
Mutable Protection Domains:
Adapting System Fault Isolation

for Reliability and Efficiency
Gabriel Parmer, Member, IEEE, and Richard West, Member, IEEE

Abstract—As software systems are becoming increasingly complex, the likelihood of faults and unexpected behaviors will naturally

increase. Today, mobile devices to large-scale servers feature many millions of lines of code. Compile-time checks and offline

verification methods are unlikely to capture all system states and control flow interactions of a running system. For this reason, many

researchers have developed methods to contain faults at runtime by using software and hardware-based techniques to define

protection domains. However, these approaches tend to impose isolation boundaries on software components that are static, and thus

remain intact while the system is running. An unfortunate consequence of statically structured protection domains is that they may

impose undue overhead on the communication between separate components. This paper proposes a new runtime technique that

trades communication cost for fault isolation. We describe Mutable Protection Domains (MPDs) in the context of our COMPOSITE

operating system. MPD dynamically adapts hardware isolation between interacting software components, depending on observed

communication “hot-paths,” with the purpose of maximizing fault isolation where possible. In this sense, MPD naturally tends toward a

system of maximal component isolation, while collapsing protection domains where costs are prohibitive. By increasing isolation for

low-cost interacting components, MPD limits the scope of impact of future unexpected faults. We demonstrate the utility of MPD using

a webserver, and identify different hot-paths for different workloads that dictate adaptations to system structure. Experiments show up

to 40 percent improvement in throughput compared to a statically organized system, while maintaining high-fault isolation.

Index Terms—Component-based, operating systems, reliability, fault isolation, performance.

Ç

1 INTRODUCTION

COMPLEX systems software featuring millions of lines of
code is common on widespread platforms ranging

from those in mobile computing (e.g., the iPhone) to servers
for large-scale data centers. In many cases, the functionality
of such software is critical for maintaining high availability,
reducing costs [30] and even avoiding potential loss of life.
However, software faults are an inevitability of a complex
system in which it is impossible to statically verify all
possible control flow interactions and memory references.
While static analysis techniques have been shown to be
useful in helping to detect software bugs [5], [10], they
cannot be expected to guarantee reliability at all times.

Many fault-tolerant systems have been developed to
isolate and recover from errors at runtime. A fundamental
requirement of such systems is the ability to limit the
adverse side effects of faults. Many systems are constructed
from software components so that the errant behavior of
any one component does not adversely impact other parts
of the system [8], [28], [25], [38], [12]. Such software
composition can increase availability as the system need

only recover from the effects of those components that are
faulty [35], [11], [37], [23], [6].

Unfortunately, increased fault isolation typically comes
at some decrease in system performance. For example, in
UNIX systems, Interprocess Communication (IPS) increases
both reliability and communication costs compared to
function calls within the same address space. Significant
effort has gone into limiting the overhead from interprotec-
tion domain communication [4], [27], [28], [14], but the costs
of these operations on commodity hardware are still
relative expensive [31], [27]. In recognition of the tradeoff
between fault isolation and performance, some systems
[15], [24] support the manual placement of protection
boundaries between software components. In such systems,
the most expensive communication paths between compo-
nents can be configured to use fast communication
primitives (i.e., function calls) by sacrificing fault isolation.
Unfortunately, the system designer is not always able to
predict the communication paths that will carry the most
overhead due to a number of factors: 1) The applications to
be run on the system and, thus, the communication paths
that carry the highest cost are not always known a priori,
2) even if the target applications are known, different
workloads may result in different communication patterns,
and 3) different applications contending for resources may
lead to dynamically variable communication costs. System
designers are consequently forced to make the tradeoff
between performance and fault isolation with incomplete
information about the runtime behavior of the system. In
such cases, it is common to see designers focus on
performance at the expense of reliability [24], [22].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012 1

. G. Parmer is with the Department of Computer Science, The George
Washington University, 801 22nd Street NW, Suite 703, Washington,
DC 20052. E-mail: gparmer@gwu.edu.

. R. West is with the Department of Computer Science, Boston University,
111 Cummington Street, Boston, MA 02215. E-mail: richwest@cs.bu.edu.

Manuscript received 13 June 2010; revised 10 Jan. 2011; accepted 16 Apr.
2011; published online 16 June 2011.
Recommended for acceptance by H. Schmidt.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2010-06-0176.
Digital Object Identifier no. 10.1109/TSE.2011.61.

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

To address the tradeoff between system performance and
reliability, this paper proposes a novel mechanism called
Mutable Protection Domains (MPDs). MPD marks a concep-
tual shift from a system with fault-isolation boundaries that
are fixed at runtime to one that supports dynamically placed
isolation boundaries around software components. MPD
controls where protection domains are placed at runtime so
that fault isolation is maximized under the constraint that
system performance requirements are met. In this way, the
configuration of protection domains is tailored to applica-
tion execution characteristics, and the system controls the
tradeoff between reliability and performance.

In this paper, we focus on protection domains that provide
memory isolation: Execution cannot access the memory
outside of its protection domains, either intentionally or
accidentally. Protection domains provide memory isolation
by limiting access to the regions of memory. We focus on
protection domain support provided by hardware page-
tables. This has two motivations: 1) Modern architectures
providing hardware memory isolation typically include
support for page-tables and thus our techniques should be
general across processors, and 2) focusing on memory
isolation at the hardware level instead of relying on memory
access guarantees provided by a language runtime (e.g., as in
the Java Virtual Machine) enables us to provide memory
isolation independent of any language runtimes (or lack
thereof) executing on the system. Even low-level C or
assembly code benefits from this memory isolation.

A fundamental assumption of many systems [28], [25],
[19], [40] is that protection domains provided by hardware
mechanisms (e.g., page-tables) limit the scope of side effects
of errant behavior, and that finer grained fault isolation will
result in more dependable systems. This argument is
emphasized by significant motivation behind �-kernels: to
break monolithic bodies of software into smaller servers,
segregated via memory isolation, to increase the fault
isolation of the system. The intuition is that with finer
grained protection domains, the memory regions and data
structures that faulty code has access to are reduced; thus
less of the system can be corrupted when it is brought into
an inconsistent state—which we will refer to as a failure.

The failure model we assume is that all the memory in a
failed protection domain is assumed to be corrupted—we
assume a strong model of memory-based fault propagation.
This model reflects the worst-case software behavior and
prevents further corruption. An example of this is the
notion of undefined behavior in language implementations
such as C. Undefined behavior denotes semantic behavior
in a language that is compiler-specific and often arbitrary.
For example, writing past the end of an array in C is
undefined behavior that can overwrite contiguous allocated
memory, even if it is from a different and important data
structure. Upon such a detected failure, often the only
course of action is to restart code in the failed protection
domain to bring it back into a consistent state. Fine-grained
protection domains ensure that the scope of such failures is
small. We do not focus on the fault propagation effects due
to IPC from or to a failed component; instead we focus on
the prevention of direct propagation via memory accesses.
This has the effect of increasing the chances of detecting a
failure soon after it occurs.

Based on the argument that finer grained memory
isolation is beneficial to reliability, we focus on maximizing
the memory-based fault isolation of the system by
providing fine-grained protection domains. This causes
inherent performance overheads as any communication
between separate protection domains requires switching
CPU page-tables. Given that this type of protection domain
segregates memory regions, this paper focuses only on
increasing memory isolation. We will use isolation as
shorthand for memory isolation for brevity.

Detection of faults can be aided by hardware mechan-
isms (e.g., a page-fault hander or memory accesses outside
of the allowed ranges), or done by software that detects
when protocols are not adhered to (e.g., when code in a
protection domain causes a deadlock or double-frees a
memory allocation). Given memory isolation and the ability
to detect errors, much research has been done on recovery
models in the face of failures. Mechanisms for recovery from
a failure within a protection domain include fine-grained
transactions [35], recovering client data separately [11],
saving and replaying client requests [37], and microreboot-
ing individual components [6]. These techniques are
essential and can be used in COMPOSITE, but are orthogonal
to the fundamental goal of fine-grained fault isolation upon
which these recovery techniques often rely. These techni-
ques all require separate protection domains that enable
memory isolation and attempt recovery on the granularity
of a protection domain. Thus, we focus on minimizing the
scope of the effected state from errant behavior by targeting
fine-grained protection domains.

In this paper, we describe MPD in the context of our
COMPOSITE component-based operating system. We con-
sider a webserver application to demonstrate the extent to
which MPD is able to maintain high performance and
reliability. A server empowered by this mechanism ordi-
narily executes with the highest possible fault-isolation
properties (i.e., many protection domains containing small
pieces of functionality). However, under high-load condi-
tions (e.g., when the responsiveness to HTTP requests falls
below a certain threshold, or when availability is at risk), a
system with MPD strategically removes protection bound-
aries, effectively widening the possible scope of memory
accesses to maintain the highest fault isolation when
ensuring performance constraints are met. In this situation,
only those isolation boundaries with the most overhead and
limited impact on reliability are removed. When load again
decreases, MPD reconstructs protection boundaries and
constrains the scope of memory accesses. In recognition of
security constraints between specific components, certain
protection boundaries can be treated as immutable.

In summary, the arguments in this paper center around
the following concepts:

. Fine-grained fault isolation is beneficial to system
reliability as it limits memory-based fault propaga-
tion and increases the ability to detect faults.
Complementarity, recovery mechanisms that rely
on this memory isolation, reestablish a consistent
system state. However, finer grained fault isolation
often increases performance overhead. Given this
tradeoff, each system must determine how much

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

performance degradation is acceptable to achieve a
certain fault isolation.

. The communication cost between specific compo-
nents is often difficult to predict. However, this
information is essential for system designers to
determine where to place protection domains to
best make this tradeoff. We observe that the
communication patterns between components
change over time. The subsystems of an OS that is
heavily used are dependent on the currently execut-
ing application set, which is dynamic. Even within a
single application, different inputs (a webserver
handling normal or pipelined HTTP requests) cause
significant changes in the amount of communication
between certain components. Communication pat-
terns change with differing systems loads as well:
More frequent critical section access will cause more
synchronization, thus producing more communica-
tion between synchronization and scheduling por-
tions of the system. The inherently dynamic nature of
the communication patterns in the system makes the
design-time decisions about protection domain
placement difficult. We show in Section 5.2 that by
dynamically adapting protection domains, a perfor-
mance level can be maintained while at any point in
time providing more memory isolation barriers than
a static configuration.

MPD moves the decision about how protection domains
should be configured from design-time to runtime when the
dynamic behaviors of the system are evident. In doing so, it
aims to maximize the number of protection barriers in the
system, while still meeting the performance constraints of
the system. While dynamic reconfiguration is the focus of
this paper, MPDs could also be used 1) to allow system
designers to execute their system under expected work-
loads and have the system determine an appropriate
protection domain configuration to be used statically, or
to 2) aid in debugging via enhanced fault detection.

The rest of this paper is structured as follows: Section 2
describes the basis for MPD by discussing the design and
implementation of components and their invocations in
COMPOSITE. This is followed by a detailed description of
the mechanisms used to control MPD in Section 3. Section 4
describes a component-based webserver to investigate the
feasibility of MPD, and experiments are conducted on this
system in Section 5. Section 6 presents the related research
and Section 7 concludes.

2 COMPOSITE: COMPONENTS AND INVOCATIONS

To demonstrate MPD, we have developed a component-
based system called COMPOSITE. A component in this
context is a redeployable implementation of some function-
ality in accordance with an interface it exports to other
components, and a collection of dependencies on other
interfaces that are required for its execution [39]. Each
system resource management policy and abstraction is
defined as components, and a functional system is
composed from a collection of such components. By default
each component is isolated in its own protection domain.

We say that a protection boundary is collapsed or removed
between two components if they are placed into the
protection domain, thus removing memory isolation be-
tween them. We say that a protection boundary is raised
between components if they share a single protection
domain, then are moved to separate protection domains
and can no longer access each other’s memory.

Fine-grained component isolation can lead to high
communication costs. Motivated by this, �-kernel research-
ers have achieved significant advances in Inter-Process
Communication (IPC) efficiency [4], [28], [19]. Unfortu-
nately, the hardware costs of performing IPC between
protection domains on modern hardware can be significant,
placing a significant lower bound on IPC overhead.
COMPOSITE focuses not only on the traditional constraint
that invocations between components in separate protection
domains must incur little overhead, but also on efficient
intraprotection domain invocations and the ability to
dynamically switch between the two modes. We focus on
the capability to dynamically alter the protection domain
configuration of the system as different system inputs or
concurrently executing applications will result in different
communication overheads between specific components
which change over time. For example, as we will discuss
later, a webserver handling HTTP 1.0 or HTTP 1.1 pipelined
requests imposes different communication patterns between
components, as do requests for static content versus
dynamic (CGI-generated) content. An operating system that
supports many different applications will demonstrate
different “hot-paths” between components depending on
how different applications use the system, thus requiring the
dynamic adaptation of the protection domain configuration
to these specific overheads. The dynamic reconfiguration of
protection domains is transparent to components and does
not require their interaction. This section discusses the
mechanisms COMPOSITE employs to provide efficient
component invocations.

COMPOSITE employs a migrating thread model [17] in
which the same schedulable entity executes across compo-
nent boundaries. Invocation between components is de-
picted in Figs. 1a and 1b. In COMPOSITE, communication is
controlled and limited by capabilities [26]. The presence of
an unforgeable kernel-level capability structure signifies
authorization for a component, c0, to invoke a specific
function in c1. A corresponding “user-level capability”
structure shared between user- and kernel-level contains a
function pointer denoting the invocation method for the
function in c1. The kernel maintains strict access control as
protection-domain crossings must be carried out via a
capability in the kernel.

If intraprotection domain invocations are intended by the
MPD system, the function invoked is the actual function in
c1 which is passed arguments directly via pointers. If
instead an interprotection domain invocation is required, a
stub is invoked that marshals the invocation’s arguments.
The current COMPOSITE implementation supports passing
up to four words in registers, and the rest must be copied.
This stub then invokes the kernel, requesting an invocation
on the associated capability. The kernel identifies the
capability being invoked, the destination component (c1),

PARMER AND WEST: MUTABLE PROTECTION DOMAINS: ADAPTING SYSTEM FAULT ISOLATION FOR RELIABILITY AND EFFICIENCY 3

the entry address in c1 (typically a stub to demarshal
arguments), and c1’s page-tables, which it loads, and, finally,
the kernel upcalls into c1. A call stack is maintained for each
thread to keep track of invocations between components.
These invocation styles are depicted in Fig. 1. The essence of
dynamically switching between inter and intraprotection
domain invocations requires the kernel to 1) change the
function pointer in the user-level capability structure from
a direct pointer to c1’s function to the appropriate stub, and
2) appropriately manipulate the protection domains.

These mechanisms provide the foundation for trading off
fault isolation for performance by concurrently enabling
efficient invocations (both intra and interprotection do-
main), and the ability to quickly change between these two
invocation methods.

An implication of the COMPOSITE component invocation
design is that all components that can possibly be
dynamically collapsed into the same protection domain
must occupy nonoverlapping regions of virtual address
space, as in single address space OSes [9]. As we will see in
Section 3.3, the number of components that can share a
virtual address space is limited not only by the size of that
namespace, but also by architecture features (i.e., relating to
page-tables). In COMPOSITE, this is not prohibitive because:
1) Those components that will never be placed in the same
protection domain (e.g., for security reasons) need not share
the same virtual address space, 2) if components grow to
the extent that they exhaust the virtual address space or
otherwise cannot share the namespace, it is possible to
relocate them into separate address spaces under the
constraint that they cannot be collapsed into the same
protection domain in the future, and 3) where applicable,
64-bit architectures provide an address range that is large
enough that sharing it is not prohibitive.

Though placing components into separate virtual ad-
dress spaces, thus preventing protection boundaries from
being removed between them, does in some sense force a
static partitioning of the system, we believe that, practically,
many of the benefits of MPD can be retained even when
components must be spread across different virtual address
spaces. Specifically, if components must be placed in
different virtual address spaces due to (2), this can be done
with some knowledge about where communication over-
heads between components were least significant in the
past. Components at these communication boundaries are
placed into separate virtual address spaces, thus lessening
the likelihood of wanting to remove protection boundaries
between these components in the future. We believe that
separating components into different virtual address spaces

is a rare operation as virtual address spaces can practically
support many components. Thus, we leave these considera-
tions as future work.

An operational COMPOSITE system includes a component
that controls the mapping from components to protection
domains, given communication overheads and performance
targets. To aid in determining the overhead of communica-
tion between specific components, MPD uses counters to
track how many invocations have been made between
specific components. These counters avoid the overhead of
using mechanisms such as hardware performance counters
(e.g., rdtsc on x86) to measure communication costs.

3 MUTABLE PROTECTION DOMAINS

A primary goal of COMPOSITE is to provide efficient user-
level component-based definition of system policies. It is
essential, then, that the kernel provide a general, yet
efficient, interface to control the system’s protection domain
configuration that is used by an MPD policy component
that decides system structure.

Two main challenges in dynamically altering the map-
ping between components to protection domains are:

1. How does the dynamic nature of MPD interact
with component invocations? Specifically, given the
invocation mechanism described in Section 2, a
thread can be executing in component c1 on a stack
in component c0; this imposes a lifetime constraint
on the protection domain that both c0 and c1 are in.
Specifically, if a protection boundary is erected
between c0 and c1, the thread would fault upon
execution as it attempts to access the stack in a
separate protection domain (in c0). This situation
brings efficient component invocations at odds
with MPD.

2. Can portable hardware mechanisms such as page-
tables be efficiently made dynamic? Page-tables
consume a significant amount of memory, and
creating and modifying them frequently could prove
quite expensive. One contribution of COMPOSITE is a
design and implementation of MPD using portable
hierarchical page-tables that is

a. transparent to components executing in the
system, and

b. efficient in both space and time.

Section 3 discusses the primitive abstractions exposed to an
MPD policy component used to control the protection
domain configuration, and in doing so, reconcile MPD with
component invocations and architectural constraints.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

Fig. 1. (a) and (b) Invocation methods between components (solid boxes). (a) Invocations between protection domains (shaded, dashed boxes).
(b) Intraprotection domain invocations. (c) MPD primitive operations.

3.1 Semantics and Implementation of MPD
Primitives

Two system-calls separately handle the ability to remove
and raise protection domain boundaries. mergeðc0; c1Þ takes
two components in separate protection domains and
merges them such that all the components in each coexist
in the new protection domain. This allows the MPD policy
component to remove protection domain boundaries, and
thus communication overheads, between components. A
straightforward implementation of these semantics would
include the allocation of a new page-table to represent the
merged domain containing a copy of both the previous
page-tables. All user and kernel capability data structures
referencing components in the separate protection domains
are updated to enable direct invocations. This operation is
depicted in Fig. 1c.

To increase the fault-isolation properties of the system,
the COMPOSITE kernel provides the splitðc0Þ system-call.
split removes the specified component from its protection
domain and creates a new protection domain containing
only c0. This ability allows the MPD policy component to
improve component fault isolation while also increasing
communication overheads. This requires allocating two
page-tables, one to contain c0 and the other to contain all
other components in the original protection domain. The
appropriate sections of the original page-table must be
copied into the new page-tables. All capabilities for
invocations between c0 and the rest of the components in
the original protection domain must be updated to reflect
that invocations must now be carried out via the kernel (as
in Fig. 1a). This operation is depicted in Fig. 1c.

Though semantically simple, merge and split are
primitives that are combined to perform more advanced
operations. For example, to move a component from one
protection domain to another, it is split from its first
protection domain and merged into the other. To separate
a protection domain containing multiple components into
separate protection domains, each with more than one
component, one component is split off, thus creating a new
protection domain, and then the rest of the components are
successively moved to that protection domain. Though these
more complex patterns are achieved through the proposed
primitives, there are reasonable concerns involving compu-
tational efficiency and memory usage. Allocating and copy-
ing page-tables can be expensive, both computationally and
spatially. We investigate optimizations in Section 3.3.

3.2 Interaction between Component Invocations
and MPD Primitives

Thread invocations between components imply lifetime
constraints on protection domains. During an invocation to
c1, the memory of the invoking component (c0) will be
accessed (i.e., function arguments or the stack) if the
components share the same protection domain while execut-
ing in c1. Thus, if a protection barrier were erected while still
executing in c1 and accessing memory in c0, the memory
access to c0 would cause faults. Unfortunately, these faults
would be indistinguishable from erroneous behavior. We
have a challenge in that raising protection boundaries and
making intraprotection domain component invocations
must in some way coexist, but the solution is not obvious.

We consider two main options to enable the coexistence of
intraprotection domain invocations and MPD.

1. For all invocations (even those between components
in the same protection domain), arguments are
marshalled and passed via message-passing instead
of directly via function pointers, and stacks are
switched. This removes the need for memory
accesses in c0 while executing in c1, thus removing
the conflict with MPD. This has the benefit of
requiring no additional kernel support as the above
problem is avoided, but significantly degrades
invocation performance (relative to a direct function
call with arguments passed as pointers).

2. The MPD primitives are implemented in a manner
that tracks not only the current configuration of
protection domains, but also maintains stale protec-
tion domains that correspond to the lifetime
requirements of thread invocations. In this scheme,
a protection domain configuration is maintained
until threads making intraprotection domain invo-
cations that would be effected by the MPD change
return to c0. This approach adds no overhead to
component invocation, but requires more intelligent
kernel primitives.

A fundamental design goal of COMPOSITE is to
encourage the decomposition of the system into fine-
grained components on the scale of individual system
abstractions and policies. As OS architects are justifiably
concerned with efficiency, it is important that component
invocation overheads are removed by the system when
necessary. If communication overheads cannot be com-
pletely removed, designers will be compelled to imple-
ment multiple abstractions or policies in the same
component, thus weakening both system extensibility
and reliability. Thus, the overhead of intraprotection
domain component invocations should be on the order
of a C function call. Appropriately, then, COMPOSITE uses
the second approach to maintain efficient intraprotection
domain invocations, and investigates if an implementation
of intelligent MPD primitives is possible and efficient on
commodity hardware using page-tables.

Toward this, the semantics of the MPD primitives satisfy
the following constraint: All components accessible at the
beginning of a thread’s invocation to a protection domain must
remain accessible to that thread until the invocation returns. The
problem arises when a thread � enters a protection domainA
containing two components c0 and c1. If c0 and c1 were
split into separate protection domains, B and C, � ’s
invocation from c0 to c1 could cause memory faults while
accessing c0 as discussed above. Taking this into account,
COMPOSITE explicitly tracks the lifetime of thread’s access
to protection domains using reference counting. When a
thread � enters a protection domain A, a reference to A is
taken, and when � returns, the reference is released. Only if
there are no other references to A is it freed. Thus, even
though B and C are created, because � maintains a
reference to A it will continue to execute in A until it
returns. The current configuration of protection domains all
maintain a reference to prevent deallocation. In this way,
the lifetime of protection domains accommodate thread

PARMER AND WEST: MUTABLE PROTECTION DOMAINS: ADAPTING SYSTEM FAULT ISOLATION FOR RELIABILITY AND EFFICIENCY 5

invocations. The above constraint is satisfied because, even
after dynamic changes to the protection domain configura-
tion, stale protection domains—those corresponding to the
protection domain configuration before a merge or split
(A in this example)—remain active for � .

Discussion. Efficient intraprotection domain invoca-
tions place lifetime constraints on protection domains. In
COMPOSITE, we implement MPD primitive operations in a
manner that differentiates between the current protection
domain configuration and stale domains that satisfy these
lifetime constraints. Protection domain changes take place
transparently to components and intraprotection domain
invocations maintain high performance: Section 5.1 reveals
their overhead to be on the order of a C++ virtual
function call.

3.3 MPD Optimizations

The MPD primitives are used to remove performance hot-
paths in the system. If this action is required to meet critical
task deadlines in an embedded system or to increase
performance before a server goes into overload, it must be
performed in a bounded and short amount of time.
Additionally, in systems that switch workloads and com-
munication hot-paths often, the MPD primitives might be
invoked frequently. Though intended to trade off perfor-
mance and fault isolation, if these primitives are not
efficient they could adversely effect system throughput.

As formulated in Section 3.1, the implementation of
merge and split are not practical. Each operation
allocates new page-tables and copies sections of them.
Fortunately, only the page-tables (not the data) are copied,
but this can still result in the allocation and copying of large
amounts of memory. Specifically, page-tables on ia32
consist of up to 4 MB of memory. In a normal kernel, the
resource management and performance implications of this
allocation and copying are detrimental. For simplicity and
efficiency reasons, the COMPOSITE kernel is nonpreemp-
tible. Allocating and copying complete page-tables in
COMPOSITE, then, is not practical. This problem is
exacerbated by 64-bit architectures with deeper page-table
hierarchies. Clearly, there is motivation for the OS to
consider a more careful interaction between MPD and
hardware page-table representations. During the initial
development of MPD, we considered using a static scheme
that cached protection domain configurations and allowed
the system to switch between them. However, the current
implementation provides generality, freedom over the
placement of protection domains (instead of being con-
strained to a predefined set of structures), and performance.
Thus, we found that there was no need to resort to more
restrictive mechanisms.

Sharing page-table structures. An important optimiza-
tion in COMPOSITE is that different protection domain
configurations do not have completely separate page-tables.
Different protection domain configurations differ only in
the page-table’s top level, and the rest of the structure is
shared. Fig. 2 shows three protection domain configura-
tions: an initial configuration containing both c0 and c1, A,
and the two resulting from a split, B and C. The top two
levels correspond to the page-table structure, and the
bottom to the component data pages. Each different
protection domain configuration requires a page of memory

for the top level of the page-tables, and a 32 byte kernel
structure describing the protection domain that contains a
pointer to its page-table. Therefore, to construct a new
protection domain configuration (via merge or split)
requires allocating and copying only a page.

Optimizing merge. In addition to sharing second level
page-tables, COMPOSITE further optimizes each primitive.
We design merge to require no memory allocation (the “out-
of-memory” case is not predictable in general, and memory
allocation can be expensive). To optimize merge, when
merging protection domains A and B to create C, instead of
allocating new page-tables for C, A is simply extended to
include B’s mappings. B’s protection domain kernel
structure is updated so that its pointer to its page-table
points toA’s page-table.B’s page-table is immediately freed.
With this optimization, merge requires no memory alloca-
tion (indeed, it frees a page), and requires copying only B’s
component’s entries to the top level of A’s page-table.

Optimizing split. COMPOSITE optimizes a common
case for split. A component c0 is split out of protection
domain A to produce B containing c0 and C containing all
other components. In the case where A is not referenced by
any threads, protection domain A is reused by simply
removing c0 from its page-table’s top-level. Only B need be
allocated and populated with c0. This is a relatively
common case because, when a protection domain contain-
ing many components is split into two protection domains,
each containing multiple components, successive splits
and merges are performed. As these repeated operations
produce new protection domains (i.e., without threads
active in them), the optimization is used. In these cases,
split requires the allocation of only a single protection
domain and copying only a single component. The effect of
these optimizations is significant, and their result can be
seen in Section 5.1.

3.4 Mutable Protection Domain Policy

The focus of this paper is on the design and implementation
of MPD in the COMPOSITE component-based system.
However, for completeness, in this section we describe a
policy that decides where protection domain boundaries
should exist given communication patterns in the system.
Our policy focuses on maximizing the number of protection
domains in the system while meeting some performance
goal. This policy attempts to minimize the fault propagation
due to stray memory writes between components.

Though we focus on minimizing the number of compo-
nents in shared protection domains, other policies might be of
interest. These include minimizing the number of source lines
of code in each protection domain, or minimizing the number
of “risky” components—ones that have failed in the past, or
have not been rigorously tested—that share protection

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

Fig. 2. COMPOSITE page-table optimization.

domains with other components. These would require
appropriate changes to the policy of this section. Whichever
policy is chosen, the overall goal is to adapt the protection
domain configuration of the system to maximize some target
for reliability, while achieving acceptable performance (e.g.,
to ensure availability). We leave a more thorough investiga-
tion of different policies for trading fault isolation for
performance to future work.

In [33], a policy is introduced for finding a protection
domain configuration given invocations between compo-
nents and its effects are simulated on the system. We adapt
that policy to use the proposed primitives. A main
conclusion of [33] is that adapting the current configuration
to compensate for changes in invocation patterns is more
effective than constructing a new configuration from scratch
each time the policy is executed. The policy used in
COMPOSITE targets a threshold for the maximum number
of interprotection domain invocations over a window of
time. Thus, the policy takes the following steps: 1) Remove
protection domain barriers with the highest overhead until
the target threshold for invocations is met, 2) increase
isolation between sets of components with the lowest
overhead while remaining under the threshold, and 3) refine
the solution by removing the most expensive isolation
boundaries while simultaneously erecting the boundaries
with the least overhead.

It is necessary to understand how the protection bound-
aries with the most overhead and with the least overhead are
found. The policy uses a min-cut algorithm [36] to find the
separation between components in the same protection
domain with the least overhead. An overlay graph on the
component graph tracks edges between protection domains
and aggregates component-to-component invocations to
track the overhead of communication between protection
domains. These two groups of boundaries between compo-
nents are tracked in separate priority queues. When the
policy wishes to remove invocation overheads, the most
expensive interprotection domain edge is chosen, and when
the policy wishes to construct isolation boundaries, the min-
cut at the head of the queue is chosen.

4 APPLICATION STUDY: WEBsERVER

To investigate the behavior and performance of MPD in a
realistic setting, we present a component-based implementa-
tion of a webserver that serves both static and dynamic
content (i.e., using CGI programs) and supports normal
HTTP 1.0 connections in which one content request is sent per
TCP connection, and HTTP 1.1 persistent connections where
multiple requests are pipelined through one connection. The
components that functionally compose to provide these
services are represented in Fig. 3. Each node is a component,
and edges between nodes represent communication capabil-
ities. Each name has a corresponding numerical id that is
used to abbreviate that component in some of the results.
Rectangular nodes are implemented in the kernel and are not
treated as components by COMPOSITE. Nodes that are
octogons are relied on for their functionality by all other
components; thus we omit the edges in the diagram for the
sake of simplicity. Indeed, all components must request
memory from the Memory Mapper component, and, for

debugging and reporting purposes, all components output

strings to the terminal by invoking the Terminal Printer.

Nodes with dashed lines represent a component that in a real

system would be a significantly larger collection of compo-

nents, but are simplified into one for the purposes of this

paper. For example, the Static Content component provides

the content for any non-CGI requests and would normally

include at least a buffer cache, a file system, and interaction

with a disk device. Additionally, CGI programs are arbi-
trarily complicated, perhaps communicating via the network

with another tier of application servers, or accessing a

database. We implement only those components that

demonstrate the behavior of a webserver. Components

related to CGI processing have two numerical ids in Fig. 3.

The system includes two separate CGI programs represented

as a shared set of components here. One of the CGI programs

include components with ids 18, 20, and 21, and the other has

22, 23, and 25. We refer to the different CGI programs asCGIA

and CGI B. Here too, the component graph could be much

more complex as there could be an arbitrarily large number of

different CGI programs.

4.1 Webserver Components

We describe how the server is decomposed into components.

4.1.1 Thread Management

Scheduler: COMPOSITE has no in-kernel scheduler, instead

relying on scheduling policy being defined in a component

PARMER AND WEST: MUTABLE PROTECTION DOMAINS: ADAPTING SYSTEM FAULT ISOLATION FOR RELIABILITY AND EFFICIENCY 7

Fig. 3. COMPOSITE component-based webserver.

at user level [34]. This specific component implements a
fixed priority round-robin scheduling policy.

Timed Block: Provide the ability for a thread to block for a
variable amount of time. Used to provide timeouts and
periodic thread wakeups (e.g., TCP timers).

Lock: Provide a mutex abstraction for mutual exclusion.
A library loaded into client components implements the
fast-path of no contention in a manner similar to futexes
[18]. Only upon contention is the lock component invoked.

Event Manager: Provide edge-triggered notification of
system events in a manner similar to [3]. Threads are
blocked to wait on inactive events. Producer components
trigger events.

4.1.2 Networking Support

vNIC: COMPOSITE provides a virtual NIC abstraction which
is used to transmit and receive packets from the networking
driver. The vNIC component interfaces with this abstraction
and provides simple functions to send packets and receive
them into a ring buffer.

TCP: A lwIP [29] port that provides TCP and IP.
IP: The TCP component already provides IP function-

ality via lwIP. To simulate the component overheads of a
system in which TCP and IP were separated, this
component simply passes through packet transmissions
and receptions.

Port Manager: Maintain the port namespace for the
transport layer. TCP requests an unused port for new
connections, and releases them on connection termination.

4.1.3 Webserver Application

HTTP Parser: Receive a data stream and parse it into
separate HTTP requests. Invoke the Content Manager with
the requests and, when a reply is available, add the
necessary headers and return the message.

Content Manager: Receive content requests and demulti-
plex them to the appropriate content generator (i.e., static
content, or the appropriate CGI script).

Static Content: Return content associated with a path-
name (e.g., in a filesystem). As noted earlier, this compo-
nent could represent a much larger component graph.

Async. Invocation: Provide a facility for making asyn-
chronous invocations between separate threads in different
components. Similar to a UNIX pipe, but bidirectional and
request/response based. This allows CGI components to be
scheduled separately from the main application thread.

File Descriptor API: Provide a translation layer between a
single file descriptor namespace to specific resources such
as TCP connections or HTTP streams.

Connection Manager: Ensure that there is a one-to-one
correspondence between network file descriptors and
application descriptors (e.g., streams of HTTP data).

4.1.4 CGI Program

CGI Service: As mentioned before, this component repre-
sents a graph of components specific to the functionality of
a dynamic content request. It communicates via the File
Descriptor API and Async.Invocations component to receive
content requests, and replies along the same channel. These
CGI services are persistent between requests and are thus
comparable to standard FastCGI [16] webserver extensions.

4.1.5 Other Components

The Memory Mapper has the capability to map physical
pages into other component’s protection domains, thus
controlling memory allocation. The Terminal Printer prints
strings to the terminal. The debugging components are not
shown: Stack Trace and Statistics Gatherer.

4.2 Webserver Data-Flow and Threads

As it is important to understand not only each component’s
functions, but also how they interact, here we discuss the
flow of data through components, and then how different
threads interact. Content requests arrive from the NIC in
the vNIC component. They are passed up through the IP,
TCP, File Descriptor API components to the Connection
Manager. The request is written to a corresponding file
descriptor associated with an HTTP session through the
HTTP Parser, Content Manager, and (assuming the request is
for dynamic content) Async.Invocation components. The
request is read through another file descriptor layer by the
CGI Service. This flow of data is reversed to send the reply
from the CGI Service onto the wire.

A combination of three threads orchestrate this data
movement. A network thread traverses the TCP, IP, and
vNIC components and is responsible for receiving packets,
and conducting TCP processing on them. The data is
buffered in accordance with TCP policies in TCP. This
networking thread coordinates with the main application
thread via the Event Manager component. The networking
thread triggers events when data is received, while the
application thread waits for events and is woken when one
is triggered. Each CGI service has its own thread so as to
decouple the scheduling of the application and CGI threads.
The application and CGI threads coordinate through the
Async.Invocation component, which buffers requests and
responses. This component again uses the Event Manager to
trigger and wait for the appropriate events.

5 EXPERIMENTAL RESULTS

All experiments are performed on IBM xSeries 305 e-server
machines with Pentium IV, 2.4 GHz processors and 904 MB
of available RAM. Each computer has a tigon3 gigabit
Ethernet card, connected by a switched gigabit network. We
use Linux version 2.6.22 as the host operating system.

COMPOSITE is loaded using the techniques from Hijack
[32]. The COMPOSITE kernel is loaded as a module in Linux,
and at the hardware interrupt/exception level, it takes over
the system. Specifically, it overrides in the hardware tables
and registers—the entry points for system-calls and faults.
Thus, the COMPOSITE kernel essentially executes directly
on the hardware by completely redefining system-call and
interrupt handlers. However, we allow Linux to maintain
interrupt handlers for device drivers (e.g., for the network-
ing device). When packets arrive, they are processed by the
device drivers in Linux, and then handed off to the
COMPOSITE kernel to be processed by components.

5.1 Microbenchmarks

Merge and split overheads. First, we measure the
overheads of the merge and split operations. To obtain
these measurements, we execute the merge operation on

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

10 components, first c0 with c1, then the resulting protection
domain with c2, and so on. We measure the execution time
of this. Then, we split the components one at a time (first
c9 from the rest, then c8, and so on), again measuring
execution time. This is repeated 100 times, and the average
execution time for each operation is reported. In one case,
the kernel is configured to allow the split optimization
allowing the reuse of a protection domain, and in the other
this optimization is disabled.

As a point of reference, we also include the cost of
cloning an address space in Linux. In Linux, this operation
is mature and efficient and is optimized by copying only the
page-table, and not data pages. Instead data pages are
mapped in copy-on-write. We include in the table the cost
of replicating a protection domain in Linux measured by
executing the sys_clone system-call with the CLONE_VM

flag and subtracting the cost of the same operation without
CLONE_VM. sys_clone copies or creates new structures for
different process resources. As CLONE_VM controls if the
address space (inc. page-tables) are copied or not, it allows
us to focus on the cost of protection domain cloning. The
process that is cloned in the experiments contains 198 pages
of memory, with most attributed to libraries such as glibc.
This measurement is included not as a competitor to MPD,
as cloning an address-space is not semantically similar to
MPD operations, but as a frame of reference for the
performance of virtual address-space manipulations are in
an optimized general-purpose system.

Table 1 presents the overheads of the primitive opera-
tions for controlling MPD in COMPOSITE. The efficiency of
COMPOSITE MPD primitives is mainly due to the design
decision to share all but top-level page-table directories
across different MPD configurations. Whereas Linux must
copy the entire page-table, COMPOSITE must only manu-
facture a single page. This optimization has proven useful
in making MPD manipulation costs negligible.

Invocation performance. The efficiency of communica-
tion and coordination between components becomes in-
creasingly important as the granularity of components
shrinks. In COMPOSITE, the processing cost of invocations
between components in separate protection domains must
be optimized to avoid judicious removal of protection
domain boundaries via MPD. Additionally, the cost of
invocations between components in the same protection
domain must be as close to that of a functional call as
possible. This is essential so that there is no incentive for a
developer to produce otherwise coarser components, effec-
tively decreasing the flexibility and reliability of the system.

Table 2 includes microbenchmarks of invocation costs
between components. Each measurement is the result of the
average of 100,000 invocations of a null function on a

quiescent system, and thus represent warm-cache and
optimistic numbers. An invocation between two compo-
nents in separate protection domains including two transi-
tions from user to kernel-level, two from kernel to user, and
two page-table switches consumes 0.7 �-seconds. A sig-
nificant faction of this cost is due to hardware overheads.
We constructed a software harness enabling switching back
and forth between two protection domains (to emulate an
invocation or RPC) with inlined user-level code addresses,
and the addresses of the page-tables clustered on one cache-
line to minimize software overheads and observed a
processing cost of 0.5 �-seconds. This is as close as we can
get to removing all software overheads for an invocation
and represents a lower bound on this processor. With
31 percent software overhead in our implementation, there
is some room for improvement. Others have had success
replacing the general c-based invocation path with a hand-
crafted assembly implementation [27], and we believe this
approach might have some success here. However, these
results show that little undue overhead is placed in the
invocation path; thus MPD coexists with a modern and
optimized IPC path.

Importantly, these uncontrollable hardware invocation
overheads are avoided by merging components into a single
protection domain with an overhead of 0.08 �-seconds, or
20 cycles. This overhead is on the order of a C++ virtual
function call which carries an overhead of 18 cycles (using
g++ version 4.1.2).

We include the costs of an RPC call between two threads
in separate address spaces over a Linux pipe. Linux is not a
system structured with a primary goal of supporting
efficient IPC, so this value should be used for reference
and perspective, rather than direct comparison.

5.2 Apache Webserver Comparison

In measuring webserver performance, we use two standard
tools: the Apache benchmark program (ab) [1] version 2.3,
and httperf [20] version 0.9.0. We compare against
Apache [1] version 2.2.11 with logging disabled and
FastCGI [16] provided by mod_fastcgi version 2.4.6.

Here, we study the throughput of the webserver in
COMPOSITE with an emphasis on the effect of protection
domains. We also test the throughput of Apache in three
different configurations that made different performance/
fault isolation tradeoffs. Though Apache and COMPOSITE

are of different levels of maturity, we provide both results
for perspective. Fig. 4 presents a comparison of sustained
connection throughput rates for COMPOSITE and different
configurations of Apache. Using ab, we found that
24 concurrent connections maximizes throughput for all

PARMER AND WEST: MUTABLE PROTECTION DOMAINS: ADAPTING SYSTEM FAULT ISOLATION FOR RELIABILITY AND EFFICIENCY 9

TABLE 1
MPD Primitive Operations

TABLE 2
Component Communication Operations

COMPOSITE configurations. Requests for static content yield
6,891.50 connections/second with each component in a
separate protection domain, and 10,402.72 connections/
second when every component shares the same protection
domain. Serving dynamic CGI content yields 6,170.74 and
10,194.28 connections/second for full and no isolation,
respectively. For Apache, we find that 20 concurrent
connections maximizes throughput for serving a (cached)
static file at 5,139.61 connections/seconds, 32 concurrent
connections maximizes throughput for module-generated
content at 6,121.27, and 16 concurrent connections max-
imizes throughput at 2,106.39 connections/second for
fastCGI dynamic content. All content sources simply return
an 11 character string.

The three Apache configurations demonstrate design
points in the tradeoff between dependability and perfor-
mance. Apache modules are compiled libraries loaded
directly into the server’s protection domain. This minimizes
communication overhead, but a fault in either effects both.
Serving a static file locates the source of the content in the
OS filesystem. Accessing this content from the server
requires a system-call, increasing overhead, but a failure
in the webserver does not disturb that content. Finally,
fastCGI is an interface allowing persistent CGI programs to
respond to a pipeline of content requests. Because of
program persistence, the large costs for normal CGI
programs of fork and exec are avoided. FastCGI, using
process protection domains, provides isolation between the
dynamic content generator and the server, but communica-
tion costs are high.

The comparison between COMPOSITE and Apache is not
straightforward. On the one hand, Apache is a much more
full-featured webserver than our COMPOSITE version (e.g.,
it supports more HTTP protocol options, security policies,
and supports multiple means of interacting with CGI
scripts), which could negatively effect Apache’s through-
put. On the other hand, Apache is a mature product that has
been highly optimized. COMPOSITE achieves higher
throughput, partially because it is less feature-rich. We
compare against Apache to investigate the potential of
practical COMPOSITE performance. Thus, we propose the
most interesting conclusion of these results is the validation
that a fine-grained component-based system can achieve
practical performance levels and has the ability to increase
performance by between 50 and 65 percent by removing
protection boundaries, thus sacrificing dependability.

5.3 The Tradeoff between Fault Isolation and
Performance

Next, we investigate the tradeoff between fault isolation
and performance, and specifically the extent to which
isolation must be compromised to achieve significant
performance gains. Fig. 5a presents two separate scenarios
in which the server handles 1) static content requests and
2) dynamic CGI requests, (generated with ab). The system
starts with full isolation, and every second the protection
domains with the most invocations between them are
merged. When serving static content, by the time six
protection domains have been merged, throughput exceeds
90 percent of its maximum. For dynamic content, when
eight protection domains are merged, throughput exceeds
90 percent. The critical path of components for handling
dynamic requests is longer than that for static content by at
least two, which explains why dynamic content throughput
lags behind static content processing.

To further understand why removing a minority of the
protection domains in the system has a large effect on
throughput, Figs. 5b and 5c plot the sorted invocations made
over an edge (the bars), and the Cumulative Distribution
Function (CDF) of those invocations over a second interval.
The majority of the 97 edges between components have zero
invocations. Fig. 5b represents the system while processing
static requests. Fig. 5c represents the system while proces-
sing dynamic requests using HTTP 1.1 persistent connec-
tions (generated with httperf). In this case, 2,000
connections/second each make 20 pipelined GET requests.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

Fig. 4. Webserver throughput comparison.

Fig. 5. (a) The effect on throughput of removing protection domains. (b) and (c) The number of invocations between components, and the CDF of the
invocations for (b) HTTP 1.0 static content requests, (c) persistent HTTP 1.1 CGI requests.

In both figures, the CDF implies that a small minority of
edges in the system account for the majority of the overhead.
In (b) and (c), the top six edges cumulatively account for 72
and 78 percent, respectively, of the component invocations.
These results show promise for MPD as they imply that a
small amount of protection boundaries need be removed to
achieve large performance gains.

Table 3 contains a sorted list of all edges between
components with greater than zero invocations. Interest-
ingly, the top six edges for the two workloads contain only a
single shared edge, which is the most expensive for static
HTTP 1.0 content and the least expensive of the six for
dynamic HTTP 1.1 content. It is evident from these results
that the hot-paths for the same system under different
workloads differ greatly. If the system wishes to maximize
throughput while merging the minimum number of
protection domains, different workloads require signifi-
cantly different protection domain configurations. This
confirms the essence of the argument for the dynamic
reconfiguration of protection domains to adapt to the
overheads of specific, and changing workloads.

5.4 Protection Domains and Performance across
Multiple Workloads

The advantage of MPD is that the fault isolation provided
by protection domains is tailored to specific workloads as
the performance hot-paths in the system change over time.
To investigate the effectiveness of MPD, Figs. 6 and 7
compare two MPD policies, both of which attempt to keep
the number of invocations between protection domains
(and thus the isolation overhead) below a threshold. One
policy only removes protection boundaries (i.e., merges
protection domains), and the other both merges and splits
(labeled in the figure as “Full MPD Policy”). The policy that

only merges protection domains represents an oracle of
sorts that we use as a proxy for an optimal system that uses
a static protection domain configuration. If the system
designer were to statically make the mapping of compo-
nents to protection domains such that target performance
constraints are always met, they would want to choose the
mapping at the end of the experiments. This is because
protection domain boundaries are only removed when
performance goals are not made; thus we can be sure that
the final configuration would meet all performance con-
straints, while having a maximal (according to the MPD
policy) number of protection domains. This merge-only
policy is an oracle as it uses runtime knowledge to produce
its final “static” configuration. We compare the final config-
uration of the merge-only policy with the full MPD policy that
both merges and splits to investigate how effective dynamic
reconfiguration of protection domains is.

We successively execute the system through five
different workloads.

1. Normal HTTP 1.0 requests for dynamic content from
CGI service A.

2. HTTP 1.1 persistent requests (20 per connection) for
CGI service B.

3. HTTP 1.0 requests for static content.
4. HTTP 1.1 persistent requests (20 per connection) for

CGI service A.
5. HTTP 1.0 requests for dynamic content from CGI

service B.

A reasonable static mapping of components to protection
domains that must address the possibility of all of the
workloads would be the protection domain configuration at
the conclusion of the experiment when only removing
protection domain boundaries. Here, we wish to compare
MPD with this static mapping.

Each graph includes a plot for two separate policies: one
where the threshold for allowed interprotection domain
invocations is set to a calculated 10 percent of processing
time, and the other with it set to 15 percent. These
percentages are calculated by, at system bootup, measuring
the cost of a single invocation, and using this to determine
how many of such invocations it would take to use the
given percent of processing time. Ten percent corresponds
to 142,857 invocations, and 15 percent corresponds to

PARMER AND WEST: MUTABLE PROTECTION DOMAINS: ADAPTING SYSTEM FAULT ISOLATION FOR RELIABILITY AND EFFICIENCY 11

TABLE 3
Hot-Path Edges from Figs. 5b and 5c

Fig. 6. The throughput improvement over full isolation.

Fig. 7. The number of active protection domains.

214,285 invocations. These invocation counts approximate
the allocated isolation overhead and do not capture cache
effects that might change the final overhead. This is a very
simple policy for managing the tradeoff between overhead
and fault isolation. Certainly, more interesting policies
taking into account task deadlines or other application
metrics could be devised. Additionally, policies that give
isolation between specific components different importance
values or weights could allow the protection domain
configuration to take into account isolation priorities
between well-tested (thus likely less faulty) or prototype
(thus more erroneous) components. However, in this paper,
we wish to focus on the utility of the MPD mechanisms for
reliable systems, and ensure that more complicated MPD
policies could be easily deployed as component services.

Fig. 6 plots the throughput relative to a full isolation
system configuration for different workloads. We do not plot
the results for the HTTP 1.1 workloads generated with
httperf as that tool only sends a steady rate of connec-
tions/second, instead of trying to saturate the server. All
approaches could achieve the sending rate of 2,000 connec-
tions/second with 20 requests per connection.

All approaches maintain significant increases in per-
formance. It is not surprising that the policies that only
remove isolation increase performance over time. The full
MPD policies improve performance, on average, by 35
and 28 percent for 10 and 15 percent fault-isolation
overhead, respectively.

Fig. 7 plots the number of protection domains (25 being the
maximum possible, 1 the minimum) in the system. Across all
workloads, the policies that both add and remove protection
boundaries have on average 18.2 and 19.4 protection
domains for isolation overheads of 10 and 15 percent,
respectively. This translates to between 68 (i.e., 17 out of 25)
and 84 percent (i.e., 21 out of 25) for isolation overheads of 10
and 15 percent, respectively. In contrast, the final number of
protection domains for the policy that only removes
protection domains is 11 and 12 for the two thresholds. This
indicates that the full MPD policies are able to adapt to the
changing hot-paths of differing workloads by maintain
higher levels of isolation. They do this while still achieving
significant performance gains that correspond to a system-
decided tradeoff between fault isolation and performance.

Qualitatively, Table 4 represents the protection domain
configuration for three of the workloads and different MPD
policies. Each group of comma-separated components
surrounded by parentheses is coresident in the same
protection domain. Components that are not listed (there
are 25 total components) do not share a protection domain.
This table demonstrates that it is not only important to
observe the number of protection domains in a system, but
also how large single protection domains become. By the
final workload, the policy that represents a possible static
system configuration (remove PD only in the table) with a
tolerance of 10 percent overhead has merged 14 of the most
active components into the same protection domain. An
error in one of these could trivially propagate to a significant
portion of the system.

Importantly, with MPD, the system returns to a protec-
tion domain configuration with full fault isolation when the

system load decreases, thus promoting reliability. Any
static configuration that compromises fault-isolation bound-
aries pessimistically in anticipation of future overhead,
cannot benefit system reliability when system load is low.

MPD policy overhead. In addition to the MPD primitive
operation’s microbenchmarks in Section 5.1, here we report
the processing costs of executing the MPD policy in the more
realistic multiworkload environment. The MPD policy is run
four times a second to manipulate the protection domain
configuration, and the total processing time for this is
recorded each second. Throughout the course of the experi-
ment, the per-second overhead never exceeds a quarter of a
single percent of the total processing time. We conclude that
both the primitive operations and the algorithm for comput-
ing the next protection domain configuration are sufficiently
efficient to promote frequent adaptation.

6 RELATED WORK

Many researchers have proposed numerous fault-isolation
approaches, in both software and hardware. Type-safe
languages [21] often use dynamic checks to avoid the
arbitrary corruption of memory. When a fault is detected, it
is often not straightforward to determine the full extent of
the possible corruption [2]. Some systems explicitly track the
modified state by a path of execution, thus allowing a
transaction-style roll-back in the case of error [35]. Such
techniques impose performance overheads that limit the
granularity of fault isolation. In other systems, software is
segregated into explicit servers [14] that share no memory.
Communication between these servers is conducted via IPC,
which still imposes a significant performance overhead (of
the same magnitude as invocations in COMPOSITE), which
motivates MPD. An implementation of MPD in such
systems might be possible and is an area of future
investigation. A benefit of using hardware techniques to
provide protection domains is the ability to execute machine
code components, thus supporting the widest breadth of
software including legacy code.

Hardware techniques have long been used to provide
fault isolation. Page-tables are a portable structure for

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

TABLE 4
Protection Domain Configurations Resulting from
Different Workloads and Different MPD Policies

defining protection domains, but systems have provided
extensions for more accurate [40] protection mechanisms.
As the granularity of the protection domains decreases, the
performance of interprotection domain communication
becomes increasingly important. Many systems have con-
tributed to increased IPC performance [13], [4], [27] by
focusing on a simplification of the system’s core abstrac-
tions. These approaches still incur a processing overhead
for high rates of communication that can adversely affect
the system’s ability to meet performance goals. Such
systems, then, still motivate the ability to dynamically
tradeoff fault isolation for performance.

Systems that increase the designer’s ability to find the
hot-paths in the system [7] help the designer to alleviate
system bottlenecks. Such mechanisms could potentially
be used to inform a designer where to remove isolation
boundaries to achieve performance goals. Unfortunately,
such tools are useful only for the profiled workload, and not
all possible workloads and applications that might execute
on a system. MPD provides detailed information to
identify system hot-paths to the MPD policy. The MPD
policy then uses the primitives for controlling MPDs to
automatically tradeoff fault isolation for performance
exactly where that sacrifice will most improve system
performance. Enabling system code to make this tradeoff
in accordance with its own policy allows it to adapt to
dynamic and unpredictable system execution.

7 CONCLUSION

This paper introduces Mutable Protection Domains that
enable the system to control the tradeoff between fault
isolation and performance. Conceptually, MPD presents
fault isolation as a system property that is dynamically
manipulated to alter system throughput or latency on
demand.

We present an implementation of MPD in the COMPO-

SITE component-based operating system that is efficient
both in terms of space and time. We discuss the difficulties
of implementing MPD using common architectural struc-
tures such as page-tables, and of simultaneously providing
an efficient component invocation path. Additionally, we
evaluate MPD with a novel component-based webserver.
Results show that MPD increases throughput for our
workloads by up to 40 percent over a system with full
isolation while still maintaining as much as 84 percent
highest fault isolation.

In the future, we wish to investigate MPD policies that
take into account the perceived trustworthiness of specific
components in calculating system structure. Additionally,
in this paper we focus on providing the smallest possible
fault isolation domains with MPD under the assumption
that finer grained fault containment enables easier system
recovery. We wish to continue this investigation by
applying known recovery techniques to transform the
increased fault isolation into increased fault tolerance.

REFERENCES

[1] Apache Server Project, http://httpd.apache.org/, 2012.
[2] G. Back and W.C. Hsieh, “Drawing the Red Line in Java,” Proc.

Seventh Workshop Hot Topics in Operating Systems, 1999.

[3] G. Banga, J.C. Mogul, and P. Druschel, “A Scalable and Explicit
Event Delivery Mechanism for UNIX,” Proc. USENIX Ann.
Technical Conf., 1999.

[4] B.N. Bershad, T.E. Anderson, E.D. Lazowska, and H.M. Levy,
“Lightweight Remote Procedure Call,” ACM Trans. Computer
System, vol. 8, no. 1, pp. 37-55, 1990.

[5] C. Cadar, D. Dunbar, and D.R. Engler, “KlEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs,” Proc. Eighth USENIX Conf. Operating Systems
Design and Implementation, 2008.

[6] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot—A Technique for Cheap Recovery,” Proc. Sixth
Conf. Symp. Operating Systems Design and Implementation, 2004.

[7] B.M. Cantrill, M.W. Shapiro, and A.H. Leventhal, “Dynamic
Instrumentation of Production Systems,” Proc. USENIX Ann.
Technical Conf., 2004.

[8] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A.
Gupta, “Hive: Fault Containment for Shared-Memory Multi-
processors,” SIGOPS Operating Systems Rev., vol. 29, no. 5,
pp. 12-25, 1995.

[9] J.S. Chase, M. Baker-Harvey, H.M. Levy, and E.D. Lazowska,
“Opal: A Single Address Space System for 64-Bit Architectures,”
ACM SIGOPS Operating Systems Rev., vol. 26, no. 2, pp. 80-85, 1992.

[10] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An
Empirical Study of Operating Systems Errors,” Proc. 18th ACM
Symp. Operating Systems Principles, 2001.

[11] F.M. David, E.M. Chan, J.C. Carlyle, and R.H. Campbell, “CuriOS:
Improving Reliability through Operating System Structure,” Proc.
Eighth USENIX Conf. Operating Systems Design and Implementation,
2008.

[12] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A.
Warfield, P. Barham, and R. Neugebauer, “Xen and the Art of
Virtualization,” Proc. 19th ACM Symp. Operating Systems Principles,
2003.

[13] D.R. Engler, F. Kaashoek, and J. O’Toole, “Exokernel: An
Operating System Architecture for Application-Level Resource
Management,” Proc. 15th ACM Symp. Operating Systems Principles,
1995.

[14] M. Fahndrich, M. Aiken, C. Hawblitzel, O. Hodson, G.C. Hunt,
J.R. Larus, and S. Levi, “Language Support for Fast and Reliable
Message-Based Communication in Singularity OS,” Proc. First
ACM SIGOPS/EuroSys European Conf. Computer Systems, 2006.

[15] J. Fassino, J. Stefani, J. Lawall, and G. Muller, “Think: A Software
Framework for Component-Based Operating System Kernels,”
Proc. Usenix Ann. Technical Conf., 2002.

[16] FastCGI, http://www.fastcgi.com, 2012.
[17] B. Ford and J. Lepreau, “Evolving Mach 3.0 to a Migrating Thread

Model,” Proc. Winter USENIX Technical Conf., 1994.
[18] H. Franke, R. Russell, and M. Kirkwood, “Fuss, Futexes and

Furwocks: Fast Userlevel Locking in Linux,” Proc. Ottawa Linux
Symp., 2002.

[19] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silberschatz,
“The Pebble Component-Based Operating System,” Proc. Usenix
Ann. Technical Conf., 2002.

[20] httperf, www.hpl.hp.com/research/linux/httperf/, 2012.
[21] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y.

Wang, “Cyclone: A Safe Dialect of C,” Proc. USENIX Ann.
Technical Conf., 2002.

[22] P. Joubert, R.B. King, R. Neves, M. Russinovich, and J.M. Tracey,
“High-Performance Memory-Based Web Servers: Kernel and
User-Space Performance,” Proc. USENIX Ann. Technical Conf.,
2001.

[23] A. Lenharth, V.S. Adve, and S.T. King, “Recovery Domains: An
Organizing Principle for Recoverable Operating Systems,” Proc.
14th Int’l Conf. Architectural Support for Programming Languages and
Operating Systems, 2009.

[24] J. Lepreau, M. Hibler, B. Ford, J. Law, and D.B. Orr, “In-Kernel
Servers on Mach 3.0: Implementation and Performance,” Proc.
Third Conf. USENIX MACH III Symp., 1993.

[25] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz, “Unmodified Device
Driver Reuse and Improved System Dependability via Virtual
Machines,” Proc. Sixth Conf. Symp. Operating Systems Design and
Implementation, 2004.

[26] H. Levy, Capability-Based Computer Systems. Digital Press, 1984.
[27] J. Liedtke, “Improving IPC by Kernel Design,” Proc. 14th ACM

Symp. Operating Systems Principles, 1993.

PARMER AND WEST: MUTABLE PROTECTION DOMAINS: ADAPTING SYSTEM FAULT ISOLATION FOR RELIABILITY AND EFFICIENCY 13

[28] J. Liedtke, “On Micro-Kernel Construction,” Proc. 15th ACM Symp.
Operating System Principles, 1995.

[29] lwIP, http://www.sics.se/~adam/lwip/index.html, 2012.
[30] NIST Study—The Economic Impacts of Inadequate Infrastructure

for Software Testing, http://www.nist.gov/director/prog-ofc/
report02-3.pdf, 2012.

[31] J. Ousterhout, “Why Aren’t Operating Systems Getting Faster as
Fast as Hardware?” Proc. Summer USENIX Conf., 1990.

[32] G. Parmer and R. West, “Hijack: Taking Control of COTS Systems
for Real-Time User-Level Services,” Proc. IEEE 13th Real Time and
Embedded Technology and Applications Symp., 2007.

[33] G. Parmer and R. West, “Towards a Component-Based System for
Dependable and Predictable Computing,” Proc. IEEE 28th Real-
Time Systems Symp., 2007.

[34] G. Parmer and R. West, “Predictable Interrupt Management and
Scheduling in the Composite Component-Based System,” Proc.
Real-Time Systems Symp., 2008.

[35] M.I. Seltzer, Y. Endo, C. Small, and K.A. Smith, “Dealing with
Disaster: Surviving Misbehaved Kernel Extensions,” Proc. Second
USENIX Symp. Operating Systems Design and Implementation, 1996.

[36] M. Stoer and F. Wagner, “A Simple Min-Cut Algorithm,” J. ACM,
vol. 44, no. 4, pp. 585-591, 1997.

[37] M.M. Swift, M. Annamalai, B.N. Bershad, and H.M. Levy,
“Recovering Device Drivers,” Proc. Sixth Conf. Symp. Operating
Systems Design and Implementation, 2004.

[38] M.M. Swift, B.N. Bershad, and H.M. Levy, “Improving the
Reliability of Commodity Operating Systems,” Proc. 19th ACM
Symp. Operating Systems Principles, 2003.

[39] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley Longman Publishing Co., 2002.

[40] E. Witchel, J. Cates, and K. Asanovi�c, “Mondrian Memory
Protection,” Proc. 10th Int’l Conf. Architectural Support for Program-
ming Languages and Operating Systems, 2002.

Gabriel Parmer is working as an assistant
professor of computer science at The George
Washington University. His research interests
include operating systems, component-based
systems, embedded systems, and real-time
systems. His work revolves around COMPOSITE,
a component-based OS. He focuses on building
a practical, predictable, customizable, and de-
pendable system. He is a member of the IEEE.

Richard West is working as an associate
professor of computer science at Boston Uni-
versity. He holds an advanced research engi-
neer position with VMware, where he consults
on resource management techniques for hyper-
visors applied to multicore architectures. His
research interests encompass operating sys-
tems, real-time systems, and resource manage-
ment. His work includes the development of a
new operating system that is predictable and

safe and leverages hardware performance counters to increase
efficiency in the presence of microarchitectural resource contention.
He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

