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Abstract—A fundamental problem in real-time computing is
handling device input and output in a timely manner. For exam-
ple, a control system might require input data from a sensor to be
sampled and processed at a regular rate so that output signals
to actuators occur within specific delay bounds. Input/output
(I/O) devices connect to the host computer using different types
of bus interfaces. One of the most popular interfaces in use
today is the universal serial bus (USB). USB is now ubiquitous,
in part due to its support for many classes of devices with
simplified hardware needed to connect to the host. However,
typical USB host controller drivers suffer from potential timing
delays that affect the delivery of data between tasks and devices.
Consequently, this paper introduces tuned pipes, a host controller
driver and system framework that guarantees end-to-end latency
and throughput requirements for I/O transfers. We expand on
our earlier work involving USB 2.0 to support higher bandwidth
USB 3.x communication. As a case study, we show how a USB-
Controller Area Network (CAN) guarantees temporal isolation
and end-to-end guarantees on communication between a set of
peripheral devices and host tasks. A comparable USB-CAN bus
setup using Linux is not able to achieve the same level of temporal
guarantees, even when using SCHED DEADLINE.

I. INTRODUCTION

Embedded and real-time systems typically interact with

their environment using sensors and actuators. For example,

a control system for an autonomous vehicle might sample

and process data from inertial sensors, cameras and LIDAR,

to generate output signals for actuators such as motors, ser-

vos, switches and solenoids. Typically, these systems have

delay bounds on the time between collecting sensor data

and producing actuator outputs. This problem is compounded

by the numerous bus interfaces used to connect sensors and

actuators to the host computer responsible for data processing

and control. Input/output (I/O) devices typically connect using

PCIe, USB, CAN, I2C, or SPI buses. The host operating

system is then responsible for the drivers necessary to talk

to devices using these bus interfaces.

Unfortunately, most operating systems provide poor support

for real-time I/O, with device drivers lacking temporal guar-

antees. For example, many systems such as Linux allow the

processing of device interrupts to interfere with, and consume

the timeslice of, the process context that was active at the time

of the interrupt. Moreover, if the interrupt service routine (ISR)

disables interrupts, a long-lived handler may cause subsequent

interrupts to be lost. Similarly, an ISR that runs without

disabling interrupts might be active at the time of another

interrupt, leading to potential reentrancy problems.

Systems such as Linux handle long-lived ISRs by splitting

them into two parts: (1) a top half that runs briefly when the

interrupt occurs, and (2) a bottom half that performs the bulk

of the interrupt handling at a time that is potentially more

convenient. As we have previously identified, the splitting of

interrupt handlers into two parts does not guarantee that inter-

rupts are handled at the correct priority [1], [2]. Moreover, it

does not ensure temporal isolation between interrupt handling

and task execution.

Besides interrupts, the bus interface that connects I/O de-

vices to the host computer must be correctly managed to

ensure throughput and delay guarantees on the transfer of

data. The universal serial bus (USB) has become an industry

standard for its ability to support many different classes of

devices with relatively simple hardware needed to connect

to the host. The handling of interrupts, and direct memory

access (DMA) control, for example, are addressed by the

USB host controller rather than the device itself. This differs

from other bus technologies, such as the peripheral component

interconnect (PCI), where the device itself must include a PCI

controller that manages interrupts and DMA transfers. While

this has influenced the popularity of USB, most operating sys-

tems do not adequately implement a real-time host controller

driver, to schedule access to the bus interface by different

devices.

Our prior work [3] showed how Linux’s approach to

scheduling USB transactions led to rejections in real-time

transfer requests, which would otherwise be possible given

the available bus bandwidth. We also showed how a suitably

written USB host controller driver is capable of providing

throughput and delay guarantees to bulk devices that would

otherwise be given best-effort service. However, our prior

work was in the context of USB 2.0 and many modern

computers are now equipped with USB 3.x host controllers.

Given the above, this paper introduces tuned pipes, a host

controller driver and system framework that guarantees end-

to-end latency and throughput requirements for I/O transfers

between tasks and USB devices. We expand on our prior USB

2.0 work to briefly describe the similarities and differences we

have experienced between USB 2.0 and USB 3.x.

Using a USB-Controller Area Network (CAN) as an exam-

ple, we show how it is possible to provide temporal isolation

and end-to-end guarantees on communication between a set

of peripheral devices and host tasks. CAN controllers are

now commonly used in many real-time domains, including

automotive systems. Our example CAN controller uses a USB

interface to connect to the host, thereby avoiding the need

for a complex PCI adapter card that would be cumbersome



in many space-constrained embedded applications. We show

how the host operating system is able to consolidate CAN

tasks, thereby performing end-to-end guarantees between the

host and each device, in a way that is not possible on systems

such as Linux.

In the following section, we briefly describe background to

the I/O problem addressed in this paper. This is followed by

Section III, which describes tuned pipes and their provision

for end-to-end guarantees on data transfers between tasks

and devices. An experimental evaluation of our approach is

shown in Section IV. Related work is discussed in Section V,

followed by conclusions and future work in Section VI.

II. BACKGROUND

Providing real-time guarantees on I/O transfers between

host memory and USB devices is problematic for several

reasons. First, when the USB host controller completes a

transfer, it may generate an interrupt on completion that needs

to be handled in a timely manner. Second, a USB bus is shared

amongst all devices attached to it, and transactions on that bus

are scheduled according to the type of endpoint used by each

device.

Regarding the first problem, it is unacceptable to simply

allow the interrupt handler to execute in the kernel context

of a preempted task, as in Linux. This causes the preempted

task to be charged for CPU cycles that it does not use while

the handler is executed. Here, the problem is that the interrupt

handling is given precedence over the execution of a task,

irrespective of the task priority. It is possible that repeated

interrupts defer a high priority task by a sufficient amount to

cause it to miss a deadline [1].

In systems such as Linux, the interrupt handling is split into

a top and bottom half. The top half executes when the interrupt

occurs, albeit with a small amount of dispatch latency. It

acknowledges the interrupt before posting an event to perform

potentially deferrable bottom half interrupt handling. The in-

terrupt handling in a bottom half is not deferred unless multiple

interrupts have occurred in a short time, thereby preventing the

interrupted task from resuming progress. To address this prob-

lem, Linux defines a constant, MAX_SOFTIRQ_RESTART 1,

which defaults to 10. This is the maximum number of times

that bottom half processing is restarted in Linux before the

cycle is broken and a preempted task is resumed. Once bottom

half processing is deferred, it is handled in the context of a

CPU-specific system task, ksoftirqd, when there are no other

tasks to execute.

As we showed in prior work [1], this leads to a mismatch in

the priority of interrupts and tasks. In many cases, interrupts

occur as a result of I/O requests from tasks, and those

interrupts should ideally be handled at the priority of the task

that is blocked, or at least awaiting the completion of I/O on

its behalf. We have addressed this problem in the design of

the Quest real-time operating system [2], as we briefly explain

in Section II-A.

1As named in the latest kernel version 4.18.x at the time of this paper.

Regarding the second problem, the USB host controller

is responsible for ordering transactions, which request the

transfer of data between a device and host memory. Systems

such as Linux implement a first-fit approach to add transfer

requests into the host controller schedule. We have shown in

prior work [3] that a real-time USB host controller driver is

able to accept transfer requests into its schedule that Linux

rejects. A well-written USB host-controller driver should be

able to correctly share bus bandwidth amongst devices that

require throughput and delay guarantees, when it is possible

to meet those requirements.

Part of the motivation for this paper is to provide throughput

and delay guarantees on transfers between host tasks and

USB-CAN devices. We are currently designing an automotive

system that submits Controller Area Network (CAN bus)

frames to a host where they are processed. A host equipped

with a multicore processor and GPGPU has the capability

to perform (semi-)autonomous vehicle control tasks, which

would not be possible on the relatively low-powered electronic

control units (ECUs) within a typical automobile of today. Our

CAN bus interface connects to the host via USB to avoid the

need for a bulky PCIe adapter card. However, the interface

only supports bulk USB endpoints, which are traditionally only

serviced in a best-effort manner after periodic transactions. We

clarify the endpoint types supported by USB in Section II-B.

In what follows, we briefly summarize our prior work to

address the two problems described above.

A. Task and Interrupt Scheduling

We developed a unified task and interrupt scheduling frame-

work in our Quest real-time operating system. Top half in-

terrupt processing is limited to acknowledging the interrupt,

identifying the priority for the corresponding bottom half, and

posting an event to wake up the bottom half task. We attempt

to keep top half interrupt processing minimal, as it is system

overhead that is charged to the running thread at the time of

the interrupt.

In Quest, bottom half interrupt handlers and tasks execute as

threads bound to time-budgeted virtual CPUs (VCPUs). Each

VCPU is specified a processor capacity reserve [4], consisting

of a budget capacity, C, and period, T , depending on the

corresponding worst case execution time and period. A VCPU

is eligible to receive up to C units of execution time every T

time units when it is runnable, as long as a schedulability

test is passed when creating new VCPUs. This way, Quest’s

scheduling subsystem guarantees temporal isolation between

threads in the runtime environment.

There are two types of VCPUs in Quest. Conventional

periodic threads are assigned to Main VCPUs, which are

implemented as Sporadic Servers [5] and scheduled us-

ing Rate-Monotonic Scheduling (RMS) [6]. Interrupt bottom

half threads are assigned to I/O VCPUs, which operate as

bandwidth-preserving servers with a dynamically-calculated

budget and period. Quest features several classes of I/O VC-

PUs for networking, disk and USB devices, amongst others.



By default, a single I/O VCPU is setup for a USB host

controller driver to handle interrupt bottom halves.

When a device interrupt occurs, the thread associated with

its occurrence is determined. For example, if some thread τ

initiated an I/O request that led to the I/O interrupt being

generated, the I/O VCPU inherits the period (denoted by

Tmain) of the Main VCPU associated with τ . Since VCPUs

are scheduled using RMS by default, the I/O VCPU also

inherits the priority of τ ’s Main VCPU. This way, Quest is

able to process I/O interrupts with the priority of the thread

that initiated the I/O requests. Consequently, interrupt handling

does not defer the execution of higher priority tasks or suffer

delays from lower priority tasks.

Instead of using Sporadic Servers for both Main and I/O

VCPUs, each I/O VCPU operates as a Priority Inheritance

Bandwidth-preserving Server (PIBS) [2], where a certain

utilization factor U is specified to limit its bandwidth. For

example, the budget of the I/O VCPU mentioned above will

be limited to Tmain · U . With that, even if τ ’s Main VCPU

has a large budget and issues a burst of I/O requests, the

CPU cycles consumed by the handling of corresponding device

interrupts are limited by the I/O VCPU’s bandwidth. PIBS uses

a single replenishment to avoid fragmentation of replenishment

list budgets caused by short-lived interrupt bottom half service

routines. By using PIBS for interrupt threads, the scheduling

overheads from context switching and timer reprogramming

are reduced [7]. In prior work [2], we showed that for n Main

VCPUs and m I/O VCPUs running on a single physical CPU,

temporal isolation is guaranteed amongst all VCPUs if:

n−1
∑

i=0

Ci

Ti

+

m−1
∑

j=0

(2− Uj)·Uj ≤ n

(

n

√
2− 1

)

(1)

B. Universal Serial Bus

Universal Serial Bus (USB) is a master-slave protocol that

connects a host computer (the master) to one or more periph-

eral devices (the slaves). As of USB 3.0, a device operates

at one of four possible communication rates: low, full, high

or super speed. These have maximum throughputs of 1.5, 12,

480Mbps and 5Gbps respectively. Recent advances to USB

3.x now increase bus bandwidth to 10 or even 20Gbps.

Figure 1 depicts the hardware-software structure of both a

USB host and device, which communicate over a physical link.

Each physical device consists of one or more configurations

that specify how many interfaces it supports, amongst other

information. Only one configuration for a given device is ac-

tive at any time, and it in turn supports one or more functions.

A multi-function full-speed input device, for example, might

have two functions for both a keyboard and a mouse. Each

hardware function provides a collection of interfaces, with

each interface providing one or more endpoints of commu-

nication. A function supports alternative interfaces to enable

or disable certain endpoints and/or change their data rate.

Each endpoint specifies the type of transfer mode, whether

it is an input or output endpoint, the maximum packet size,

how many packets it can receive during a single transaction,

Fig. 1. USB Host and Device Stacks

and how often transactions should occur in the case of periodic

endpoints.

The USB specification supports four basic transfer types

for data exchange between a host and a device: (1) Con-

trol transfers for device configuration, (2) Bulk transfers

for reliable delivery of non-real-time data, (3) Isochronous

transfers for real-time, loss-tolerant data, and (4) Interrupt

transfers for real-time, loss-sensitive data. Different devices

support different transfer types. For example, a USB camera is

typically isochronous, a mass storage device usually supports

bulk transfers, and a keyboard works with interrupt transfers.

All devices have at least one control endpoint.

USB transactions are always initiated by the bus master,

with peripheral devices only capable of responding to host

requests. In USB 1.0/1.1, all transactions occur within a

frame set at 1 millisecond. Transactions cannot cross a frame

boundary. USB 2.0 and higher support micro-frames of 125

microseconds. Each frame contains eight micro-frames and

transactions cannot cross a micro-frame boundary. The host

controller will discard any transactions that span these micro-

frame boundaries.

All transactions are split into two classes: (1) periodic,

which is for isochronous and interrupt transfers, and (2)

asynchronous, which is for bulk and control transfers.

C. Differences Between USB 2.0 and USB 3.x

The Enhanced Host Controller Interface (EHCI) [8] im-

plementation for USB 2.0 organizes periodic transactions in

a frame list. The host controller indexes the list using a

frame index register, which is incremented every micro-frame.



Asynchronous transactions are ordered in a separate round-

robin circular list. The USB specification [9], [10] limits the

time available to schedule transactions from the periodic frame

list before the circular asynchronous list is processed. For

example, high-speed transfers are limited to 80% of a micro-

frame, leaving at least 20% to asynchronous transfers. Each

time the asynchronous list is processed, it resumes with the

next transaction after the one previously processed.

Periodic transactions are specified in terms of the number

of bytes per packet, number of packets per transmission,

and the transmission interval (in frames for low- and full-

speed devices, or micro-frames otherwise). The scheduling

problem is to ensure that transactions do not cross micro-

frame boundaries for full or super-speed devices, and that no

more than eight micro-frames worth of transactions occupy

each frame. The schedule must map transactions to frames

and micro-frames so that intervals and tranmission delays are

guaranteed for periodic transmissions. Essentially, this is a bin-

packing problem, with EHCI allowing software to construct

the periodic and asynchronous schedules.

The eXtensible Host Controller Interface (xHCI) [11] is

intended to be a replacement for EHCI, providing better

power efficiency, performance and new capabilities in USB

3.x. The host memory data structures differ significantly be-

tween EHCI and xHCI, as we discovered when implementing

support for a USB-CAN interface on a host computer with

only the newer xHCI support. The periodic frame list and

circular asynchronous list in EHCI are replaced with hardware-

managed transfer rings in xHCI. To be precise, an extensible

host controller (xHC) manages three types of rings in host

memory: (1) a single command ring, (2) an event ring, and

(3) a separate transfer ring for each device endpoint. These

are shown in Figure 2.

Fig. 2. Various Data Rings used by an eXtensible Host Controller (xHC)

The command ring passes requests from the host system

software to the controller. The event ring returns status infor-

mation, and results of transfers to system software. Finally,

each transfer ring contains a set of transfer descriptors (TDs)

that consist of one or more transfer request blocks (TRBs).

TRBs contain the data to be transferred in a given request.

The xHC allows isochronous transfers to specify the starting

frame ID, at the granularity of 1ms. For transactions requiring

service intervals of one or more micro-frames, it is possible to

pack up to 8 isochronous TDs in the same frame by specifying

a common starting frame ID. Aside from this level of software

control, all transfer rings are processed by the xHC.

In our experience with the Kvaser USBcan Pro-series of

interfaces, we discovered they only support bulk endpoints.

This seems counter-intuitive for a CAN bus that is intended

for real-time systems. As a consequence, we focused on the

development of tuned pipes for USB-CAN that tackled the

problem of host device driver scheduling rather than USB bus

scheduling. Notwithstanding, our xHCI host controller driver

is able to implement a bin-packing scheduler to support multi-

ple USB devices with bandwidth and delay constraints, similar

to how we implemented our EHCI scheduler. In this way, we

are able to reserve bus bandwidth for both asynchronous (e.g.,

bulk) and periodic endpoints by controlling the start frame ID

of different TDs. The scheduling algorithm is shown below,

with further details in our earlier work [3]. It has been slightly

modified for xHCI, but operates similarly with EHCI.

Algorithm 1 Quest USB Scheduling Algorithm

R← array of n USB requests (ie., TDs)
A← array of starting frames for the scheduled assignments
T ← 1024 element array initially all zero
// T [f ] = time used in micro-frame f
B ← 125000

// Sort transactions by increasing interval,
// breaking ties by largest transmission delay first
R← SORT(R)
for i = 0 to n− 1 do

wi ← TRANSMISSION DELAY(R[i])
ti ← INTERVAL(R[i])
A[i]← −1
j ← 0
while A[i] = −1 ∧ j < ti do

feasible← TRUE
f ← j
while f < 1024 do

if T [f ] + wi > B then
feasible← FALSE

end if
f ← f + ti

end while

if feasible then
A[i]← ⌊j/8⌋ // Request i starts in frame ⌊j/8⌋
f ← j
while f < 1024 do

T [f ]← T [f ] + wi

f ← f + ti
end while

end if

j ← j + 1
end while
if A[i] = −1 then

return FALSE
end if

end for
return (TRUE, A)

The algorithm is provided with an array of n requests

assigned to set R. Each request Ri is specified with a trans-

mission delay wi and period ti in micro-frames. A successful

request will start in micro-frame j and proceed to be serviced

in micro-frame (j + a·ti)%1024, where a = 1, 2, · · ·. The

requirement is that the total transmission delay of one or



more requests does not cross a micro-frame boundary, and

that 8 micro-frames are available in a single frame. We have

shown that by sorting requests by increasing interval, with

ties being broken by servicing the largest transmission delay

first, this tends to increase the likelihood of finding successful

schedules. The alternative would be to exhaustively consider

all possible permutations of requests, which is impractical for

an online scheduler. Each time a request is feasible (i.e., can be

scheduled), it is committed to an ordered array, A. A holds the

starting frame ID for each scheduled request, because xHCI

will not allow software to explicitly set the micro-frame for a

TD.

III. TUNED PIPES

A tuned pipe is a host-to-device communication channel that

has throughput and delay bounds. Abstractly, it encompasses

the control and data path necessary to execute the code that

moves data between a user-space memory buffer and the

device. A tuned pipe is built on a device endpoint abstraction,

which comprises an I/O VCPU and an optional Main VCPU,

as well as kernel buffers used by the corresponding device

driver. A tuned pipe extends an endpoint into a user-space

thread, which runs an application-specific function to pre- or

post-process data. Pre-processed data is sent through the tuned

pipe to the endpoint for delivery to the device. Post-processed

data is input from a device through its endpoint into a user-

level address space.

Figure 3 shows the tuned pipe abstraction. Data flows

between a user-space pipe buffer and an endpoint buffer.

Data in the endpoint buffer may correspond to multiple pipes.

Control flow for a tuned pipe encompasses the execution of

a user-level thread associated with a Main VCPU and one or

more threads in the device endpoint. A device endpoint has

at least one thread to perform bottom half interrupt handling,

and an optional thread to parse and process the data in the

endpoint buffer.

Fig. 3. Tuned Pipe Abstraction

A. Tuned Pipes API

The tuned pipe API allows user-space programs to establish

a host-to-device communication channel with throughput and

delay constraints. The pipe is guaranteed to be temporally

isolated from the activities of other tasks and I/O pipes. The

creation of a tuned pipe is established by a call to tpipe:

int tpipe(endpoint_t end, qos_t qspec,

(void *)(*func)(void *), void *arg);

On success, tpipe returns an integer pipe identifier, other-

wise it returns -1. A newly-created tuned pipe spawns a user-

level thread that is mapped to a Main VCPU and bound to a

device endpoint. Figure 3 shows the binding of a Main VCPU

to a device endpoint, which is associated with an endpoint

type, as follows:

typedef struct {

vcpu_id_t iovcpuid; // Bottom half VCPU ID

vcpu_id_t mvcpuid; // Main VCPU ID

struct sched_param *iovcpu_params;

struct sched_param *mvcpu_params;

endpoint_attrs_t *eattrs; // Attributes

} endpoint_t;

An endpoint is associated with an I/O VCPU (identified by

iovcpuid) that provides budgeted CPU time for a bottom

half device driver. The scheduling parameters of the I/O VCPU

(iovcpu_params) are dependent on the device capabilities

(e.g., how much data it is able to transfer in a given time

interval), and the requirements of the tuned pipes associated

with that endpoint. Depending on the device, multiple tuned

pipes may be associated with a single endpoint. For example,

a USB-CAN device might expose up to five separate channels

and, hence, five separate pipes for its endpoint. This informa-

tion is provided by a device driver information base when the

driver is registered with the operating system, and attributes

in this information base are accessed through the eattrs

member of the endpoint type, which is partially described as

follows:

typedef struct {

int max_channels; //Max pipes for endpoint

uint64_t max_tput; //Max bits per min_latency

time_t min_latency;//Min delay [nanoseconds]

int min_ebufsz; //Min endpoint buffer size

int max_ebufsz; //Max endpoint buffer size

int min_pktsz; //Min transfer packet size

int max_pktsz; //Max transfer packet size

...

} endpoint_attrs_t;

In the above, max_channels is the maximum number

of channels supported by the endpoint for the creation of

unique pipes. The ratio
max tput

min latency
is the highest sustain-

able throughput achievable by the endpoint, and is limited

by the device bandwidth. min_latency is the minimum

delay between successive data items transferred between host

memory and the device. A device is not capable of reading

or writing data faster than this time. [min|max]_ebufsz

is the [minimum|maximum] endpoint buffer size, and

[min|max]_pktsz is the [minimum|maximum] size of a

packet transferred to or from the device.

The key attributes within struct sched_param are the

corresponding VCPU’s budget, C, and period, T . Depending

on the device driver, an endpoint might use a Main VCPU

(identified by mvcpuid) in addition to an I/O VCPU. We use

such a configuration in the implementation of our USB-CAN



driver, to parse incoming packet data in an endpoint buffer

and associate it with separate pipe buffers.

A device driver developer establishes the default scheduling

parameters for the endpoint I/O VCPU and, if it is used,

the Main VCPU also. Depending on the tuned pipe requests

from user-space, the endpoint’s VCPU scheduling parameters,

including both budget and period, might be adjusted from

their defaults. They will nonetheless be constrained by the

capabilities of the device. For example, suppose a USB-

CAN device exposes five channels of up to 2.25 Mbps,

such that four channels are limited to 500 Kbps and one is

limited to 250 Kbps; for an endpoint with a 4 KB buffer, a

Main VCPU thread must process the buffer every 14 ms to

avoid overflow. If a device driver developer establishes the

processing overhead is no more than 2 ms, then the endpoint

Main VCPU budget and period are set to C = 2 ms and

T = 14 ms, respectively.

The creation of a tuned pipe associates a thread function

(func) and its argument (arg) with a new Main VCPU.

This is similar to the semantics of thread creation APIs such

as the POSIX pthread_create call. The difference is

that the new thread in a tuned pipe is mapped to a time-

constrained VCPU whose budget and period are automatically

established to guarantee the quality of service (QoS) specified

by the tpipe call. The QoS specification, qspec, is of the

following type:

typedef struct {

time_t latency; // Nanoseconds

uint64_t tput; // Bits per given latency

size_t IObufsz; // Pipe buffer size in bytes

time_t texec_time;// Thread execution time

} qos_t;

The texec_time is the thread (func) execution time to

process IObufsz bytes of data in a given period of the user-

level Main VCPU. This time is assumed to be determined

by prior measurements of the data processing delay. As an

example, suppose a user wishes to process a pipe buffer

containing up to 128 bytes of packet data within 1 ms of its

arrival on a 500 Kbps pipe associated with a device endpoint.

texec_time is set to 1ms and assumed to be sufficient to

accommodate the execution time of func. For IObufsz=128
bytes, latency is set to 1×109 nanoseconds, and tput is set

to 512×103 bits/second. The Main VCPU associated with the

thread func has an automatically-generated budget, C = 1 ms

and period, T = 2 ms. The period is derived by the tpipe

function using Little’s Law, L = λW , where L is the buffered

data (here, 128 bytes), λ is the arrival rate (here, no more

than 500 Kbps), and W is the time for the buffer to be filled

before being reused. W effectively bounds the period of the

Main VCPU. In this case, W = T = 2 ms, ensures the pipe

buffer is processed before overflowing.

It should be observed that the constraints on a Main VCPU

associated with a tuned pipe are limited by the capabilities

of the device endpoint. Thus, it would be impossible to meet

throughput and delay constraints outside the range of feasi-

ble values supported by the endpoint. However, the tpipe

call may adjust the endpoint VCPU scheduling parameters

to accommodate a pipe request, if the endpoint attributes

(e.g., maximum endpoint throughput) are not violated. The

successful creation of a tuned pipe also requires the Main

and I/O VCPUs to be feasibly scheduled according to the

utilization bound test.

B. End-to-end Guarantee

Thanks to the temporal isolation provided by host schedul-

ing, our system is able to guarantee end-to-end latency require-

ments for I/O transfers. In this section, we use a USB-CAN

system as an example to elaborate on separate latencies that

influence end-to-end time.

1) Latency Contributors: The end-to-end I/O transfer delay

is influenced by several factors, which we will identify as part

of our analysis. To begin, we first consider the end-to-end

data and control flow during a USB-CAN transfer, illustrated

in Figure 4. The most complex path considers the input of

data, as this has to be demultiplexed for different user-level

threads. We therefore omit further discussion of the output

path, although it is largely the reverse control and data flow.

Consequently, the end-to-end time of a CAN message starts

with its arrival at the interface to the CAN bus, and ends when

the message is read by a user-space thread.

Fig. 4. Input Data and Control Flow for USB-CAN Tuned Pipes

When a CAN message arrives, it is temporarily stored in a

hardware buffer within the CAN controller before the host



issues a USB read transfer request. A USB read transfer

request will cause the data to be moved from the hardware

buffer into a target host memory buffer using direct memory

access (DMA). In the case of USB-CAN, the target is a buffer

allocated within the CAN driver. The waiting time that data

spends in the hardware buffer contributes to the end-to-end

latency, represented by 1 in Figure 4.

Instead of triggering an interrupt upon the completion of

each DMA transfer, the USB controller, as required by the

xHCI specification, periodically triggers interrupts to poll the

completion of all the pending transfers. In order to minimize

the time during which interrupts are disabled, we delegate the

polling operation to a threaded bottom half, associated with a

dedicated USB I/O VCPU. The delay between the completion

of a DMA transfer and the invocation of the bottom half thread

also contributes to the end-to-end latency, represented by 2 .

The bottom half updates the xHC host-resident data struc-

tures and invokes a specific callback function for each com-

pleted transfer. Common to subsystems that utilize a USB

communication stack, our CAN driver registers a callback

function that does nothing but wakes up the thread that is

waiting for the completion of the USB transfer in question.

This is a dedicated CAN RX thread responsible for issuing all

the USB read transfers. Upon waking up, it parses received

CAN messages and distributes them to buffers assigned to each

CAN channel. After that, the RX thread issues a new USB read

transfer and yields the CPU. The delay between the invocation

of the registered callback function and the completion of the

RX thread execution is the third contributor to the end-to-end

latency, represented by 3 .

A CAN message is queued in the channel buffer until a user-

level thread, which has opened that channel, issues a system

call to copy the message to user level. The waiting time a

message spends in the channel buffer is the fourth, and last,

contributor to the end-to-end latency, represented by 4 .

2) End-to-end Timing Analysis: In order to derive the end-

to-end transfer latency, we begin by describing the timing

properties of all the entities involved in the analysis. As shown

in Figure 4, the CAN RX thread is associated with a Main

VCPU, whose budget is denoted by Crx and period by Trx.

The period of the USB interrupt is denoted by Tusb. The USB

I/O VCPU is bounded by Uusb% CPU utilization. Its budget

is Cusb = Uusb·Trx and its period is Tusb = Trx, because I/O

VCPUs derive service constraints from the Main VCPU they

serve when using PIBS. Each user-level application thread is

assumed to be associated with a Main VCPU with Cusr budget

and Tusr period.

The scenario that leads to the worst case latency is the

summation of largest delays incurred by steps 1 - 4 , as

follows:

First, the CAN RX thread issues a DMA transfer request

once every period Trx, which contributes to the delay in

step 1 . Each transfer request causes data to be moved from

the hardware buffer to the USB-CAN buffer. The assumption

here is that the cost of step 1 is bounded by Trx, which is

greater than the delay of a DMA transfer.

Second, the I/O VCPU associated with the bottom half of

the xHCI driver is woken up every Tusb time units as a result of

the periodic USB interrupts, which contributes to the worst-

case delay in step 2 . As multiple USB devices could be

transferring data within the interval Tusb, we set Cusb to be

sufficient to process all bus transactions in one period of the

xHCI bottom half. As our host controller driver schedules bus

transactions, it is possible to identify the number and type of

transactions that occur in Tusb. In turn, it is then possible to

derive the largest Cusb necessary to process those transactions.

Third, the worst-case overhead of the CAN RX thread,

to parse the USB-CAN buffer and distribute messages into

separate channel buffers is Trx. This is because the RX thread

with a budget of Crx may be preempted and, hence, will not

necessarily complete execution before the end of its period.

This contributes to the cost of step 3 . Finally, a user-

level thread takes a maximum of Tusr time units to complete

Cusr time units of execution when there is preemption, which

contributes to the cost of step 4 . Cusr is set to the worst-

case value necessary to complete the copying of data into a

user-level address space.

The four-step worst-case end-to-end latency is therefore:

Ewc = Trx + Tusb + Trx + Tusr

= 3 · Trx + Tusr

(2)

Equation 2 is simplified as a result of Trx being set equal to

Tusb. In our system, Tusb is configured to 1 ms, which is the

default value used by the USB host controller hardware. The

value of Crx and Trx should be chosen based on the CAN bus

load, and adjusted according to user requirements elaborated

in Section III-A. The same section also describes the way in

which Tusr is determined.

IV. EXPERIMENTAL EVALUATION

We conducted several sets of experiments on a testbed as

shown in Figure 5. The testbed consisted of a Kvaser USBcan

Pro 5xHS five channel CAN bus interface connected via USB

3.0 to an UP Squared single-board computer. The Up Squared

had 4 GB RAM and a dual-core Celeron N3350 processor

operating at 1.1 Ghz. For all experiments, we assigned all

tasks and interrupts to a single core, rather than offloading

I/O tasks to a dedicated and potentially low-utilization core.

Fig. 5. Experimental Testbed

We mimicked the behavior of an automotive system by

simulating CAN frames from several CAN devices acting



as Electronic Control Units (ECUs). ECU1 and ECU2 were

represented by Woodward MotoHawk ECM5634-70 modules,

commonly used for engine and powertrain control functions

in real automotive systems.

For the purposes of providing an easily reprogrammable

source of CAN frames, we used an Arduino UNO with a

SeeedStudio CAN-BUS Shield V1.2. This represented ECU3

and was connected to the fifth CAN channel (CAN5). Al-

though a real automotive system might have numerous ECUs,

our testbed was representative of different classes of vehicle

control, such as for the powertrain, chassis, battery manage-

ment, and diagnostics. Importantly, it demonstrated the use

of tuned pipes to transfer data between CAN bus nodes and

the host computer, which acted as a CAN concentrator. A

CAN concentrator could theoretically process CAN frames

for different subsystems without requiring the processing to

be offloaded to numerous separate ECUs.

With the Kvaser USBcan Pro 5xHS interface, each CAN

channel is associated with a separate bus having a maximum

configurable bandwidth of 1 Mbps. We determined by empir-

ical study that the USB-CAN interface had an internal buffer

size of 4 KB. When the hardware buffer is full, the interface

overwrites stale data with the latest incoming data.

A. Endpoint Guarantees

In the first experiment, we used the ECUs to generate CAN

traffic at different rates to the host computer, to see if a USB-

CAN endpoint was capable of receiving all frames without

loss. Host tasks communicated with the Kvaser USB-CAN

interface using the CANlib API [12]. We ported the core

CANlib API calls for use with our Quest RTOS, to allow

us to configure the timing properties of a bus and to read and

write different channels.

We compared Quest with support for tuned pipes against

Ubilinux, which included the PREEMPT-RT patch. The band-

width of each bus was limited to the maximum bit rates

shown in Table I. The actual steady-state throughputs, as a

percentage of each channel’s maximum configured bandwidth,

are shown below the bandwidth values. This configuration

has a maximum bandwidth aggregated across all channels of

288 KBps, resulting in a minimum of 14 ms to fill the 4 KB

hardware buffer of the USB-CAN interface. The final row

in the table shows the frame format on each channel, from

standard (std) 11-bit, to extended (ext) 29-bit frame IDs.

The data payload of each frame type was set to the maximum

8 bytes.

Bus CAN1 CAN2 CAN3 CAN4 CAN5

Bandwidth (bps) 500K 250K 500K 500K 500K

Throughput % 10 20 30 40 69

CAN frames std ext std ext std

TABLE I
CAN BUS TRAFFIC

The Linux implementation of the Kvaser CAN driver uses

a kernel (RX) thread to periodically issue USB read transfers.

The RX thread is blocked until the USB xHCI bottom half

processes the transfer completion event. The bottom half runs

as a non-schedulable softirq. We configured the RX thread to

be scheduled under the SCHED DEADLINE [13] policy with

the runtime budget set to 2 ms and the period set to 14 ms.

The runtime budget was derived by measuring the time for

the RX thread to parse and distribute 4 KB data into separate

host memory buffers for different endpoints. Included in the

execution budget of the RX thread is the time to report the

number of hardware buffer overruns. It should be noted that

the period and deadline of a thread were set to the same value,

for all cases where SCHED DEADLINE was used. The period

of 14 ms accounts for the shortest time to fill the 4 KB internal

buffer in the USB-CAN interface.

For comparison with Quest, we setup an RX thread having

the same parameters to run on a Main VCPU. The correspond-

ing xHCI bottom half was assigned to a schedulable I/O VCPU

with a utilization of 1%.

Table II shows the 6 scenarios used to compare Linux and

Quest. These scenarios vary in experiment duration from 30

to 60 seconds, and whether there are I/O-, CPU-, or both

I/O- and CPU-bound tasks. For I/O, we used 5 separate CAN

reader tasks, one per channel. I/O-bound tasks ran at their

default priorities in both Linux and Quest. For cases where

CPU-bound tasks were involved, each task incremented a

counter every 10µs and reported how far away the counter

was from the expected value for a given budget and period

over the duration of the experiment. CPU-bound tasks ran

under SCHED DEADLINE in Linux, each having a budget of

1 ms and period 7 ms. Quest used the same budget and period

values for corresponding Main VCPUs. These periods yielded

relatively higher priorities for the CPU-bound threads than the

RX thread, potentially causing the greatest interference on I/O

operations.

Scenario Duration (s) CPU-bound Tasks I/O-bound Tasks

1 30 0 5

2 30 3 0

3 30 3 5

4 60 0 5

5 60 3 0

6 60 3 5

TABLE II
EXPERIMENTAL SCENARIOS

Table III shows that Quest did not experience any lost CAN

packets, as there were no overruns of the USB-CAN 4 KB

buffer for any of the experimental scenarios. Linux, however,

experienced overruns in the two scenarios where there were

higher priority CPU-bound tasks. These caused interference

with the USB xHCI bottom half (softirq) in Linux. The softirq

initially runs with the highest priority in the system, with

interrupts enabled. However, if the softirq processing loops

MAX_SOFTIRQ_RESTART times, as described in Section II,

and still finds more softirqs to process due to high rate of

interrupts, it will wake up a ksoftirqd. The ksoftirqd thread

handles the remaining softirqs at a much lower priority. This



used to be the lowest priority but in newer versions of Linux it

is now set to normal user-level task priority. Notwithstanding,

the consequences are that interrupt bottom halves in Linux

are either handled at the highest priority, or a relatively low

priority. SCHED DEADLINE, therefore, has limited benefit

for tasks with I/O requirements.

Scenario Buffer Overruns

Quest All Scenarios 0

Linux 3 230
6 405

TABLE III
USB-CAN BUFFER OVERRUNS

Figure 6 shows the average counter error for the three

CPU-bound tasks running on Quest and Linux, in each of

the corresponding scenarios. For scenarios 3 and 6, the Linux

tasks incremented their counters beyond the expected value

for their initial budgets. This appears to be an artifact of

SCHED DEADLINE, which redistributes unused budget of

blocked deadline tasks amongst those that are runnable. The

RX thread in Linux will block until the xHCI bottom half

handles completion interrupts for USB transfers. As we ob-

served above, the bottom half is deferred when the frequency

of interrupts surpasses a certain threshold, to allow interrupted

tasks to proceed. For scenarios 2 and 5, there are no I/O tasks

active.

The CPU-bound tasks in Linux show significant error be-

tween the actual and expected counter values. The positive

values indicate that Linux tasks are lagging behind their

expected progress. This is partly due to SCHED DEADLINE

tasks being unable to reclaim unused budget of blocked tasks,

and also the overhead of the task scheduler. In each case, Quest

guarantees progress close to expected. Although not shown,

Quest has the ability to allow tasks to use CPU cycles above

their budget limits when no other tasks have available budgets.

This actually allowed the CPU-bound tasks to increment their

counters far in excess (more than 495000) of their target

values.
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Fig. 6. Average Counter Error for CPU-bound Tasks

B. End-to-end Guarantees

Input Requests. To test the full benefits of tuned pipes, we

conducted a second set of experiments that delivered data to

user-space tasks according to throughput and delay constraints.

The experimental setup was similar to that in Figure 5, except

CAN4 was replaced with a second Arduino and CAN shield.

Both CAN4 and CAN5 generated standard frames with a

throughput of 69% of their 500 Kbps channel bandwidths.

Five tasks on the Up Squared opened pipes to the USB-CAN

devices, and recorded the number of CAN frames received

every second over a 30 second period. Standard CAN frames

are 108 bits, while extended frames are 128 bits. However,

the Kvaser USB-CAN interface requires each frame to be

encapsulated in a 64-byte message. All subsequent throughput

calculations are based on the Kvaser message size.

We used an oscilloscope to measure the minimum and

maximum transmission delay of a CAN frame from each

Arduino, which was observed to be 363.4 µs and 366.2 µs,

respectively. These values imply that the minimum and maxi-

mum throughput from the two Arduinos should be in the range

[1/366.2 µs, 1/363.4 µs]=[2730 frames/s,2752 frames/s].

For Quest, each I/O task created a tuned pipe with the

following QoS specification as defined in Section III-A:

latency=1×109 ns, tput=2752 CAN frames per second,

IObufsz=128 CAN frames, and texec_time=2 ms. The

throughput (tput) was calculated from the maximum effec-

tive transfer rate from a single Arduino when sending 108-bit

(largest-size) standard CAN frames. The effective transfer rate

accounts for additional bits on the CAN bus for bit stuffing

and protocol overheads. Using Little’s Law, we derived an I/O

task period of 46 ms, which was the largest interval before a

user-space buffer of 128 frames could overflow. We set the

budget for each I/O task to be 2 ms, which was considered

sufficient time to process up to 128 buffered frames. Having

derived the budgets and periods, Quest I/O tasks were assigned

to Main VCPUs, while equivalent Linux tasks were assigned

to the SCHED DEADLINE class.

Figure 7 shows the number of frames per second received

by the two I/O tasks associated with the Arduino devices, for

both Quest and Linux. We skipped the first second to allow I/O

buffers to populate. Similarly, Figure 8 shows the minimum,

maximum and average throughput across both USB-CAN

channels using Quest and Linux. The two horizontal lines

show the target minimum and maximum values that should

be maintained for successful throughput guarantees.

As can be seen, the Quest tasks receive data within the

expected throughput bounds of 2730 to 2752 frames/s, whereas

Linux tasks do not. The reason Linux tasks sometimes exceed

their throughput bounds in 1s intervals is that they fail to

receive sufficient data in the previous second, and subsequently

copy additional frames from the endpoint buffer in the next

second. Finally, Linux fails to sustain an average throughput

even above the minimum 2730 frames/s generated by Arduino.

This is because Linux loses some CAN frames as observed

in the previous experiment (Table III). With Linux, CAN4

and CAN5 averaged 2703 and 2714 frames per second,

respectively. In Quest, CAN4 and CAN5 averaged 2745 and

2743 frames per second, respectively, without loss of packets.
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Note that although the average throughput of Linux is close

to the required target range, the fact that packets are lost could

be critical to a real system. For example, a lost CAN frame

that affects automotive braking or engine speed could lead to

an accident, with potential loss of life.

Output Requests. For completeness, we performed a series

of experiments to show throughput and delay guarantees on

data output to a USB-CAN device. A setup similar to that in

Table I was used, with three of the five channels (CAN1-

CAN3) operating as inputs, as before. CAN4 and CAN5

were associated with two Arduino CAN devices, configured

to receive data from the host. Given the limitations of the

Arduino CAN shields, all data was sent from the host to these

devices in standard frame format.

For Quest, we established a separate tuned pipe for CAN4

and CAN5 to output data to each Arduino device. As before,

an oscilloscope was used to measure the latency of one

iteration of an Arduino sketch, which toggled a GPIO pin

upon reception of a CAN frame from the host. Details of the

Arduino sketch are shown in Appendix A.

The observed minimum and maximum latencies for one

iteration of the Arduino sketch were 325.4µs and 327.5µs,

respectively. These values were established while transferring

data from the host as fast as possible to ensure the Kvaser

USB-CAN interface buffer was always full. These measured

latencies corresponded to a maximum and minimum through-

put of 3073 and 3053 CAN frames per second, respectively.

We measured the latency to send data from a user-level host

buffer for each tuned pipe. For a buffer size of 128 64-byte

messages, the latency was no more than 2 milliseconds. Con-

sequently, the QoS specification for each tuned pipe for CAN4

and CAN5 was set to: latency=1×109 ns, tput=3073

CAN frames per second, IObufsz=128 CAN frames, and

texec_time=2 ms. The main VCPU for each tuned pipe

in Quest had a derived budget and period of C = 2ms and

T = 41ms, respectively. For comparison with Linux, we

established a separate SCHED DEADLINE thread for each

channel having equivalent constraints to those of Quest’s Main

VCPUs.

Figure 9(a) shows that Quest is able to transfer data from

a host to each Arduino device via the USB-CAN interface

according to the tuned pipe QoS specification. In comparison,

Figure 9(b) shows that Linux sometimes experiences signif-

icant drops in throughput, below the minimum 3053 CAN

frames per second expected for each Arduino device. This is

because of demotion in the priority of the xHCI bottom half

used for USB transfers, as described earlier. As can be seen,

bottom half priority inversion affects both input and output

transfers.

Finally, Figure 10 shows that the average throughput for

CAN4 and CAN5 is within the expected range with Quest.

Although the average throughput with Linux is almost within

the expected range, there is far greater variance in the mini-

mum and maximum throughput than with Quest.

V. RELATED WORK

While many real-time operating systems exist today, it is

less common to see systems with explicit support for temporal

isolation using resource reservations or budgets. One early

system that is built around the notion of resource reserves is

Linux/RK [14]. Linux now supports the SCHED DEADLINE

scheduling policy, based on the Earliest Deadline First (EDF)

and Constant Bandwidth Server (CBS) [15] algorithms, with

resource reservations. Quest differs from the above systems, by

focusing on the temporal isolation between tasks and interrupt

handlers using a hierarchy of virtual servers, acting as either

Main or I/O VCPUs.

The interrupt-handling mechanism in existing off-the-shelf

operating systems is largely independent of process man-
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agement, which compromises the temporal predictability of

the system. Several research works [16], [17], [18] have

investigated the idea of integrating interrupt handling with

the scheduling and accountability of processes. Leyva-del-

Foyo et al. [19] proposed a unified mechanism for syn-

chronization and scheduling of both interrupts and processes.

Lewandowski et al. [20] considered bandwidth constraints on

device driver execution. However, none of these works explore

the dependency between interrupts and processes, and use that

information to decide the priority of interrupts (essentially

bottom halves) in CPU scheduling. Motivated by Zhang et

al. [1], Quest combines the scheduling and accountability of

interrupts associated with corresponding processes that issue

service requests on I/O devices.

The temporal isolation between interrupt handlers and tasks

is used in Quest’s tuned pipes for I/O transfers. Scout [21]

exposes paths that are similar to pipes in our system, as a way

to offer quality of service guarantees to applications. How-

ever, paths in Scout are non-preemptive schedulable entities,

ordered according to an EDF policy. Similarly, RAD-FLOWS

by Pineiro et al. [22], provide a method to guarantee end-to-

end inter-process communication, instead of throughput and

delay-constrained I/O transfers.

With the increasing popularity of open source hardware and

maker communities, numerous libraries and APIs now exist

to ease the interaction with I/O devices. Examples include the

Arduino APIs [23] to manage a range of different devices,

and the MRAA library [24] targeted at Intel and Raspberry Pi

IoT devices. However, none of these libraries or APIs provide

support for user-specified I/O timing properties. The tuned

pipe API allows user-space programs to establish a host-to-

device I/O pipe that has throughput and delay bounds.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces tuned pipes, and abstraction for

guaranteeing throughput and delay constraints on the transfer

of information between USB devices and host tasks. We have

implemented a full xHCI host controller driver in Quest that

supports tuned pipes. We tested our system with a port of

the mhydra USB-CAN driver and showed that I/O service

constraints are possible with Quest but not with a comparable

Linux system. This was even the case for a Linux system

supporting appropriately tuned device driver tasks serviced

using the SCHED DEADLINE policy.

Future work includes the development of a tuned pipe ab-

straction in our sister Quest-V system [25]. USB 3.x provides

support for host controller virtualization so it is possible to

have Quest real-time system services sharing a single host

controller and bus with legacy Linux services. The aim is to

use Quest for tasks that require real-time I/O, while Linux pro-

vides legacy support for devices drivers, libraries and services

that need not be real-time. We see this as being beneficial

to cyber-physical applications, ranging from driverless cars to

autonomous drones and beyond.
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APPENDIX A

ARDUINO RECEIVER SKETCH

#include <SPI.h>

#include <mcp_can.h>

const int SPI_CS_PIN = 10;

MCP_CAN CAN(SPI_CS_PIN); // Set CS pin

#define CAN_SCOPE_PIN 3

#define CAN_REC_DELAY 4

int lastState = LOW;

int cnt = 0;

int msg_per_sec[31];

int cur_sec_indx = 0;

unsigned long last_ms;

bool start = false;

void setup(){

Serial.begin(9600);

// init can bus baudrate = 500k

while (CAN_OK != CAN.begin(CAN_500KBPS)){

Serial.println("CAN BUS Shield init fail");

Serial.println("Init CAN BUS Shield again");

delay(100);

}

Serial.println("CAN BUS Shield init ok!");

pinMode(CAN_SCOPE_PIN, OUTPUT);

digitalWrite(CAN_SCOPE_PIN, LOW);

pinMode(CAN_REC_DELAY, OUTPUT);

digitalWrite(CAN_REC_DELAY, LOW);

int i;

for (i = 0 ; i < 31 ; i++)

msg_per_sec[i] = 0;

Serial.println("Waiting for the 1st msg to start...");

while (CAN_MSGAVAIL != CAN.checkReceive()){}

last_ms = millis();

}

void loop(){

unsigned char len = 0;

unsigned char buf[8];

char strOut[16];

digitalWrite(CAN_REC_DELAY, HIGH);

unsigned long ms = millis();

if (ms - last_ms > 1000){

cur_sec_indx++;

last_ms = ms;

}

if (cur_sec_indx >= 31){

Serial.println("# of messages per second in first 31s:");

int i;

for (i = 0 ; i < 31 ; i++){

sprintf(strOut, "%d ,", msg_per_sec[i]);

Serial.print(strOut);

}

delay(10000); //delay for 10 seconds

}else{

if(CAN_MSGAVAIL == CAN.checkReceive()){

CAN.readMsgBuf(&len, buf);

int canId = CAN.getCanId();

digitalWrite(CAN_SCOPE_PIN, lastState);

lastState = !lastState;

msg_per_sec[cur_sec_indx]++;

delayMicroseconds(218); /*data proc delay*/

}

}

digitalWrite(CAN_REC_DELAY, LOW);

}


