each stream its
Service Times exact share of bandwidth. Observe that= t; = 1 is

the normalized time to service one fragment of a packet.
For variable rate servers, or in networks where packetsThis fragment could be a single cell in an ATM network
have variable lengths, the service times can vary for differ- but, more realistically, it makes sense for one fragment to
ent packets. In such circumstances, if it is possible to im- map to multiple ATM cells, thereby reducing the schedul-
pose an upper bound on therst-case service time of each ing overheads per fragment. Similarly, a fragment might
and every packet, then DWCS can still guarantee that nocorrespond to a maximum transmission unit in an Ethernet-
more thanz packet deadlines are missed evgriequests. based network.
This implies that the scheduling granularitl, (i.e., one
time slot), should be set to the worst-case service time of3.4. Simulated Results
any packet scheduled for transmission. For situations where
a packet's service time};, is less thank (see Figure 1), To show that it is possible to feasibly schedule a set of
then a feasible schedule is still possible using DWCS, but packet streams when the demand for bandwidth is no more
the least upper bound on the utilization factor is less thanthan 100% of available bandwidth, we simulated the num-
1.0. Thatis, ifr; = K — C;, then, the least upper bound on ber of missed deadlines and window-constraint violations
the utilization factor is.0—>" (= ;V)”. for a number of streams, comprising fixed (unit) length
Alternatively, if it is possible to fragment variable-length packets, with different request periods and original window-
packets and later reassemble them at the destination, perconstraints. The following scenario was considered (other
stream service requirements can be translated and applied tecenarios are described in a detailed Technical Report [17]):
fixed-length packet fragments with constant service times. There were 8 scheduling classes, - -ps, for packet
This is similar to CPU scheduling, in which variable-length streams. The original window-constraints for the
threads (or processes) can be preempted at fixed intervalslasses of packet streams, from; to pg, were
(e.g., everylOmS timeslice). Moreover, ATM networks 1/10,1/20,1/30,1/40,1/50,1/60,1/70, and 1/80, re-

spectively. Packets in streams belongingtcand p, had stream only violates a tolerable number of packet dead-
request periods of 400 time units, while thosepinand p, lines, and does not violate its window-constraint. In other
had request periods of 480 time units. Remaining packetscases, we want to ensure real-time packet streaems
in streams belonging tp; and pg had request periods of miss deadlines when best-effort packet streams are ser-
560 time units, while those ip; and ps had request pe- viced. Hence, our alternative approach is to service best-
riods of 640 time units. The number of packet streams in effort packet streams only when a packet from each and ev-
each case was uniformly distributed between each schedulery window-constrained packet stream has been serviced in
ing class, and a total of a million packets across all streamseach real-time stream’s current request period. This guaran-
were serviced. tees packets in real-time streams do not miss any deadlines
Table 2 shows the results of the above scenariis. the due to servicing best-effort packet streams. Results have
total number of packet streamB, is the number of missed shown that best-effort packet streams typically experience
deadlinesy is the number of window-constraint violations, close to their minimum possible delay with this latter ap-
U is theminimum total utiIization factor (as defined in Sec- proach [17].

tion 3.2) andg. S8 T? is the utilization factor for all 8
900

classesvhen aII window-constraints are zero. Observe that Min. Utilivation of Window-Constrained Streams:
some packets miss their deadlines wiiérs less thar.0, g 800 153% ~—
but only wheng. Zle % is greater thari.0. However, § 700 | 45:8‘0% o o
there are no window-constraint violations for any streams 3 el s)
until U exceeds..0. 2 9L5% = P
G 500 | * e
n D \Y, U z f: ¢ % 00 | = x
480 O 0 | 0.9156| 0.9518 T 300 e
496| 0 0 | 09461 0.9835 5 200l S g e .
504 © 0 |0.9613] 0.9994 N B IR
512 | 15152 0 0.9766| 1.0152 g S ——
520 | 30990 0 0.9919| 1.0311 R e ————
528 | 46828 | 7038 | 1.0071| 1.0470 Total Packets Serviced (1000)
544 | 78528 | 31873 | 1.0376 1.0787 :
640 | 268800| 148143 1.2207 1.2690 X .
from both best-effort and real-time streams.

Table 2. Simulated results for 8 scheduling

classes. Figure 4 shows the number of best-effort packet streams
serviced, as a function of all packets serviced from both
4. Heter ogeneous Packet Streams best-effort and real-time streams. Each set of real-time

packet streams has a differemtnimum utilization factor

In many situations, it is desirable, or even necessary, to(hence, the six different lines in the graph). In all cases,
service a mixture of both real-time and best-effort packet the service constraints of real-time packet streams were the
streams. Many researchers have proposed that best_efforﬁame as in the simulated scenario in Section 3.4. The uti-
or non-time-constrained packet streams are only scheduledization factor of these real-time packet streams was in-
when all real-time packet streams have been serviced. Othefreased, by increasing the number of packet streams in each
researchers [5, 3], have attempted to reduce the mean dela9f the 8 different scheduling classes, from 10 to 60 packet
of non-time-constrained activities (such as threads or pack-streams per class. From the figure, it can be seen that there

ets) by giving them precedence over real-time activities un- iS @ constant rate of service to best-eff_ort packet streams at
til it is essential to service the real-time activities. each of the different loads from real-time packet streams.

One way to minimize the delay of best-effort packet This is useful, in that best-effort packet streams will not ex-

streams is to calculate @seudo request period/ sz, and perience large variations in delay (and, hence, jitter) in the

window-constraint W, so thatl — Y7, (lf;vi)ci _ presence of real-time packet streams.

U=WeelCoe when there aren real-time, window-

constrained packet streams. However, with this approach2- Conclusions

there can be cases where real-time packet streams miss

deadlines due to best-effort packet streams being serviced. This paper describes a modified version of Dynamic
In some cases, this may be acceptable, since each real-tim&/indow-Constrained Scheduling (DWCS) [18, 19]. DWCS

was originally designed as a packet scheduler to providecorresponding request periods, | 1 < k < n, depending
(m, k)-firm deadline guarantees [9] and fair queueing [6, on how many request periods have elapsed while servicing
20,7, 2, 8, 15, 16] properties, for loss and delay constrainedsS;. The worst-case is thdl; <T;, Vj # i. Furthermore, ev-
traffic streams such as multimedia audio and video streamsery time a streamg;, other thanS; is serviced, W, = 0.

In this paper, we have shown: (1) a version of DWCS that This is true regardless of whether or iftis tagged with a
can guaranteém, k)-hard deadlines (or, equivalently, no violation, if W; = 0, which is the case when; = 0.

more thanx missed packet deadlines for every fixed win- Hence, the worst-case delay incurred$ywhenW, =
dow of y consecutive packets in a given stream), (2) using 0 is T; + §;, whered; is the maximum time foy/ to become
DWCS, the delay of service to real-time packet streams is|arger than any other current denominatgf;,| j#i,1 <
bounded even when the scheduler is overloaded, (3) DWCS; < n, amongst all packet streams with the minimum cur-
can ensure the delay bound of any given stream is indepenrent window-constraint and earliest packet deadline. Now,
dent of other streams, and (4) a fast response time for besttet statep be when each strearfi, hasW}, = 0 for the first
effort packet streams, in the presence of real-time packettiime. Moreover W, = 0 /y;%, andy;% > 0 is the current

streams, is possible. window-denominator fos), when in state.
Supposel’; <T;,Vj # i and T} is finite. Forn packet
A Appendix streams, the worst-casgis whenT; = K and7; >> K,
for some constanti’, equal to the largest packet service
A.1. Proof of Theorem 2 time, C).... Without loss of generality, it can be assumed

in what follows that all packet service times equd), ...

The worst-case delay experienced $ycan be broken Now, it should be clear that, if; tends to infinity, then the
y exp Y rate of increase of; approache§. Moreover, if each and

down into three parts: (1) the time for the next packe$in ket streans.. | 7 - i. h t period: —
to have the earliest deadline amongst all packets queued for s C Y PACKEL Strearty, J 7& *» Nas a request periot, .
service, (2) the time taken fa¥! to become the minimum K,.th.enSi will e/xperlence its worst delay befog: > y;.
amongst all current window-cénstrainW’ [1<k<n This 1S begausgj rises at a rate C.)I/ K. for each s_treanSj.
when the head packets in allstreams ha,f/e the same (,ear- experiencing a delay o’ time u.n'tS.W'thOUt service, while
liest) deadline, and (3) the time fof to be larger than any ¥, increases at a rate of7;, which is less than or equal to

') 1/K.
other current denominatog;: | j#i,1 < j < n, amongst / | N
each packet strearfi;, with the minimum current window- Figure 5 shows the worst-case situation for three packet

constraint and earliest packet deadline. At this paoft, streams,s;, Sl,’ and Sy, which causess; the largest de-
may be delayed a furthe?, .., due to another packet cur- lay, d;, beforey; is the largest current window-denominator.
rently in service. ’ From the figure,y; = v, , andy; increases at a rate

Part (1): The next packet i§; is never more tharT} dy;/dt = ¢/Ti | e =1, until S; is serviced. \{\/_heSm is ser-
away from its deadline. Consequentdy,will have a packet ~ Viced.y;, decreases at arate bf K, while y; increases at a

with the earliest deadline after a delay of at miBst rate of1/K. Conve_rsely, yvhenj?l is servicedy, decreases
Part (2): W/ = 0 is the minimum possible current atarate ofl /K, while y/,, increases at a rate f K. Only
2 / _ 1 / 1 1 /I
window-constraint. From Theorem I/ = 0 after a delay ~ Wheny,, = 0is W, reset. Likewise, only wheg; = 0
of at mostz. T is W/ reset. Consequently;,>max[y;,y,,] is true when
G r_ o o
Parts (1) and (2) contribute a maximum delay of: Yi=u, t1=ym, +1
Suppose now, another streas, (with y,, = y{¢ =
(i + 1)T; (1) Ym, andT, = K), is serviced before eithet; or S,,, when

_ . instateg. Then,y; =y, =y, + 1 =y, +1afterk
. Part (3): Assgmlng al pacl_<et streams haye the min time units. If.S; is now serviced, thep,, = v/, + 2 after
imum current window-constraint and comprise a head . . :) e
X X ! a further K time units. In this casey,>maxy;, y.,, y.]

packet with the earliest deadline, the next stream chosen) ; ;7 m? Jo

L . . . IS true wheny;, = y; +2 =y, +2 =y, +
for service is the one with the highest current window- . e ¢ me 0

. o 2. By induction, for each of thes — 1 packet streams,
denominator. Moreover, the worst-case scenario is WhenS | j#i,1<j<n, other thanS;, each withT K
all other packet streams have the same or higher cur-_? J70 LI =T . J

! ! ! ! / / ! 1
rent window-denominators thasy and every time another apdyj«;zy%’ yizmazlyy, Yi1 " Vit Ynl is true when
stream,S; is serviced, deadling; <d;. To show thatl;<d; Yi =4, t(n=2) ==y, +(n _12)' Tf)erefore, since
holds, ali deadlines must be at the same titmeshen some ~ 4vi/dt = 1/T;, it follows thatd; <Ti(yj, — v;, + (n —2)).
streams; is serviced in preference t8,. After servicing a Now observe thay; <y; for each and every stream,

packet inS; for C; time units, all packet deadlinek that Sj | j#i, since state is the first timelV is 0. Furthermore,
are earlier tham + C; are incremented by a multiple of the we have the constraints theat = maz(y1, yi—1, Yi+1, Yn)s

Fastest rate of increase
is 1/K

Gradient 1/T <=1/K

Yig g 4

Path of y;

yiq’)

Service
Order

Time, t

Possible path ofjy
—* Possible path of y.

Figure 5. The change in current window-
denominators, y;, y; and y;, for three packet
streams, S;, S; and S,,, respectively, when
all request periods, except possibly T;, are
finite. The initial state, ¢, is when all cur-
rent window-constraints first equal 0, and the
current window-denominators are all greater
than 0.

yi<yj;, andy; >1. Therefore,
6 <Ti(y; + (n —2)) @)
If T; > T;,Vj # i and bothT; andT; are finite, thery;

andy’; converge more quickly than in the case above, when
T; < T;. Therefore, if window-constraint violations occur,

the maximum delay of service 8 (from Equations 1 and
2) is no more thatiz; + 1)T; + T; (Ymaz +7 —2) + Crnae =
Ti (5Cz + Ymaz +n—]-) + Cmaxa Whereyj = Ymazx in Equa'

tion 2, andC,,... is the worst-case additional delay due to

another packet in service when a packefSjnreaches the
highest priority.0

References

[1] S. K.Baruah and S.-S. Lin. PFair scheduling of generalized

pinwheel task systemslEEE Transactions on Computers,
47(7), July 1998.

[2] J. C. Bennett and H. Zhang. W F2Q: Worst-case fair
weighted fair queueing. IhEEE INFOCOMM'’96, pages
120-128. IEEE, March 1996.

(4]

(5]

(6]

[7

—_—

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[3] G. Bernat and A.Burns. Combining (n/m)-hard deadlines [20]

and dual priority scheduling. IProceedings of the 18th

IEEE Real-Time Systems Symposium, pages 46-57, San

Francisco, December 1997. IEEE.

M. Chan and F. Chin. Schedulers for the pinwheel problem
based on double-integer reductiohEEE Transactions on
Computers, 41(6):755-768, June 1992.

R. Davis and A.Wellings. Dual priority scheduling. Rro-
ceedings of the 16th IEEE Real-Time Systems Symposium,
pages 100-109. IEEE, 1995.

A. Demers, S. Keshav, and S. Schenker. Analysis and simu-
lation of a fair-queueing algorithndournal of Internetwork-

ing Research and Experience, pages 3—26, October 1990.

S. Golestani. A self-clocked fair queueing scheme for broad-
band applications. IHNFOCOMM’'94, pages 636—646.
IEEE, April 1994.

P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queue-
ing: A scheduling algorithm for integrated services packet
switching networks. INEEE S GCOMM’96. IEEE, 1996.

M. Hamdaoui and P. Ramanathan. A dynamic priority as-
signment technique for streams with (m,k)-firm deadlines.
IEEE Transactions on Computers, April 1995.

R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel.
The pinwheel: A a real-time scheduling problem. Rro-
ceedings of the 22nd Hawaii International Conference of
System Science, pages 693-702, Jan 1989.

K. Jeffay and S. Goddard. A theory of rate-based execution.
In Proceedings of the 20th | EEE Real-Time Systems Sympo-

sium (RTSS), December 1999.

G. Koren and D. Shasha. Skip-over: Algorithms and com-
plexity for overloaded systems that allow skips.Piroceed-

ings of the 16th |EEE Real-Time Systems Symposium, pages
110-117. IEEE, December 1995.

C.L.Liuand J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real-time environmegournal of

the ACM, 20(1):46—61, January 1973.

J. Nieh and M. S. Lam. The design, implementation and
evaluation of SMART: A scheduler for multimedia applica-
tions. InProceedings of the Sxteenth ACM Symposium on
Operating Systems Principles. ACM, October 1997.

X. G. Pawan Goyal and H. M. Vin. A hierarchical CPU
scheduler for multimedia operating systems. 2hd Sym-
posium on Operating Systems Design and | mplementation,
pages 107-121. USENIX, 1996.

I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E.
Gehrke, and C. G. Plaxton. A proportional share resource
allocation algorithm for real-time, time-shared systems. In
Real-Time Systems Symposium. IEEE, December 1996.

R. West and C. Poellabauer. Analysis of a window-
constrained scheduler for real-time and best-effort packet
streams. Technical Report GIT-CC-00-20, Georgia Institute
of Technology, College of Computing, 2000.

R. West and K. Schwan. Dynamic window-constrained
scheduling for multimedia applications. Bth Interna-
tional Conference on Multimedia Computing and Systems,
ICMCS 99. |IEEE, June 1999.

R. West, K. Schwan, and C. Poellabauer. Scalable schedul-
ing support for loss and delay constrained media streams.
In Proceedings of the 5th IEEE Real-Time Technology and
Applications Symposium. IEEE, June 1999.

H. Zhang and S. Keshav. Comparison of rate-based service
disciplines. InProceedings of ACM SGCOMM, pages 113—
121. ACM, August 1991.

