
Dynamic Window-Constrained Scheduling

Richard West

Addendum

A. DWCS Characterization

Consider a task, τi, defined by a 3-tuple (Ci, Ti, xi/yi),
where Ci is the service time requirement every request pe-
riod, Ti, and xi/yi is the task’s window-constraint. If τi

represents a periodic task, Ci can be thought of as the pe-
riodic service time requirement, and Ti defines the interval
between consecutive instances of τi being ready for service.
If τi represents an aperiodic task, Ci can be thought of as
a service quantum and the nth quantum should ideally be
serviced in the nth request period. In essense, the end of
the nth request period defines the nth deadline for servic-
ing τi. If no deadlines are missed after n request periods, τi

will receive nCi units of service time.
Under the definition of DWCS, the window-constraint

xi/yi defines the acceptable maximum number of missed
deadlines, xi, every window of yi consecutive deadlines.
This means τi must be serviced for a minimum of (yi −
xi)Ci units of time every window of yiTi time units.

Mok and Wang extended our original work by showing
that the general window-constrained problem is NP-hard for
arbitrary length tasks [1]. Notwithstanding, DWCS guaran-
tees that no more than xi deadlines are missed out of yi

deadlines for n tasks, if U =
∑n

i=1
(1−xi/yi)Ci

Ti
≤1.0, given

1 ≤ i ≤ n, Ci = K and Ti = qK; where q ∈ Z+ 1, K
is a constant, and U is the minimum utilization factor for a
feasible schedule.2

This implies a feasible schedule is possible even when
the system is 100% utilized, given (a) all tasks have constant
length (and, hence service time) and, (b) all request periods
are the same and are multiples of the constant service time.
Although this sounds restrictive, it offers the ability for a
DWCS scheduler to proportionally share service amongst
a task set, τ . Moreover, each task, τi ∈ τ , is guaranteed a
minimum share of resources over a specific window of time,
independent of the service provided to other tasks. This

1Z+ is the set of positive integers.
2In the original RTSS paper, we incorrectly stated Ti = qiK; where

qi ∈ Z+. The utilization bound proved in this addendum and outlined in
the main paper [2] holds for fixed q.

constrasts with fair queueing algorithms that (a) attempt to
share resources over the smallest window of time possible
(thereby approximating the fluid-flow model) and, (b) do
not provide isolation guarantees. In the latter case, the ad-
dition of a task to the system can affect the service provided
to all other tasks, since proportional sharing is provided in a
relative manner. For example, weighted fair queueing uses
a weight, wi for each task, τi, such that τi receives (approxi-
mately) wi∑n

j=1
wj

fraction of resources over a given window

of time.
Having defined the general DWCS task set, we now

show the utilization bound for a specific task set, τ , in
which each task, τi ∈ τ , is characterized by the 3-tuple
(Ci = K,Ti = qK, xi/yi). In what follows, we consider
the maximum number of tasks, nmax, that can guarantee a
feasible schedule. It can be shown that for all smaller task
sets (where n < nmax), a feasible schedule is always guar-
anteed if one is guaranteed for nmax tasks.

Lemma 1: Consider a set of n tasks, τ = {τ1, · · · , τn},
where τi ∈ τ is defined by the 3-tuple (Ci = K,Ti =
qK, xi/yi). Without loss of generality, we can assume K =
1. If the utilization factor, U =

∑n
i=1

(yi−xi)
qyi

≤ 1.0, then
xi = yi − 1 maximizes n.

Proof: For all non-trivial situations, n > q, otherwise we
can always find a unit-length slot in any fixed interval of size
q to service each task at least once. Now, for any window-
constraint, xi/yi, we can assume xi < yi, since if xi = yi

then no deadlines need to be met for the corresponding task,
τi. Consequently, for arbitrary τi, yi − xi ≥ 1.

Therefore, if we let yk = max(y1, y2, · · · , yn) it must
be that n ≤ qyk, since:

n

qyk
=

n∑

i=1

1
qyk

≤
n∑

i=1

(yi − xi)
qyk

≤
n∑

i=1

(yi − xi)
qyi

≤ 1

⇒ n ≤ qyk

If all window-constraints are equal, for each and every task,
we have the following:

n∑

i=1

(yi − xi)
qyi

≤ 1 ⇒ n(yi − xi)
qyi

≤ 1

1



⇒ n ≤ qyi

yi − xi
≤ qyi

if xi = yi − 1, then qyi

yi−xi
= qyi, and n is maximized. ✷

From the above Lemma, we now consider the condi-
tions for a feasible schedule, when each task, τi, in a
set of n tasks, is defined by the 3-tuple (Ci = 1, Ti =
q, xi/yi). We begin by defining the task hyper-period to be
lcm(qy1, qy2, · · · , qyn), and the current window-constraint
of τi to be x′

i/y′
i. The following theorem can now be stated:

Theorem 1: In each non-overlapping window of size q in
the hyper-period, there cannot be more than q tasks out of n
with current window-constraint 0

y′
i

at any time, when U =
∑n

i=1
yi−xi

qyi
≤1.0.

Proof: When n≤q, it is clear there are never more than
q tasks with current window-constraint 0

y′
i
. For all non-

trivial values of n, it must be that q<n≤qyk, given that
yk = max(y1, y2, · · · , yn). From Lemma 1, if y1 = y2 =
· · · = yn, and xi = yi−1, ∀i, then n≤qyi. It can be shown
that all lower values of n will yield a feasible schedule if
one exists for largest n.

Now, consider a set τ comprising one task, τj , that has
window-constraint, xj/yj , and n− 1 other tasks, each hav-
ing window constraint, xi/yi. From Lemma 1, it follows
that if xj/yj<xi/yi then n<qyi. In this case, n is maxi-
mized if xj=yj − 1, xj + 1=xi, and xi = yi − 1. Hence,
xj<xi, yj<yi and n<q(xi + 1).

The set τ is scheduled in the various non-overlapping in-
tervals of the hyper-period, resulting in changes to window-
constraints, as shown below:
1. Time interval [0, q): Task τj is scheduled first since
xj/yj<xi/yi. The current window-constraints of each task
are adjusted over the time interval (shown above the arrows)
as follows:

xj

yj

q−→ xj

yj−1 (one task, τj , serviced on time)
xi

yi

q−→ xi

yi−1 (q − 1 tasks serviced on time)
xi

yi

q−→ xi−1
yi−1 (n − q tasks not serviced on time)

2. Time interval [q, q(xj + 1)): It can be shown that
n > q(xj + 1) when n is maximized. Furthermore, in this
scenario, DWCS will schedule qxj tasks with the smallest
current window-constraints, updated every q time units. As
a result, window-constraints now change as follows:

xj

yj−1

qxj−→ 0
yj−1−xj

(one task, τj , not serviced)
xi

yi−1

qxj−→ xi−xj

yi−1−xj
(q − 1 tasks not serviced on time)

xi−1
yi−1

qxj−→ xi−1−xj

yi−1−xj
(n − q − qxj tasks not serviced)

xi−1
yi−1

qxj−→ xi−xj

yi−1−xj
(qxj tasks serviced on time)

At this point consider the n − q − qxj tasks in state
xi−1−xj

yi−1−yj
after time q(xj + 1). We know in the worst case,

xj + 1 = xi to maximize n, so

n − q − qxj = n − q(xj + 1) = n − qxi

We also know n < q(xi + 1), so

n − qxi < q(xi + 1) − qxi = q

Consequently, at the time q(xj + 1), less than q tasks other
than τj are in state 0

y′
i
. Even though τj is in state 0

y′
j
, we can

never have more than q tasks with zero-valued numerators
as part of their current window-constraints. We know that,
by maximizing n, we have

xj + 1 = xi, xj + 1 = yj ⇒ yj = xi

Therefore, at the time q(xj + 1), all current window-
constraints can be derived from their original window-
constraints, as follows:

xj

yj

q(xj+1)−→ 0
0 (one task, τj , served once; reset 0

0 to xj

yj
)

xi

yi

q(xj+1)−→ 0
1 (n − qxi tasks never serviced on time)

xi

yi

q(xj+1)−→ 1
1 (q − 1 tasks serviced once on time)

xi

yi

q(xj+1)−→ 1
1 (qxj tasks serviced once on time)

3. Time interval [q(xj + 1), q(xj + 2)): At the end of this
interval of size q, the window-constraints change from their
original values, as follows:

xj

yj

q(xj+2)−→ xj

yj−1 (one task, τj , serviced twice overall)

xi

yi

q(xj+2)−→ xi

yi
(n − 1 tasks serviced at least once;

reset window-constraint)

4. Time interval [q(xj + 2), 2q(xj + 2)): At the end of this
interval of size q(xj + 2), the window-constraints change
from their original values, as follows:

xj

yj

2q(xj+2)−→ xj

yj−2 (one task, τj)

xi

yi

2q(xj+2)−→ xi

yi
(n − 1 tasks; reset window-constraint)

Over the entire period [0, yjq(xj + 2)], the window-
constraints change as follows:

xj

yj

yjq(xj+2)−→ xj

yj
(one task, τj)

xi

yi

yjq(xj+2)−→ xi

yi
(n − 1 tasks)

At this point, every task has been served at least once and
no more than q tasks ever have zero-valued current window-
constraints in any given non-overlapping interval of size
q. Observe that the hyper-period is lcm(qy1, qy2, · · · , qyn)
which, in this case is qyiyj . Since xj + 2 = yi, yjq(xj +
2) = qyiyj , and we have completed the hyper-period. All
tasks have reset their window-constraints to their original
values, so we have a feasible schedule. ✷

2



References

[1] A. K. Mok and W. Wang. Window-constrained real-time pe-
riodic task scheduling. In Proceedings of the 22st IEEE Real-
Time Systems Symposium, 2001.

[2] R. West and C. Poellabauer. Analysis of a window-
constrained scheduler for real-time and best-effort packet
streams. In Proceedings of the 21st IEEE Real-Time Systems
Symposium, December 2000.

3


