
22

Reinforcement Learning for UAV Attitude Control

WILLIAM KOCH, RENATO MANCUSO, RICHARD WEST, and AZER BESTAVROS,

Boston University, USA

Autopilot systems are typically composed of an “inner loop” providing stability and control, whereas an

“outer loop” is responsible for mission-level objectives, such as way-point navigation. Autopilot systems for

unmanned aerial vehicles are predominately implemented using Proportional-Integral-Derivative (PID) con-

trol systems, which have demonstrated exceptional performance in stable environments. However, more so-

phisticated control is required to operate in unpredictable and harsh environments. Intelligent flight control

systems is an active area of research addressing limitations of PID control most recently through the use of

reinforcement learning (RL), which has had success in other applications, such as robotics. Yet previous work

has focused primarily on using RL at the mission-level controller. In this work, we investigate the perfor-

mance and accuracy of the inner control loop providing attitude control when using intelligent flight control

systems trained with state-of-the-art RL algorithms—Deep Deterministic Policy Gradient, Trust Region Pol-

icy Optimization, and Proximal Policy Optimization. To investigate these unknowns, we first developed an

open source high-fidelity simulation environment to train a flight controller attitude control of a quadro-

tor through RL. We then used our environment to compare their performance to that of a PID controller to

identify if using RL is appropriate in high-precision, time-critical flight control.

CCS Concepts: • Computing methodologies → Reinforcement learning; Control methods; Machine

learning; • Computer systems organization → Embedded systems;

Additional Key Words and Phrases: Attitude control, UAV, reinforcement learning, quadcopter, autopilot,

machine learning, PID, intelligent control, adaptive control

ACM Reference format:

William Koch, Renato Mancuso, Richard West, and Azer Bestavros. 2019. Reinforcement Learning for UAV

Attitude Control. ACM Trans. Cyber-Phys. Syst. 3, 2, Article 22 (February 2019), 21 pages.

https://doi.org/10.1145/3301273

1 INTRODUCTION

Over the past decade, there has been an uptrend in the popularity of Unmanned Aerial Vehi-
cles (UAVs). In particular, quadrotors have received significant attention in the research commu-
nity, where a significant number of seminal results and applications has been proposed and ex-
perimented. This recent growth is primarily attributed to the drop in cost of onboard sensors,
actuators, and small-scale embedded computing platforms. Despite the significant progress, flight
control is still considered an open research topic. On the one hand, flight control inherently implies

This work was partially supported by a grant from the National Science Foundation under awards #1430145, #1414119, and

#1718135.

Authors’ addresses: W. Koch, R. Mancuso, R. West, and A. Bestavros, Department of Computer Science, Boston University,

111 Cummington Mall, Boston, MA 02215; emails: {wfkoch, rmancuso, richwest, best}@bu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2378-962X/2019/02-ART22 $15.00

https://doi.org/10.1145/3301273

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

https://doi.org/10.1145/3301273
mailto:permissions@acm.org
https://doi.org/10.1145/3301273

22:2 W. Koch et al.

the ability to perform highly time-sensitive sensory data acquisition, processing, and computation
of forces to apply to the aircraft actuators. On the other hand, it is desirable that UAV flight con-
trollers are able to tolerate faults, adapt to changes in the payload and/or the environment, and
optimize flight trajectory, to name a few.

Autopilot systems for UAVs are typically composed of an “inner loop” responsible for aircraft
stabilization and control, and an “outer loop” to provide mission-level objectives (e.g., way-point
navigation). Flight control systems for UAVs are predominately implemented using Proportional-
Integral-Derivative (PID) control systems. PIDs have demonstrated exceptional performance in
many circumstances, including in the context of drone racing, where precision and agility are key.
In stable environments, a PID controller exhibits close to ideal performance. When exposed to
unknown dynamics (e.g., wind, variable payloads, voltage sag), however, a PID controller can be
far from optimal [29]. For next-generation flight control systems to be intelligent, a way needs to
be devised to incorporate adaptability to mutable dynamics and environment.

The development of intelligent flight control systems is an active area of research [32], specifi-
cally through the use of artificial neural networks, which are an attractive option given that they
are universal approximators and resistant to noise [30].

Online learning methods (e.g., [14]) have the advantage of learning the aircraft dynamics in real
time. The main limitation with online learning is that the flight control system is only knowledge-
able of its past experiences. It follows that its performances are limited when exposed to a new
event. Training models offline using supervised learning is problematic, as data is expensive to ob-
tain and derived from inaccurate representations of the underlying aircraft dynamics (e.g., flight
data from a similar aircraft using PID control), which can lead to suboptimal control policies [9,
35, 40]. To construct high-performance intelligent flight control systems, it is necessary to use a
hybrid approach. First, accurate offline models are used to construct a baseline controller, whereas
online learning provides fine tuning and real-time adaptation.

An alternative to supervised learning for creating offline models is known as reinforcement learn-

ing (RL). In RL, an agent is given a reward for every action it takes in an environment, with the
objective to maximize the rewards over time. Using RL, it is possible to develop optimal control
policies for a UAV without making any assumptions about the aircraft dynamics. Recent work
has shown RL to be effective for UAV autopilots, providing adequate path tracking [18]. Nonethe-
less, previous work on intelligent flight control systems has primarily focused on guidance and
navigation.

Open challenges in RL for attitude control. RL is currently being applied to a wide range
of applications, each with its own set of challenges. Attitude control for UAVs is a particularly
interesting RL problem for several reasons. We have highlighted three areas we find important:

C1: Precision and Accuracy. Many RL tasks can be solved in a variety of ways. For example,
to win a game, there may be several sequential moves that will lead to the same outcome.
In the case of optimal attitude control, there is little tolerance and flexibility as to the se-
quence of control signals that will achieve the desired attitude (e.g., angular rate) of the
aircraft. Even the slightest deviations can lead to instabilities. It remains unclear what level
of control accuracy can be achieved when using intelligent control trained with RL for time-
sensitive attitude control (i.e., the “inner loop”). Therefore, determining the achievable level
of accuracy is critical in establishing if RL is suitable for attitude flight control.

C2: Robustness and Adaptation: In the context of control, robustness refers to the controller’s
performance in the presence of uncertainty when control parameters are fixed, whereas
adaptiveness refers to the controller’s performance to adapt to the uncertainties by ad-
justing the control parameters [37]. It is assumed that the neural network trained with

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

Reinforcement Learning for UAV Attitude Control 22:3

RL will face uncertainties when transferred to physical hardware due to the gap between
the RL environment and the real world. However, it remains unknown in what range of
uncertainty the controller can operate safely before adaptation is necessary. Characteriz-
ing the controller’s robustness will provide valuable insight into the design of the intel-
ligent flight control system architecture. For instance, what will be the necessary adap-
tation rate, and what sensor data can be collected from the real world to update the RL
environment?

C3: Reward Engineering: In RL, reward engineering is the process of designing a reward sys-
tem to provide the agent a signal showing that they are doing the right thing [12]. In the
context of attitude control, the reward must encapsulate the agent’s performance in achiev-
ing the desired attitude goals. As goals become more complex and demanding (e.g., minimiz-
ing energy consumption or stability in presence of damage), identifying which performance
metrics are most expressive will be necessary to push the performance of intelligent control
systems trained with RL.

Our contributions. In this article, we study C1 in depth the accuracy and precision of attitude
control provided by intelligent flight controllers trained using RL. Although we specifically focus
on the creation of controllers for the Iris quadcopter [4], the methods developed apply to a wide
range of multirotor UAVs and can also be extended to fixed-wing aircraft. We develop a novel
training environment called GymFC with the use of a high-fidelity physics simulator for the agent
to learn attitude control. GymFC is an OpenAI Environment [11] providing a common interface
for researchers to develop intelligent flight control systems. The simulated environment consists
of an Iris quadcopter digital replica or digital twin [16] with the intention of eventually be used
to transfer the trained controller to physical hardware. Controllers are trained using state-of-the-
art RL algorithms: Deep Deterministic Policy Gradient (DDPG), Trust Region Policy Optimiza-
tion (TRPO), and Proximal Policy Optimization (PPO). We then compare the performance of our
synthesized controllers with that of a PID controller. Our evaluation finds that controllers trained
using PPO outperform PID control and are capable of exceptional performance. To summarize,
this article makes the following contributions:

• GymFC, an open source [22] environment for developing an intelligent attitude flight con-
troller, providing the research community a tool to progress performance.

• A learning architecture for attitude control utilizing digital twinning concepts for minimal
effort when transferring trained controllers into hardware.

• An evaluation for state-of-the-art RL algorithms, such as DDPG, TRPO, and PPO, learning
policies for aircraft attitude control. As a first work in this direction, our evaluation also
establishes a baseline for future work.

• An analysis of intelligent flight control performance developed with RL compared to tradi-
tional PID control.

The remainder of this article is organized as follows. In Section 2, we provide an overview of
the quadcopter flight dynamics and RL. Next, in Section 3, we briefly survey existing literature
on intelligent flight control. In Section 4, we present our training environment and then use this
environment to evaluate RL performance for flight control in Section 5. Finally, Section 6 concludes
the article and provides several future research directions.

2 BACKGROUND

In this section, we provide an overview of quadcopter flight dynamics required to understand this
work and an introduction to developing flight control systems with RL.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

22:4 W. Koch et al.

Fig. 1. Quadcopter rotational movement.

2.1 Quadcopter Flight Dynamics

A quadcopter is an aircraft with six degrees of freedom (DOF), three rotational and three transla-
tional. With four control inputs (one to each motor), this results in an underactuated system that
requires an onboard computer to compute motor signals to provide stable flight. We indicate with
ωi , i ∈ 1, . . . ,M the rotation speed of each rotor where M = 4 is the total number of motors for
a quadcopter. These have a direct impact on the resulting Euler angles ϕ,θ ,ψ , for instance, roll,
pitch, and yaw, respectively, which provide rotation in D = 3 dimensions. Moreover, they produce
a certain amount of upward thrust, indicated with f .

The aerodynamic effect that each ωi produces depends on the configuration of the motors. The
most popular configuration is an “X” configuration, depicted in Figure 1(a), which has the motors
mounted in an “X” formation relative to what is considered the front of the aircraft. This config-
uration provides more stability compared to a “+” configuration, which in contrast has its motor
configuration rotated an additional 45◦ along the z-axis. This is due to the differences in torque
generated along each axis of rotation in respect to the distance of the motor from the axis. The
aerodynamic affect u that each rotor speed ωi has on thrust and Euler angles is given by

uf = b (ω2
1 + ω

2
2 + ω

2
3 + ω

2
4) (1)

uϕ = b (ω2
1 + ω

2
2 − ω2

3 − ω2
4) (2)

uθ = b (ω2
1 − ω2

2 + ω
2
3 − ω2

4) (3)

uψ = b (ω2
1 − ω2

2 − ω2
3 + ω

2
4). (4)

where uf ,uϕ ,uθ ,uψ is the thrust, roll, pitch, and yaw effect, respectively, whereas b is a thrust
factor that captures propeller geometry and frame characteristics. For further details about the
mathematical models of quadcopter dynamics, please refer to Bouabdallah et al. [10].

To perform a rotational movement, the velocity of each rotor is manipulated according to the
relationship expressed in Equation (4) and as illustrated in Figure 1(b) through (d). For example,
to roll right (Figure 1(b)), more thrust is delivered to motors 3 and 4. Yaw (Figure 1(d)) is not
achieved directly through difference in thrust generated by the rotor as roll and pitch are, but

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

Reinforcement Learning for UAV Attitude Control 22:5

Fig. 2. RL architecture using the GymFC environment for training intelligent attitude flight controllers.

instead through a difference in torque in the rotation speed of rotors spinning in opposite direc-
tions. For example, as shown in Figure 1(d), higher rotation speed for rotors 1 and 4 allow the
aircraft to yaw clockwise. Because a net positive torque counterclockwise causes the aircraft to
rotate clockwise due to Newton’s second law of motion.

Attitude, in respect to orientation of a quadcopter, can be expressed by its angular velocities of
each axis Ω = [Ωϕ ,Ωθ ,Ωψ]. The objective of attitude control is to compute the required motor
signals to achieve some desired attitude Ω∗.

In autopilot systems, attitude control is executed as an inner control loop and is time sensitive.
Once the desired attitude is achieved, translational movement (in the X, Y, Z direction) is accom-
plished by applying thrust proportional to each motor.

In commercially available quadcopters, the vast, if not all, use PID attitude control. A PID con-
troller is a linear feedback controller expressed mathematically as

u (t) = Kpe (t) + Ki

∫ t

0

e (τ)dτ + Kd
de (t)

dt
, (5)

where Kp ,Ki ,Kd are configurable constant gains and u (t) is the control signal. The effect of each
term can be thought of as the P term considers the current error, the I term considers the history
of errors, and the D term estimates the future error. For attitude control in a quadcopter aircraft,
there is PID control for each roll, pitch, and yaw axis. At each cycle in the inner loop, each PID
sum is computed for each axis and then these values are translated into the amount of power to
deliver to each motor through a process called mixing. Mixing uses a table consisting of constants
describing the geometry of the frame to determine how the axis control signals are summed based
on the torques that will be generated by the length of each arm (recall differences between “X”
and “+” frames). The control signal for each motor yi is loosely defined as

yi = f (m (i,ϕ)uϕ +m (i,θ)uθ +m (i,ψ)uψ), (6)

wherem (i,ϕ),m (i,θ),m (i,ψ) are the mixer values for motor i and f is the throttle coefficient.

2.2 Reinforcement Learning

In this work, we consider an RL architecture (depicted in Figure 2) consisting of a neural net-
work flight controller as an agent interacting with an Iris quadcopter [4] in a high-fidelity physics
simulated environment E, more specifically using the Gazebo simulator [23].

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

22:6 W. Koch et al.

At each discrete timestep t , the agent receives an observation xt from the environments consist-
ing of the angular velocity error of each axis e = Ω∗ − Ω and the angular velocity of each rotor ωi ,
which are obtained from the quadcopter’s inertial measurement unit (IMU) and electronic speed
controller (ESC) sensors, respectively. These observations are in the continuous observation spaces

xt ∈ R(M+D) . Once the observation is received, the agent executes an action at within E. In return,
the agent receives a single numerical reward rt indicating the performance of this action. The
action is also in a continuous action space at ∈ RM and corresponds to the four control signals
u (t) sent to each ESC driving the attached motor ©M. Because the agent is only receiving this sen-
sor data, it is unaware of the physical environment and the aircraft dynamics, and therefore E is
only partially observed by the agent. Motivated by Minh et al. [31], we consider the state to be a
sequence of the past observations and actions st = xi ,ai , . . . ,at−1,xt .

The interaction between the agent and E is formally defined as a Markov decision process (MDP)
where the state transitions are defined as the probability of transitioning to state s ′ given the
current state and action respectively are s and a, Pr {st+1 = s

′|st = s,at = a}. The behavior of the
agent is defined by its policy π , which is essentially a mapping of what action should be taken
for a particular state. The objective of the agent is to maximize the returned reward overtime to
develop an optimal policy. We welcome the reader to refer to Sutton and Barto [36] for further
details on RL.

Until recently, control in a continuous action space was considered difficult for RL. Significant
progress has been made combining the power of neural networks with RL. In this work,we elected
to use DDPG [27] and TRPO [33] due to the recent use of these algorithms for quadcopter nav-
igation control [18]. DDPG provides improvement to the Deep Q-Network (DQN) [31] for the
continuous action domain. It employs an actor-critic architecture using two neural networks for
each actor and critic. It is also a model-free algorithm, meaning that it can learn the policy without
having to first generate a model. TRPO is similar to natural gradient policy methods; however, this
method guarantees monotonic improvements. We additionally include a third algorithm for our
analysis: PPO [34]. PPO is known to outperform other state-of-the-art methods in challenging en-
vironments. PPO is also a policy gradient method and has similarities to TRPO while being easier
to implement and tune.

3 RELATED WORK

Aviation has a rich history in flight control dating back to the 1960s. During this time, super-
sonic aircraft were being developed, which demanded more sophisticated dynamic flight control
than what a static linear controller could provide. Gain scheduling [26] was developed, allowing
multiple linear controllers of different configurations to be used in designated operating regions.
This, however, was inflexible and insufficient for handling the nonlinear dynamics at high speeds
but paved the way for adaptive control. For a period of time, many experimental adaptive con-
trollers were being tested but were unstable. Later advances were made to increase stability with
model reference adaptive control (MRAC) [39] and L1 [17], which provided reference models dur-
ing adaptation. Additionally numerous other nonlinear control algorithms have been developed
and applied to flight control, including feedback linearization [25], sliding mode control [25], and
backstepping [28], in an attempt to model the nonlinear dynamics of the aircraft.

As the cost of small-scale embedded computing platforms dropped, intelligent flight control
options became realistic and have been actively researched over the past decade to design flight
control solutions that are able to adapt and also learn. The ability to learn is an important dis-
tinction that differentiates intelligent control from the control algorithms discussed previously.
Intelligent control architectures are capable of planning for future events such as system failure,

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

Reinforcement Learning for UAV Attitude Control 22:7

damage, and emergencies—tasks that would otherwise be difficult or impossible for other control
algorithms [24].

As performance demands for UAVs continue to increase, we are beginning to see signs of
flight control history repeating itself. The popular high-performance drone racing firmware
Betaflight [2] has recently added a gain scheduler to adjust PID gains depending on throttle and
voltage levels. Intelligent PID flight control [15] methods have been proposed in which PID gains
are dynamically updated online, providing adaptive control as the environment changes. However,
these solutions still inherit disadvantages associated with PID control, such as integral windup,
need for mixing, and, most significantly, they are feedback controllers and therefore inherently
reactive. Yet feedforward control (or predictive control) is proactive and allows the controller to
output control signals before an error occurs. For feedforward control, a model of the system must
exist. Learning-based intelligent control has been proposed to develop models of the aircraft for
predictive control using artificial neural networks.

Notable work by Dierks and Jagannathan [14] proposes an intelligent flight control system
constructed with neural networks to learn the quadcopter dynamics, online, to navigate along
a specified path. This method allows the aircraft to adapt in real time to external disturbances
and unmodeled dynamics. Matlab simulations demonstrate that their approach outperforms a PID
controller in the presence of unknown dynamics, specifically in regard to control effort required
to track the desired trajectory. Nonetheless, the proposed approach does require prior knowledge
of the aircraft mass and moments of inertia to estimate velocities. Online learning is an essential
component to constructing a complete intelligent flight control system. It is fundamental, how-
ever, to develop accurate offline models to account for uncertainties encountered during online
learning [32]. To build offline models, previous work has used supervised learning to train intel-
ligent flight control systems using a variety of data sources, such as test trajectories [9], and PID
step responses [35]. The limitation of this approach is that training data may not accurately reflect
the underlying dynamics. In general, supervised learning on its own is not ideal for interactive
problems such as control [36].

RL has similar goals to adaptive control in which a policy improves over time when interact-
ing with its environment. RL has been applied to autonomous helicopters to learn how to track
trajectories (guidance), specifically how to hover in place and perform various maneuvers [6, 7,
21]. Kim et al. [21] and Abbeel et al. [6] demonstrated their trained helicopter’s capabilities in
helicopter competitions requiring the aircraft to perform advanced aerobatic maneuvers. Perfor-
mance was compared to trained pilots; nevertheless, it is unknown how their controllers compare
to PID control for tracking trajectories. In contrast to their work, we investigate the use and accu-
racy of using RL for low-level manipulation of the aircraft actuators to maintain a desired attitude,
not for guidance control. Furthermore our goal is to compare controllers taught with RL to PID
control to determine what applications, if any, would be more appropriate. The first use of RL in
quadcopter control was presented by Waslander et al. [38] for altitude control. The authors de-
veloped a model-based RL algorithm to search for an optimal control policy. The controller was
rewarded for accurate tracking and damping. Their design provided significant improvements in
stabilization in comparison to a linear control system. More recently, Hwangbo et al. [18] used RL
for quadcopter control, particularly for navigation control. They developed a novel deterministic
on-policy learning algorithm that outperformed TRPO [33] and DDPG [27] in regard to training
time. Furthermore, the authors validated their results in the real world, transferring their simu-
lated model to a physical quadcopter. Path tracking turned out to be adequate. Notably, the authors
discovered major differences in transferring from simulation to the real world. Known as the re-

ality gap, transferring from simulation to the real world has been researched extensively as being
problematic without taking additional steps to increase realism in the simulator [19, 30].

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

22:8 W. Koch et al.

Most prior work has focused on performance of navigation and guidance. There is limited and
insufficient data justifying the accuracy and precision of neural network–based intelligent attitude
flight control and none to our knowledge for controllers trained using RL. Furthermore, this work
uses physics simulations in contrast to mathematical models of the aircraft and environments used
in aforementioned prior work for increased realism. The goal of this work is to provide a platform
for training attitude controllers with RL, and to provide performance baselines in regard to attitude
controller accuracy.

4 ENVIRONMENT

In this section, we describe our learning environment, GymFC, for developing intelligent flight
control systems using RL. The goal of the proposed environment is to allow the agent to learn
attitude control of an aircraft with only the knowledge of the number of actuators. GymFC in-
cludes both an episodic task and a continuous task. In an episodic task, the agent is required to
learn a policy for responding to individual angular velocity commands. This allows the agents to
learn the step response from rest for a given command, allowing its performance to be accurately
measured. Episodic tasks, however, are not reflective of realistic flight conditions. For this reason,
in a continuous task, pulses with random widths and amplitudes are continuously generated and
correspond to angular velocity setpoints. The agent must respond accordingly and track the de-
sired target over time. In Section 5, we evaluate our synthesized controllers via episodic tasks, but
we have strong experimental evidence that training via episodic tasks produces controllers that
behave correctly in continuous tasks as well (Appendix A).

GymFC has a multilayer hierarchical architecture composed of three layers: (i) a digital twin
layer, (ii) a communication layer, and (iii) an agent-environment interface layer. This design deci-
sion was made to clearly establish roles and allow layer implementations to change (e.g., to use a
different simulator) without affecting other layers as long as the layer-to-layer interfaces remain
intact. A high-level overview of the environment architecture is illustrated in Figure 3. We will
now discuss in greater detail each layer with a bottom-up approach.

4.1 Digital Twin Layer

At the heart of the learning environment is a high-fidelity physics simulator that provides func-
tionality and realism that is hard to achieve with an abstract mathematical model of the aircraft
and environment. One of the primary design goals of GymFC is to minimize the effort required
to transfer a controller from the learning environment into the final platform. For this reason, the
simulated environment exposes identical interfaces to actuators and sensors as they would exist
in the physical world. In the ideal case, the agent should not be able to distinguish between inter-
action with the simulated world (i.e., its digital twin) and its hardware counterpart. In this work,
we use the Gazebo simulator [23] in light of its maturity, flexibility, extensive documentation, and
active community.

In a nutshell, the digital twin layer is defined by (i) the simulated world and (ii) its interfaces to
the above communication layer (see Figure 3).

Simulated world. The simulated world is constructed specifically for UAV attitude control in
mind. The technique we developed allows attitude control to be accomplished independently of
guidance and/or navigation control. This is achieved by fixing the center of mass of the aircraft to
a ball joint in the world, allowing it to rotate freely in any direction, which would be impractical, if
not impossible, to achieve in the real world due to gimbal lock and friction of such an apparatus. In
this work, the aircraft to be controlled in the environment is modeled off of the Iris quadcopter [4]
with a weight of 1.5Kg and 550mm motor-to-motor distance. An illustration of the quadcopter in
the environment is displayed in Figure 4. Note during training that Gazebo runs in headless mode

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

Reinforcement Learning for UAV Attitude Control 22:9

Fig. 3. Overview of environment architecture, GymFC. Blue blocks with dashed borders are implementations

developed for this work.

Fig. 4. The Iris quadcopter in Gazebo 1m above the ground. The body is transparent to show where the

center of mass is linked as a ball joint to the world. Arrows represent the various joints used in the model.

without this user interface to increase simulation speed. This architecture, however, can be used
with any multicopter as long as a digital twin can be constructed. Helicopters and multicopters
represent excellent candidates for our setup because they can achieve a full range of rotations along
all three axes. This is typically not the case with fixed-wing aircraft. Our design can, however, be
expanded to support fixed-wing aircraft by simulating airflow over the control surfaces for attitude
control. Gazebo already integrates a set of tools to perform airflow simulation.

Interface. The digital twin layer provides two command interfaces to the communication layer:
simulation reset and motor update. Simulation reset commands are supported by Gazebo’s API
and are not part of our implementation. Motor updates are provided by a UDP server. We hereby
discuss our approach to developing this interface.

To keep synchronicity between the simulated world and the controller of the digital twin, the
pace at which the simulation should progress is directly enforced. This is possible by controlling

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

22:10 W. Koch et al.

the simulator step by step. In our initial approach, Gazebo’s Google Protobuf [5] API was used,
with a specific message to progress by a single simulation step. By subscribing to status messages
(which include the current simulation step), it is possible to determine when a step has completed
and to ensure synchronization. However, as we attempted to increase the rate of advertising step
messages, we discovered that the rate of status messages is capped at 5Hz. Such a limitation intro-
duces a consistent bottleneck in the simulation/learning pipeline. Furthermore, it was found that
Gazebo silently drops messages that it cannot process.

A set of important modifications were made to increase experiment throughput. The key idea
was to allow motor update commands to directly drive the simulation clock. By default, Gazebo
comes preinstalled with an ArduPilot ArduCopter [1] plugin to receive motor updates through
a UDP server. These motor updates are in the form of pulse width modulation (PWM) signals.
At the same time, sensor readings from the IMU on board the aircraft is sent over a second UDP
channel. ArduCopter is an open source multicopter firmware, and its plugin was developed to
support software in the loop (SITL).

We derived our Aircraft Plugin from the ArduCopter plugin with the following modifications
(as well as those discussed in Section 4.2). On receiving a motor command, the motor forces are
updated as normal but then a simulation step is executed. Sensor data is read and then sent back
as a response to the client over the same UDP channel. In addition to the IMU sensor data, we
also simulate sensor data obtained from the ESC. The ESC provides the angular velocities of each
rotor, which are relayed to the client as well. Implementing our Aircraft Plugin with this approach
successfully allowed us to work around the limitations of the Google Protobuf API and increased
step throughput by more than 200 times.

4.2 Communication Layer

The communication layer is positioned in between the digital twin and the agent-environment
interface. This layer manages the low-level communication channel to the aircraft and simulation
control. The primary function of this layer is to export a high-level synchronized API to the higher
layers for interacting with the digital twin that uses asynchronous communication protocols. This
layer provides the commands pwm_write and reset to the agent-environment interface layer.

The function call pwm_write takes as input a vector of PWM values for each actuator, corre-
sponding to the control input u (t). These PWM values correspond to the same values that would
be sent to an ESC on a physical UAV. The PWM values are translated to a normalized format ex-
pected by the Aircraft Plugin and then packed into a UDP packet for transmission to the Aircraft
Plugin UDP server. The communication layer blocks until a response is received from the Aircraft
Plugin, forcing synchronized writes for the above layers. The UDP reply is unpacked and returned
in response.

During the learning process, the simulated environment must be reset at the beginning of each
learning episode. Ideally, one could use the gz command line utility included with the Gazebo
installation, which is lightweight and does not require additional dependencies. Unfortunately,
there is a known socket handle leak [3] that causes Gazebo to crash if the command is issued
more than the maximum number of open files allowed by the operating system. Given that we are
running thousands episodes during training, this was not an option for us. Instead, we opted to
use the Google Protobuffer interface, so we did not have to deploy a patched version of the utility
on our test servers. Because resets only occur at the beginning of a training session and are not in
the critical processing loop using Google Protobuffers here is acceptable.

On start of the communication layer, a connection is established with the Google Protobuff API
server, and we subscribe to world statistics messages that include the current simulation iteration.
To reset the simulator, a world control message is advertised, instructing the simulator to reset the

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

Reinforcement Learning for UAV Attitude Control 22:11

simulation time. The communication layer blocks until it receives a world statistics message indi-
cating that the simulator has been reset and then returns back control to the agent-environment
interface layer. Note that the world control message is only resetting the simulation time, not
the entire simulator (i.e., models and sensors). This is because we found that in some cases when
a world control message was issued to perform a full reset, the sensor data took a few additional
iterations for reset. To ensure proper reset to the above layers, this time reset message acts as a sig-
naling mechanism to the Aircraft Plugin. When the plugin detects that a time reset has occurred, it
resets the whole simulator and, most importantly, steps the simulator until the sensor values have
also reset ensuring above layers that when a new training session starts, reading sensor values
accurately reflect the current state and not the previous state from stale values.

4.3 Environment Interface Layer

The topmost layer interfacing with the agent is the environment interface layer that implements
the OpenAI Gym [11] environment API. Each OpenAI Gym environment defines an observation
space and an action space. These are used to inform the agent of the bounds to expect for envi-
ronment observations and what are legal bounds for the action input, respectively. As mentioned
in Section 2.2, GymFC is in both the continuous observation space and action space domain. The
state is of size m × (M + D), where m is the memory size indicating the number of past observa-
tions, M = 4 as we consider a four-motors configuration, and D = 3 since each measurement is
taken in the three dimensions. Each observation value is in [−∞ : ∞]. The action space is of size
M equivalent to the number of control actuators of the aircraft (i.e., four for a quadcopter), where
each value is normalized between [−1 : 1] to be compatible with most agents who squash their
output using the tanh function.

GymFC implements two primary OpenAI functions, namely reset and step. The reset func-
tion is called at the start of an episode to reset the environment and returns the initial environment
state. This is also when the desired target angular velocity Ω∗ or setpoint is computed. The set-
point is randomly sampled from a uniform distribution between [Ωmin ,Ωmax]. For the continuous
task, this is also set at a random interval of time. Selection of these bounds may refer to the de-
sired operating region of the aircraft. Although it is highly unlikely during normal operation that
a quadcopter will be expected to reach the majority of these target angular velocities, the intention
of these tasks are to push and stress the performance of the aircraft.

The step function executes a single simulation step with the specified actions and returns to
the agent the new state vector, together with a reward indicating how well the given action was
performed. Reward engineering can be challenging. If careful design is not performed, the derived
policy may not reflect what was originally intended. Recall from Section 2.2 that the reward is
ultimately what shapes the policy. For this work, with the goal of establishing a baseline of ac-
curacy, we develop a reward to reflect the current angular velocity error (i.e., e = Ω∗ − Ω). In the
future, GymFC will be expanded to include additional environments aiding in the development of
more complex policies’ particularity to showcase the advantages of using RL to adapt and learn.
We translate the current error et at time t into a derived reward rt normalized between [−1, 0] as
follows:

rt = −clip
(
sum(|Ω∗t − Ωt |)/3Ωmax , 0, 1

)
, (7)

where the sum function sums the absolute value of the error of each axis, and the clip function clips
the result between [0, 1] in cases where there is an overflow in the error. Since the reward is nega-
tive, it signifies a penalty, and the agent maximizes the rewards (thus minimizing error) over time
to track the target as accurately as possible. Rewards are normalized to provide standardization
and stabilization during training [20].

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

22:12 W. Koch et al.

Additionally, we experimented with a variety of other rewards. We found sparse binary rewards1

to give poor performance. We believe that this is due to complexity of quadcopter control and the
limitations of the RL algorithms we tested. In the early stages of learning, the agent explores its
environment. However, the event of randomly reaching the target angular velocity within some
threshold was rare and thus did not provide the agent with enough information to converge. Con-
versely, we found that signaling at each timestep was best.

5 EVALUATION

In this section, we present our evaluation on the accuracy of studied neural network–based attitude
flight controllers trained with RL. Due to space limitations, we present evaluation and results
only for episodic tasks, as they are directly comparable to our baseline (PID). Nonetheless, we
have obtained strong experimental evidence that agents trained using episodic tasks perform well
in continuous tasks (Appendix A). To our knowledge, this is the first RL baseline conducted for
quadcopter attitude control.

5.1 Setup

We evaluate the RL algorithms DDPG, TRPO, and PPO using the implementations in the OpenAI
Baselines project [13]. The goal of the OpenAI Baselines project is to establish a reference imple-
mentation of RL algorithms, providing baselines for researchers to compare approaches and build
on. Every algorithm is run with defaults except for the number of simulations steps, which we
increased to 10 million.

The episodic task parameters were configured to run each episode for a maximum of 1 sec-
ond of simulated time, allowing enough time for the controller to respond to the command and
additional time to identify if a steady state has been reached. The bounds the target angular ve-
locity is sampled from is set to Ωmin = −5.24 rad/s, Ωmax = 5.24 rad/s (± 300 deg/s). These limits
were constructed by examining PID’s performance to make sure we expressed physically feasible
constraints. The max step size of the Gazebo simulator, which specifies that the duration of each
physics update step was set to 1 ms to develop highly accurate simulations. In other words, our
physical world “evolved” at 1kHz. Training and evaluations were run on Ubuntu 16.04 with an
eight-core i7-7700 CPU and an NVIDIA GeForce GT 730 graphics card.

For our PID controller, we ported the mixing and SITL implementation from Betaflight [2]
to Python to be compatible with GymFC. The PID controller was first tuned using the classical
Ziegler-Nichols method [41] and then manually adjusted to improve performance of the step re-
sponse sampled around the midpoint ±Ωmax/2. We obtained the following gains for each axis of
rotation: Kϕ = [2, 10, 0.005],Kθ = [10, 10, 0.005],Kψ = [4, 50, 0.0], where each vector contains the
[Kp ,Ki ,Kd] (proportional, integrative, derivative) gains, respectively. Next, we measured the dis-
tances between the arms of the quadcopter to calculate the mixer values for each motor mi , i ∈
{1, . . . 4}. Each vector mi is of the form mi = [m (i,ϕ),m (i,θ),m (i,ψ)]—for instance, roll, pitch, and
yaw (see Section 2.1). The final values were m1 = [−1.0, 0.598,−1.0], m2 = [−0.927,−0.598, 1.0],
m3 = [1.0, 0.598, 1.0], and last, m4 = [0.927,−0.598,−1.0]. The mix values and PID sums are then
used to compute each motor signal yi according to Equation (6), where f = 1 for no additional
throttle.

To evaluate and compare the accuracy of the different algorithms, we used a set of metrics.
First, we define “initial error” as the distance between the rest velocities and the current setpoint.
A notion of progress toward the setpoint from rest can then be expressed as the percentage of the
initial error that has been “corrected.” Correcting 0% of the initial error means that no progress

1A reward structured so that rt = 0 if sum (|et |) < thr eshold ; otherwise, rt = −1.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

Reinforcement Learning for UAV Attitude Control 22:13

Fig. 5. Average normalized rewards shown in magenta received during training of 10,000 episodes (10 million

steps) for each RL algorithm and memorym sizes 1, 2, and 3. Plots share a commony and x axis. Additionally,

yellow represents the 95% confidence interval and the black line is a 2-degree polynomial added to illustrate

the trend of the rewards over time.

has been made, whereas 100% indicates that the setpoint has been reached. Each metric value is
independently computed for each axis. We hereby list our metrics. Success captures the number of
experiments (in percentage) in which the controller eventually settles in a band within 90% and
110% of the initial error (i.e.,±10% from the setpoint). Failure captures the average percentage error
relative to the initial error after t = 500ms for those experiments that do not make it in the ±10% er-
ror band. The latter metric quantifies the magnitude of unacceptable controller performance. The
delay in the measurement (t > 500ms) is to exclude the rise regime. The underlying assumption
is that a steady state is reached before 500ms. Rise is the average time in milliseconds it takes the
controller to go from 10% to 90% of the initial error. Peak is the max achieved angular velocity rep-
resented as a percentage relative to the initial error. Values greater than 100% indicate overshoot,
whereas values less than 100% represent undershoot. Error is the average sum of the absolute value
error of each episode in radians per second. This provides a generic metric for performance. Our
last metric is Stability, which captures how stable the response is halfway through the simulation
(i.e., at t > 500ms). Stability is calculated by taking the linear regression of the angular velocities
and reporting the slope of the calculated line. Systems that are unstable have a nonzero slope.

5.2 Results

Each learning agent was trained with an RL algorithm for a total of 10 million simulation steps,
equivalent to 10,000 episodes or about 2.7 simulation hours. The agents configuration is defined
as the RL algorithm used for training and its memory size m. Training for DDPG took approxi-
mately 33 hours, whereas PPO and TRPO took approximately 9 hours and 13 hours, respectively.
The average sum of rewards for each episode is normalized between [−1, 0] and displayed in
Figure 5. This computed average in magenta is from three independently trained agents with the

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

22:14 W. Koch et al.

Table 1. RL Performance Evaluation Averages From 3,000 Command Inputs

Per Configuration With 95% Confidence

same configuration, whereas the 95% confidence is shown in yellow. Additionally, we have added
a 2-degree polynomial in black fit to the data to illustrate the reward trend over time. Training
results show clearly that PPO converges consistently compared to TRPO and DDPG, and overall
PPO accumulates higher rewards. What is also interesting and counterintuitive is that the larger
memory size actually decreases convergence and stability among all trained algorithms. Recall from
Section 2 that RL algorithms learn a policy to map states to action. A reason for the decrease in con-
vergence could be attributed to the state space increasing, causing the RL algorithm to take longer
to learn the mapping to the optimal action. As part of our future work, we plan to investigate
using separate memory sizes for the error and rotor velocity to decrease the state space. Reward
gains during training of TRPO and DDPG are quite inconsistent with large confidence intervals.
Although performance for DDPG m = 1 looks promising, on further investigation into the large
confidence interval, we found that this was due to the algorithm completely failing to respond
to certain command inputs, thus questioning whether the algorithm has learned the underlying
flight dynamics (this is emphasized later in Table 2).

In the future, we plan to investigate methods to decrease training times by addressing C2 and
C3 in Section 1. Specific to C2 to support a large range of aircraft, we will explore whether we can
construct a generic neural network taught general flight dynamics (Section 2.1), which will provide
a baseline to extend training to create intelligent controllers unique to an aircraft (otherwise known
as domain adaptation [8]). Additionally, considering C3, we will experiment with developing more
expressive reward functions to decrease training times.

Each trained agent was then evaluated on 1,000 never before seen command inputs in an episodic
task. Since there are three agents per configuration, each configuration was evaluated over a total
of 3,000 episodes. The average performance metrics for Rise, Peak, Error, and Stability for the
response to the 3,000 command inputs is reported in Table 1. Results show that the agent trained
with PPO outperforms TRPO and DDPG in every measurement. In fact, PPO is the only one that
is able to achieve stability (for everym), whereas all other agents have at least one axis where the
Stability metric is nonzero.

Next, the best-performing agent for each algorithm and memory size is compared to the PID
controller. The best agent was selected based on the lowest sum of errors of all three axes reported
by the Error metric. The Success and Failure metrics are compared in Table 2. Results show that
agents trained with PPO would be the only ones good enough for flight, with a success rate close to
perfect, and where the roll failure of 0.2% is only off by about 0.1% from the setpoint. However, the

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

Reinforcement Learning for UAV Attitude Control 22:15

Table 2. Success and Failure Results for Considered Algorithms

Table 3. RL Performance Evaluation Compared to PID of the Best-Performing Agent

best-trained agents for TRPO and DDPG are often significantly far away from the desired angular
velocity. For example, TRPO’s best agent, 39.2% (60.8% success, see Table 2) of the time, does not
reach the desired pitch target with upward of a 20% error from the setpoint.

Next, we provide our thorough analysis comparing the best agents in Table 3. We have found
that RL agents trained with PPO using m = 1 provide performance and accuracy exceeding that
of our PID controller in regard to rise time, peak velocities achieved, and total error. What is
interesting is that usually a fast rise time could cause overshoot; however, the PPO agent has, on
average, a faster rise time and less overshoot. Both PPO and PID reach a stable state measured
halfway through the simulation.

To illustrate the performance of each of the best agents, a random simulation is sampled and
the step response for each attitude command is displayed in Figure 6, along with the target an-
gular velocity to achieve Ω∗. All algorithms reach some steady state; however, only PPO and PID

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

22:16 W. Koch et al.

Fig. 6. Step response of best-trained RL agents compared to PID. Target angular velocity is Ω∗ =
[2.20,−5.14,−1.81] rad/s, shown by a dashed black line. Error bars ±10% of the initial error from Ω∗ are

shown in a dashed red line.

Fig. 7. Step response and PWM motor signals in microseconds (μs) of the best-trained PPO agent compared

to PID. Target angular velocity is Ω∗ = [2.11,−1.26, 5.00] rad/s, shown by a dashed black line. Error bars

±10% of initial error from Ω∗ are shown in a dashed red line.

do so within the error band indicated by the dashed red lines. TRPO and DDPG have extreme
oscillations in both the roll and yaw axes, which would cause instability during flight. In this par-
ticular example, we can observe PID to perform better with a 19% decrease in error compared to
PPO, most visibly in yaw control. However, globally speaking, in terms of error, PPO has shown
to be a more accurate attitude controller.

To highlight the performance and accuracy of the PPO agent, we sample another simulation
and show the step response and also the PWM control signals generated by each controller in
Figure 7. In this figure, we can see that the PPO agent has exceptional tracking capabilities of the

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

Reinforcement Learning for UAV Attitude Control 22:17

desired attitude. Compared to PID, the PPO controller has a 44% decrease in error. The PPO agent
has a 2.25 times faster rise time on the roll axis, is 2.5 times faster on the pitch axis, and is 1.15
times faster on the yaw axis. Furthermore, the PID controller experiences slight overshoot in both
the roll and yaw axes, whereas the PPO agent does not. In regard to the control output, the PID
controller exerts more power to motor 3 but then motor values eventually level off, whereas the
PPO control signal oscillates comparably more.

6 FUTURE WORK AND CONCLUSION

In this article, we presented our RL training environment, GymFC, for developing intelligent atti-
tude controllers for UAVs and addressed C1: Precision and Accuracy in depth, which identifies if
neural networks trained with RL can produce accurate attitude controllers. We placed an emphasis
on digital twinning concepts to allow transferability to real hardware. We used GymFC to evalu-
ate the performance of state-of-the-art RL algorithms PPO, TRPO, and DDPG to identify if they
are appropriate to synthesize high-precision attitude flight controllers. Our results highlight that
(i) RL can train accurate attitude controllers and (ii) that those trained with PPO outperformed a
fully tuned PID controller on almost every metric. Although we base our evaluation on results ob-
tained in episodic tasks, we found that trained agents were able to perform exceptionally well also
in continuous tasks without retraining (Appendix A). This suggests that training using episodic
tasks is sufficient for developing intelligent attitude controllers. The results presented in this work
can be considered as a first milestone and a good motivation to further inspect the boundaries
of RL for intelligent control. With this premise, we plan to develop our future work along three
main avenues. On the one hand, we plan to investigate C2: Robustness and Adaptation and C3:
Reward Engineering (Section 1) to harness the true power of RL’s ability to adapt and learn in
environments with dynamic properties (e.g., wind, variable payload, system damage and failure).
On the other hand, we intend to transfer our trained agents onto a real aircraft to evaluate their
live performance, including timing and memory analysis of the neural network. This will allow us
to define the minimum hardware specifications required to use neural network attitude control.
Furthermore, we plan to expand GymFC to support other aircraft, such as fixed -wing aircraft,
while continuing to increase the realism of the simulated environment by improving the accuracy
of our digital twins.

APPENDIX

A CONTINUOUS TASK EVALUATION

In this section, we briefly expand on our findings that show that even if agents are trained through
episodic tasks, their performance transfers to continuous tasks without the need for additional
training. Figure 8 shows that an agent trained with Proximal Policy Optimization (PPO) using
episodic tasks has exceptional performance when evaluated in a continuous task. Figure 9 is a
closeup of another continuous task sample showing the details of the tracking and corresponding
motor output. These results are quite remarkable, as they suggest that training with episodic tasks
is sufficient for developing intelligent attitude flight controller systems capable of operating in a
continuous environment. In Figure 10, another continuous task is sampled and the PPO agent is
compared to a PID agent. The performance evaluation shows the PPO agent to have a 22% decrease
in overall error compared to the PID agent.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

22:18 W. Koch et al.

Fig. 8. Performance of a PPO agent trained with episodic tasks but evaluated using a continuous task for a

duration of 60 seconds. The time in seconds at which a new command is issued is randomly sampled from the

interval [0.1, 1], and each issued command is maintained for a random duration also sampled from [0.1, 1].

Desired angular velocity is specified by the black line, whereas the red line is the attitude tracked by the

agent.

Fig. 9. Closeup of continuous task results for a PPO agent with PWM values.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

Reinforcement Learning for UAV Attitude Control 22:19

Fig. 10. Response comparison of a PID and PPO agent evaluated in a continuous task environment. The PPO

agent, however, is only trained using episodic tasks.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their comments which helped us improve
the quality of this manuscript.

REFERENCES

[1] ArduPilot. 2018. ArduPilot Home Page. Retrieved January 20, 2019 from http://ardupilot.org/.

[2] GitHub. 2018. BetaFlight. Retrieved January 20, 2019 from https://github.com/betaflight/betaflight.

[3] Open Source Robotics Foundation. 2018. gzserver doesn’t close disconnected sockets. Retrieved January 20, 2019 from

https://bitbucket.org/osrf/gazebo/issues/2397/gzserver-doesnt-close-disconnected-sockets.

[4] APM Copter. 2018. Iris QuadCopter. Retrieved January 20, 2019 from http://www.arducopter.co.uk/iris-quadcopter-

uav.html.

[5] Google. 2018. Protocol Buffers. Retrieved January 20, 2019 from https://developers.google.com/protocol-buffers/.

[6] Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. 2007. An application of reinforcement learning to

aerobatic helicopter flight. In Advances in Neural Information Processing Systems. 1–8.

[7] J. Andrew Bagnell and Jeff G. Schneider. 2001. Autonomous helicopter control using reinforcement learning policy

search methods. In Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA’01), Vol.

2. IEEE, Los Alamitos, CA, 1615–1620.

[8] John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman. 2008. Learning bounds for

domain adaptation. In Advances in Neural Information Processing Systems. 129–136.

[9] Alexey Bobtsov, Alexei Guirik, Marina Budko, and Mikhail Budko. 2016. Hybrid parallel neuro-controller for multiro-

tor unmanned aerial vehicle. In Proceedings of the 2016 8th International Congress on Ultra Modern Telecommunications

and Control Systems and Workshops (ICUMT’16). IEEE, Los Alamitos, CA, 1–4.

[10] Samir Bouabdallah, Pierpaolo Murrieri, and Roland Siegwart. 2004. Design and control of an indoor micro quadro-

tor. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA’04), Vol. 5. IEEE, Los

Alamitos, CA, 4393–4398.

[11] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, et al. 2016. Openai

gym. arXiv:1606.01540.

[12] Daniel Dewey. 2014. Reinforcement learning and the reward engineering principle. In Proceedings of the 2014 AAAI

Spring Symposium Series.

[13] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, et al. 2017. OpenAI

Baselines. GitHub. Retrieved January 20, 2019 from https://github.com/openai/baselines.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

http://ardupilot.org/
https://github.com/betaflight/betaflight
https://bitbucket.org/osrf/gazebo/issues/2397/gzserver-doesnt-close-disconnected-sockets
http://www.arducopter.co.uk/iris-quadcopter-uav.html
http://www.arducopter.co.uk/iris-quadcopter-uav.html
https://developers.google.com/protocol-buffers/
https://github.com/openai/baselines

22:20 W. Koch et al.

[14] Travis Dierks and Sarangapani Jagannathan. 2010. Output feedback control of a quadrotor UAV using neural net-

works. IEEE Transactions on Neural Networks 21, 1 (2010), 50–66.

[15] Mehdi Fatan, Bahram Lavi Sefidgari, and Ali Vatankhah Barenji. 2013. An adaptive neuro PID for controlling the alti-

tude of quadcopter robot. In Proceedings of the 2013 18th International Conference on Methods and Models in Automation

and Robotics (MMAR’13). IEEE, Los Alamitos, CA, 662–665.

[16] Thomas Gabor, Lenz Belzner, Marie Kiermeier, Michael Till Beck, and Alexander Neitz. 2016. A simulation-based

architecture for smart cyber-physical systems. In Proceedings of the 2016 IEEE International Conference on Autonomic

Computing (ICAC’16). IEEE, Los Alamitos, CA, 374–379.

[17] Naira Hovakimyan, Chengyu Cao, Evgeny Kharisov, Enric Xargay, and Irene M. Gregory. 2011. L1 adaptive control

for safety-critical systems. IEEE Control Systems 31, 5 (2011), 54–104.

[18] Jemin Hwangbo, Inkyu Sa, Roland Siegwart, and Marco Hutter. 2017. Control of a quadrotor with reinforcement

learning. IEEE Robotics and Automation Letters 2, 4 (2017), 2096–2103.

[19] Nick Jakobi, Phil Husbands, and Inman Harvey. 1995. Noise and the reality gap: The use of simulation in evolutionary

robotics. In Proceedings of the 3rd European Conference on Advances in Artificial Life. 704–720.

[20] Andrej Karpathy. 2018. Deep Reinforcement Learning: Pong from Pixels. Retrieved January 20, 2019 from http://

karpathy.github.io/2016/05/31/rl/.

[21] H. Jin Kim, Michael I. Jordan, Shankar Sastry, and Andrew Y. Ng. 2004. Autonomous helicopter flight via reinforce-

ment learning. In Advances in Neural Information Processing Systems. 799–806.

[22] William Koch. 2018. GymFC. GitHub. Retrieved January 20, 2019 from https://github.com/wil3/gymfc.

[23] Nathan Koenig and Andrew Howard. [n.d.]. Design and use paradigms for Gazebo, an open-source multi-robot sim-

ulator. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’04), Vol. 3.

IEEE, Los Alamitos, CA, 2149–2154.

[24] Kalmanje KrishnaKumar and Karen Gundy-Burlet. 2002. Intelligent control approaches for aircraft applications. In

Proceedings of the JANAFF Interagency Propulsion Committee Meeting. Destin, FL.

[25] Daewon Lee, H. Jin Kim, and Shankar Sastry. 2009. Feedback linearization vs. adaptive sliding mode control for a

quadrotor helicopter. International Journal of Control, Automation and Systems 7, 3 (2009), 419–428.

[26] Douglas J. Leith and William E. Leithead. 2000. Survey of gain-scheduling analysis and design. International Journal

of Control 73, 11 (2000), 1001–1025.

[27] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, et al. 2015. Continuous

control with deep reinforcement learning. arXiv:1509.02971.

[28] Tarek Madani and Abdelaziz Benallegue. 2006. Backstepping control for a quadrotor helicopter. In Proceedings of the

2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 3255–3260.

[29] K. Niki Maleki, Kaveh Ashenayi, Loyd R. Hook, Justin G. Fuller, and Nathan Hutchins. 2016. A reliable system design

for nondeterministic adaptive controllers in small UAV autopilots. In Proceedings of the 2016 IEEE/AIAA 35th Digital

Avionics Systems Conference (DASC’16). IEEE, Los Alamitos, CA, 1–5.

[30] Orazio Miglino, Henrik Hautop Lund, and Stefano Nolfi. 1995. Evolving mobile robots in simulated and real environ-

ments. Artificial Life 2, 4 (1995), 417–434.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, et al. 2013.

Playing Atari with deep reinforcement learning. arXiv:1312.5602.

[32] Fendy Santoso, Matthew A. Garratt, and Sreenatha G. Anavatti. 2017. State-of-the-art intelligent flight control systems

in unmanned aerial vehicles. IEEE Transactions on Automation Science and Engineering 15, 2, 613–627.

[33] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. 2015. Trust region policy optimiza-

tion. In Proceedings of the International Conference on Machine Learning. 1889–1897.

[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization

algorithms. arXiv:1707.06347.

[35] Jack F. Shepherd III and Kagan Tumer. 2010. Robust neuro-control for a micro quadrotor. In Proceedings of the 12th

Annual Conference on Genetic and Evolutionary Computation. ACM, New York, NY, 1131–1138.

[36] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An Introduction. Vol. 1. MIT Press, Cambridge,

MA.

[37] Le Yi Wang and Ji-Feng Zhang. 2001. Fundamental limitations and differences of robust and adaptive control. In

Proceedings of the 2001 American Control Conference, Vol. 6. IEEE, Los Alamitos, CA, 4802–4807.

[38] Steven Lake Waslander, Gabriel M. Hoffmann, Jung Soon Jang, and Claire J. Tomlin. 2005. Multi-agent quadrotor

testbed control design: Integral sliding mode vs. reinforcement learning. In Proceedings of the 2005 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS’05). IEEE, Los Alamitos, CA, 3712–3717.

[39] H. Philip Whitaker, Joseph Yamron, and Allen Kezer. 1958. Design of Model-Reference Adaptive Control Systems for

Aircraft. MIT Instrumentation Laboratory, Cambridge, MA.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
https://github.com/wil3/gymfc

Reinforcement Learning for UAV Attitude Control 22:21

[40] Peggy S. Williams-Hayes. 2005. Flight test implementation of a second generation intelligent flight control system.

In Proceedings of the Infotech@Aerospace Conference.

[41] John G. Ziegler and Nathaniel B. Nichols. 1942. Optimum settings for automatic controllers. Transactions of the ASME

64, 11 (Nov. 1942), 759–768.

Received May 2018; revised September 2018; accepted December 2018

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 22. Publication date: February 2019.

