
Comments on Window-Constrained Scheduling

Richard West Member, IEEE and Yuting Zhang

Abstract

This short report clarifies the behavior of DWCS with respect to Theorem 3 in our previously published

paper [1], and describes an alternative approach to make guarantees for arbitrary window-constraints.

Index Terms – Real-time systems, multimedia, window-constraints, scheduling.

1 Introduction

In our previously published paper [1], Theorem 3 implies that the DWCS algorithm holds for all

possible window-constraints. DWCS can satisfy Theorem 3 under certain conditions and the proof

shows a particular case, when there are two classes of window-constraints xi/yi and xj/yj , such that

xi = yi −1, xj = yj −1, and xj/yj<xi/yi. While DWCS can be shown to satisfy Theorem 3 when each

stream (or, equivalently, job) Ji has a window-numerator xi = yi − 1, regardless of the value of yi, the

algorithm can fail to produce a feasible schedule for certain other window-constraints.

Without loss of generality we define a window-constraint on Ji as requiring “mi out of ki deadlines

to be met”, as opposed to allowing “xi out of yi deadlines to be missed” in non-overlapping windows

of ki deadlines (such that ki = yi and mi = yi − xi). Algorithms such as DWCS update the current

window-constraint m′
i/k

′
i of each job Ji by reducing m′

i by one each time a job is serviced in its current

period, Ti, and also by reducing k′
i by one each time a new period starts. Further details regarding

window-constraint adjustments can be found in our earlier work on DWCS [1]. We can now state the

following theorem to show how it affects feasibility of DWCS for general window-constraints.

Theorem 1. With respect to Theorem 3 in our original paper and given that we have arbitrary initial

window-constraints: In each non-overlapping window of size q in the hyper-period, H , there can be more

than q jobs out of n with current window-constraint m′
i/k

′
i = 1 at any time, when Umin =

∑n

i=1
miCi

kiTi
≤

1 (Ci = 1, Ti = q,∀i).

Proof. Suppose there are n jobs queued for service at time t = 0. Suppose also at time aq (a <

mini(ki), q < n), there are q + 1 jobs each with m′
i = k′

i 6= 0. Let Γj be the set of jobs that have

been serviced for j instances in period [0, aq), such that |Γj| = nj . Out of each set Γj let n̄j be the

number of jobs whose current window-constraints are m′
i = k′

i > 0. Finally, let mij/kij be the initial

window-constraint of each job Ji in Γj .

In the interval [0, aq), each of the nj jobs in Γj | 0≤j≤a changes its window-constraint as follows:

n0 : (mi0, ki0)
(0,aq)
−→ (mi0, ki0 − a) ` n̄0 : mi0 = ki0 − a > 0

n1 : (mi1, ki1)
(1,aq)
−→ (mi1 − 1, ki1 − a) ` n̄1 : mi1 − 1 = ki1 − a > 0

na : (mia, kia)
(a,aq)
−→ (mia − a, kia − a) ` n̄a : mia − a = kia − a > 0

where,
∑a

j=0 nj = n;
∑a

j=0 n̄j = q + 1,
∑a

j=0 jnj ≤ aq.

Now, consider the following case: n0 = n̄0 = q + 1, n̄1 = n̄2 = · · · = n̄a = 0. Then, for any

job Ji, there must exist a value bj | bj < a, such that the jth instance of Ji is serviced in the interval

[bjq, (bj + 1)q). Therefore, we have

mij − (j − 1)

kij − bj

≥
mi0

ki0 − bj

=
ki0 − a

ki0 − bj

⇒
mij

kij

≥
(ki0 − a)(kij − b) + (ki0 − bj)(j − 1)

(ki0 − bj)kij

Umin =
ki0 − a

ki0q
(q + 1) +

a∑

j=1

nj∑

i=0

mij

kijq
≤ 1,

a∑

j=0

jnj ≤ aq

Given that a solution to the above inequalities exists (e.g., a = 2, n1 = 0, b2 = 1, q = 4, ki0 =

3,mi0 = 1, n0 = 5, n2 = 4,mi2 = 35, ki2 = 64), it must be that the theorem holds.

2 Pfair-based Virtual Deadline Scheduling (PVDS)

To satisfy Theorem 3 in our original paper [1] for arbitrary window-constraints, and hence show a

feasible schedule is possible for 100% resource utilization (when Ci = 1, Ti = q,∀i), we propose an

approach called PVDS. First, we define the virtual deadline, V di(t), of a job Ji at any time t such that:

V di(t) = tsi
+ (li + 1)

kiTi

mi

(li = 0, 1, ...,mi − 1)

where tsi
is the start time of the current window of size kiTi, which is b t

kiTi
ckiTi. li is the number of

job instances that have already met their deadlines in the current window before t. In ordering jobs for

service, the one with the earliest virtual deadline at time t has highest priority. If an instance of Ji is

not serviced in its request period, Ti, its virtual deadline stays the same, whereas if a job instance is

serviced, its virtual deadline increases by kiTi

mi
. If mi instances of Ji are serviced in the current window,

Ji is ineligible for service until the start of its next window, unless all other jobs have received their

minimum service requirements.

Lemma 1. There is no idle time before the failure of a synchronized job set where Umin =
∑n

i=1
miCi

kiTi
=

1 (Ci = 1, Ti = q,∀i), under pfair-based virtual deadline scheduling.

Proof. Observe that a synchronized job set is one in which all the jobs in the set are queued for service

at the same time. For simplicity, we can assume these jobs are all ready for service at time t = 0. Now,

suppose [t, t + a) is the first idle period before at least one of the jobs in the set fails to meet its service

constraints. According to the algorithm, if there is idle time, each job Ji has either satisfied its window-

constraint in the current window, or has finished service in the current period, Ti = q. Henceforth, let us

define two sets of jobs: (1) Γ0 is the set of jobs that have satisfied their window-constraints in the current

window, by the start of the current period, and, (2) Γ1 is the set of jobs that each have been serviced

li | (li≤mi) times in the current window, with the lith instance of Ji serviced in the current period.

Let Jik be the job Ji in the set Γk. For each and every job Ji0 in Γ0, its virtual deadline (or start time

of its next non-overlapping window) at time, t, satisfies the constraint d t
ki0

Ti0

eki0Ti0≥t + a. Similarly,

since each and every job in Γ0 has been serviced by the start of the current period, the previous virtual

deadline of each job Ji0 must be less than the previous virtual deadline of each and every job, Ji1 , in

Γ1. In what follows, let |Γ0| = n0, |Γ1| = n1, and li1 be the number of instances of each job Ji1 in Γ1.

Therefore,
∀ i0, i1 b

t

ki1Ti1

cki1Ti1 +
ki1Ti1

mi1

li1 ≥ d
t

ki0Ti0

eki0Ti0

Let d
t

kpTp

ekpTp = maxi0(d
t

ki0Ti0

eki0Ti0)

⇒ ∀i1, b
t

ki1Ti1

cki1Ti1 +
ki1Ti1

mi1

li1 ≥ d
t

kpTp

ekpTp

⇒ b
t

ki1Ti1

cmi1 + li1 ≥ d
t

kpTp

ekpTp

mi1

ki1Ti1

(1)

∀i0, d
t

ki0Ti0

eki0Ti0 ≥ t + a > t

t =

n0∑

i=1

(d
t

ki0Ti0

emi0) +
n∑

j=n0+1

(b
t

ki1Ti1

cmi1 + li1) (2)

From (1), (2) ⇒ t >

n0∑

i=1

(
t

ki0Ti0

mi0) +
n∑

j=n0+1

(d
t

kpTp

ekpTp

mi1

ki1Ti1

)

>

n0∑

i=1

(
t

ki0Ti0

mi0) +
n∑

j=n0+1

t
mi1

ki1Ti1

= t(
n∑

i=1

mi

kiTi

) = t

This implies t > t which is impossible, thereby yielding a contradiction to the supposition there is idle

time before a failure.

Lemma 2. A job set is schedulable by pfair-based virtual deadline scheduling when Umin =
∑n

i=1
miCi

kiTi
=

1 (Ci = 1, Ti = q,∀i).

Proof. Assume a schedule fails at time t for job Ji, where t = akiTi + bTi (0 ≤ b < ki, a≥0). Let li be

the number of instances of job Ji serviced in the current window before t, so that mi − li − 1 = ki − b.

Therefore,

b
t

kiTi

ckiTi +
kiTi

mi

(li + 1) − t = akiTi +
kiTi

mi

(m − ki + b) − akiTi − bTi

=
kiTi

mi

(mi − ki + b −
mi

ki

b) =
kiTi

mi

(ki(
mi

ki

− 1) + b(1 −
mi

ki

))

=
kiTi

mi

(1 −
mi

ki

)(b − ki) ≤ 0 ⇒ b
t

kiTi

ckiTi +
kiTi

mi

(li + 1) ≤ t (3)

Since job Ji fails at time t, and its virtual deadline is less than t, Ji is not serviced in the interval

[t − Ti, t). Now, let lj be the number of instances of job Jj serviced in the current window before t.

It follows that Ti = q jobs other than Ji will be served in the interval [t − Ti, t). Each of these other

jobs, Jj , has its most recent virtual deadline at b t
kjTj

ckjTj + lj
kjTj

mj
, which is less than or equal to job

Ji’s current virtual deadline at b t
kiTi

ckiTi +(li + 1)kiTi

mi
. Moreover, all jobs other than Ji must have most

recent virtual deadlines that are less than or equal to Ji’s current virtual deadline. If this were not the

case, Ji would be able to service li + 1 instances before t. Therefore,

∀j 6= i, b
t

kjTj

ckjTj + lj
kjTj

mj

≤ b
t

kiTi

ckiTi + (li + 1)
kiTi

mi

⇒ b
t

kjTj

cmj + lj ≤ (b
t

kiTi

ckiTi + (li + 1)
kiTi

mi

)
mj

kjTj

(4)

From Lemma1, we know there is no idle before the first failure at time t. Therefore,

t = b
t

kiTi

cmi + li +
∑

j 6=i

(b
t

kjTj

cmj + lj) (5)

From (4), (5) ⇒ t ≤ b
t

kiTi

cmi + li +
∑

j 6=i

((b
t

kiTi

ckiTi + (li + 1)
kiTi

mi

)
mj

kjTj

)

⇒ t ≤ b
t

kiTi

cmi + li + (b
t

kiTi

ckiTi + (li + 1)
kiTi

mi

)
∑

j 6=i

mj

kjTj

⇒ t ≤ b
t

kiTi

cmi + li + (b
t

kiTi

ckiTi + (li + 1)
kiTi

mi

)(1 −
mi

kiTi

)

⇒ t ≤ b
t

kiTi

ckiTi +
kiTi

mi

(li + 1) − 1 (6)

Equations (3) and (6) imply that t + 1 ≤ t, which is impossible, so the assumption that a schedule fails

at time t cannot hold.

Extending the previous lemma, the following Theorem can be shown to hold (although we omit the

proof for brevity):

Theorem 2. There exists a feasible pfair-based virtual deadline schedule for a synchronized job set Γ,

where Umin =
∑n

i=1
miCi

kiTi
≤ 1 (Ci = 1, Ti = q,∀i).

References

[1] R. West, Y. Zhang, K. Schwan, and C. Poellabauer. Dynamic window-constrained scheduling of real-time
streams in media servers. IEEE Transactions on Computers, 53(6):744–759, June 2004.

