
Friendly Virtual Machines

Leveraging a Feedback-Control Model for Application Adaptation

Yuting Zhang Azer Bestavros Mina Guirguis Ibrahim Matta Richard West
{danazh, best, msg, matta, richwest}@cs.bu.edu

Computer Science Department,
Boston University, Boston MA

ABSTRACT
With the increased use of “Virtual Machines” (VMs) as ve-
hicles that isolate applications running on the same host, it
is necessary to devise techniques that enable multiple VMs
to share underlying resources both fairly and efficiently. To
that end, one common approach is to deploy complex re-
source management techniques in the hosting infrastruc-
ture. Alternately, in this paper, we advocate the use of self-
adaptation in the VMs themselves based on feedback about
resource usage and availability. Consequently, we define a
“Friendly” VM (FVM) to be a virtual machine that ad-
justs its demand for system resources, so that they are both
efficiently and fairly allocated to competing FVMs. Such
properties are ensured using one of many provably conver-
gent control rules, such as Additive-Increase/Multiplicative-
Decrease (AIMD). By adopting this distributed application-
based approach to resource management, it is not neces-
sary to make assumptions about the underlying resources
nor about the requirements of FVMs competing for these
resources. To demonstrate the elegance and simplicity of
our approach, we present a prototype implementation of
our FVM framework in User-Mode Linux (UML)—an imple-
mentation that consists of less than 500 lines of code changes
to UML. We present an analytic, control-theoretic model of
FVM adaptation, which establishes convergence and fair-
ness properties. These properties are also backed up with
experimental results using our prototype FVM implementa-
tion.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Distributed systems

General Terms
Management, Measurement, Performance, Design, Experi-
mentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VEE’05, June 11-12, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-047-705/0006 ...$5.00.

Keywords
Friendy Virtual Machines, Feedback Control, Resource Man-
agement

1. INTRODUCTION
The emerging trend of enabling the dynamic dispatch of
“guest” applications on powerful end-host systems necessi-
tates a proper way for guest applications to share the re-
sources in the hosting environment. Specifically, two com-
mon challenges must be addressed: (1) how could the ex-
ecution of such applications be isolated from one another
for safety and security purposes, and (2) how could the re-
sources of the underlying system be managed fairly and effi-
ciently. Commonly, the first challenge is handled by relying
on compile-time checks and on operating system capabili-
ties that ensure the integrity of address spaces. The second
challenge concerning resource management is often ignored
under the assumption that the end-host is over-provisioned
with resources, or else that traditional OS resource arbitra-
tion across applications (e.g., using CPU scheduling, mem-
ory management and disk scheduling) will mitigate that
challenge.

Relying on compiler and OS constructs for resource iso-
lation in general, and memory isolation in particular has
proven to be problematic [14, 20]. Moreover, the diversity
of platforms on which guest applications are developed as
well as those hosting them makes it harder to verify iso-
lation properties. This has fueled research in the area of
virtualization [5, 9, 23, 29, 31, 34, 35, 36, 39], (or group
of applications) could run on a different “Virtual Machine”
(VM). Since VMs can be trusted, in the sense of “sandbox-
ing” the untrusted applications and services they contain,
virtualization is seen as a promising approach for providing
security and protection. Indeed, the use of VMs has en-
abled services, possibly deployed by untrusted sources, to
be injected into a third party hosting infrastructure.

Motivation: The use of VMs as an architecture that pro-
motes safety and security through isolation does not mit-
igate the second challenge—that of ensuring efficient and
fair use of underlying resources. Due to the complexities
of the interactions between VMs, applications running on
these VMs, and services running on the hosting kernel, it
is generally accepted that the most practical approach to
deal with VM resource sharing issues is to ensure that the
system is “over provisioned”. In open systems, in which
services may be deployed on-demand, over provisioning is
an expensive proposition, and may not even be possible to
guarantee. This in turn would result in unpredictable per-
formance degradation as a result of increased contention for

1

resources by VMs and the applications they support. This
degradation could be in terms of efficiency (wasteful use of
resources, e.g., thrashing and excessive page faults) or fair-
ness (e.g., VMs being denied service).

Application Adaptation for Efficiency and Fairness:
In one sense, VMs are nothing but instances of applications
that need to share underlying resources fairly and efficiently.
Traditionally, efficiency is achieved by instrumenting the un-
derlying system to avoid being overloaded (by over-stressing
resources and hence operating in inefficient regions) through
admission control, for example, whereas fairness is achieved
through the use of potentially complex policies for schedul-
ing/allocating resources. Delegating resource allocation de-
cisions to an underlying system has a number of disadvan-
tages, including: (1) complicating the design of the under-
lying system which must include functionalities to deal with
contingencies that may or may not be needed for the particu-
lar mix of applications currently running on the system, and
(2) depriving the application of meaningfully adapting its
behavior to match available resources. A radically different
approach would be the adoption of a minimalistic end-host
system design, with all the complexities necessary for re-
source management pushed into the application layer. Such
an approach would be reminiscent of the end-to-end argu-
ment [32], which states that a certain functionality should
be pushed to higher layers (if possible) unless implementing
it at the lower layer achieves large performance benefits that
outweigh the cost of additional complexity at lower layers.1

Paper Scope and Contributions: In this paper we adopt
this end-to-end philosophy in the management of resources
underlying/supporting the execution of multiple applications.
While this philosophy (of application adaptation as opposed
to traditional resource arbitration by an underlying system)
is quite general, we believe that it is most appropriate for the
design of VMs. Thus, in this paper, we focus exclusively on
the design of VMs as the application of choice, noting that
our models, analysis, as well as much of our design and im-
plementation techniques are quite applicable to any applica-
tion whose execution needs to be “friendly” to other applica-
tions sharing the same underlying resources.2 We argue that
a Virtual Machine Monitor (VMM) or host OS kernel (as the
hosting environment) should be kept quite simple, and that
a VM (as the hosted application) should increase or decrease
its resource demands in a friendly way. To that end, in Sec-
tion 3, we develop control-theoretic models for application
adaptation, using simple Additive-Increase/Multiplicative-
Decrease (AIMD) rules.

We refer to a VM that dynamically adapts its resource
usage in this manner as a “Friendly” VM (FVM). Using
our FVM framework, which we present in Section 2, instead
of a complicated central multi-resource provisioning system
implemented in the VMM, each FVM actively adjusts its de-
mands of resources using some feedback-based control rules
(such as AIMD) to avoid the inefficiencies resulting from
overloading or underloading of resources, while at the same
time ensuring fairness of use across FVMs. In our FVM
prototype implementation, we treat a VM as a resource con-
straint unit. A VM-specific performance metric—the virtual
clock time—is used as the sole feedback signal that enables

1In IP networks, for example, the IP layer implements the
minimal functionality of packet forwarding, whereas error
and congestion control is left to the end system [12].
2Throughout this paper, we refer to the terms “applica-
tions” and “virtual machines” interchangeably, where ap-
propriate.

Hardware

Host OS/VMM

Guest OS Guest OS Guest OS

VM
APP APP APP APP APPAPP APP

VM VM

Figure 1: Virtual Machine Model

a VM to “infer” the status of underlying resources.3 We use
a common thread model as well as a simple sleep scheme to
adjust the resource consumption of each VM. By dynami-
cally adjusting the number of threads in the VM,4 and if
that is insufficient the sleep rate5 for the whole VM, we can
adapt the resource demand of each VM to efficiently and
fairly share the resources.

Our FVM framework is a general resource management
framework for VMs on a shared machine. It can be applied
to different types of existing VMs with minor code modifi-
cations. To demonstrate the elegance and simplicity of the
FVM concept, we have implemented a prototype FVM in
User-Mode Linux (UML), which is described in Section 4.
In Section 5 we show the advantages gained by this simple
mechanism in a number of experimental settings.

2. FVM: FRAMEWORK
In this section, we focus on general considerations and high-
level design decisions of our FVM framework. Figure 1 il-
lustrates a typical VM architecture, whereby multiple VMs
share the same “physical machine”, or host. At the low-
est level, right above the hardware layer, the host OS ker-
nel or VMM provides resource allocation to VMs. Within
each VM, several applications (or services) run on top of
the “guest” OS which in turn provides the customary set of
high-level abstractions such as file access and network sup-
port to applications running on the VM.

The main goal of our FVM framework is to allow an
efficient and fair sharing of system resources across VMs,
especially under moderate and heavy load conditions. Effi-
ciency implies that underlying system resources are neither
overloaded nor unnecessarily underutilized. Overload condi-
tions typically involve inefficiencies (e.g., significant paging
due to an excessive number of active VMs), whereas under-
utilization wastes system resources. Fairness implies that
each VM is allocated a proportionate share [6] of the bot-
tleneck resource for that VM.

Host-Level (Centralized) Resource Management: To
a hosting system—as well as to other VMs on that host—
a VM is not only a protection domain entity, but also a
resource consumption entity. Moreover, the demand for a
given resource by a VM depends not only on the applica-
tions executing on that VM but also on the demand and
availability of other resources as well. Traditionally, re-

3This is akin to TCP’s use of packet losses (or marking) at
the end system to infer whether congestion exists or not.
4This is akin to the use of the number of packets en route
as the control variable for TCP’s demand.
5This is akin to the use of timeouts to further reduce TCP’s
demand in case of severe congestion.

2

source management involves a one-way allocation, whereby
a central authority (e.g., host kernel or VMM) allocates
resources such as CPU and memory to entities compet-
ing for such resources. For CPU allocation, for example,
many schedulers have been proposed, from simple FCFS and
Round Robin algorithms to more complicated real-time and
progress-based schedulers. Due to the diverse nature (e.g.,
CPU- vs memory- vs I/O-bound) and often dynamic char-
acteristics (e.g., lifetimes and interaction with user or other
processes) of applications, it is hard for a centralized author-
ity such as a host OS or a VMM to achieve fairness without
taking these factors into consideration.

Essentially, host OS or VMM resource allocation de-
cisions are made complicated by the unpredictable interac-
tions involving the demands of all VMs on the various re-
sources, and also the allocation policies for these resources.
Moreover, notice that VMs, in turn, have to support their
own applications through whatever resources they are allo-
cated by the host OS or VMM. For example, the host OS
may delay the delivery of a packet from the network card
to the intended VM for scheduling purposes. However the
real-time application running on top of the VM may discard
the packet if it arrives later than expected. Other examples
of inappropriate decisions taken by the host OS are abound.

Application-Level (Distributed) Resource Manage-
ment: Rather than devising a complicated centralized so-
lution (e.g., in the VMM) to the problem of multi-resource
allocation across VMs, our approach is to delegate the re-
sponsibility of ensuring efficiency and fairness to the VMs
themselves, effectively deploying a distributed resource man-
agement strategy using feedback-based adaptive control in
each VM. Such an approach has many desirable features
and advantages. First, it is transparent to the applications
running on top of the VMs as well as to the OS hosting
the VMs. Second, it is resource agnostic in the sense that
the VM adapts its demand to meet efficiency and fairness
requirements for whatever resource happens to be the bot-
tleneck for that VM. Third, it allows for multiple adapta-
tion strategies to be used in different VMs as long as these
adaptation strategies are compatible.6 This enables a VM’s
adaptation strategy to be tailored to the requirements of the
applications they are likely to support.

To enable a VM to adaptively adjust its demand of
underlying resources, we must devise (i) a mechanism via
which feedback is relayed to the VM concerning the state of
the bottleneck resource for that VM, (ii) a mechanism via
which the VM could scale up or down its demand, and (iii)
an adaptation strategy that sets the demand of a VM based
on the feedback signal in a friendly way. In the remainder of
this section we discuss choices for the design of these three
mechanisms.

2.1 Feedback Signal: Overload Detection
An application may use a variety of performance metrics
to infer the state of underlying resources in general, and
whether these resources are overloaded in particular. Exam-
ples include system-centric metrics such as CPU utilization,
network utilization, and page fault rate, or process-centric
metrics such as response time, jitter, and throughput.

CPU utilization, network utilization, and page fault
rate are examples of resource-specific metrics, which are not
particularly useful in predicting overload conditions unless

6Different adaptation strategies are said to be “compatible”,
if they converge (at steady state) to a fair allocation of the
bottlenecked resource despite their different reaction to sud-
den changes in resource availability [4].

the corresponding resources (CPU cycles, network band-
width, and virtual memory, respectively) happen to rep-
resent the “bottleneck” of the system. More importantly,
detecting overload using any one such metric will trigger an
application to reduce its demand even if this application is
not consuming much of that resource’s capacity. For exam-
ple, mitigating excessive CPU utilization by throttling down
an I/O-bound application would be counter productive. Be-
sides, these metrics can only be captured with special sup-
port from the host system—e.g., through the use of special
APIs or programming style interface such as the /proc inter-
face in Linux [7]. Requiring such support from underlying
layers is not in the spirit of the end-to-end argument that
application adaptation seeks to advance.

Process-centric metrics such as response time and through-
put do not suffer from the above disadvantages. For in-
stance, a significant increase in response time measured by
an application is symptomatic of an overload condition for
the underlying resource that happens to be the bottleneck
for that application. Clearly, measuring such process-centric
metrics can be done in an “end-to-end” fashion, requiring
no support from the underlying system.

Virtual Clock Time: We now turn our attention to how a
VM—our application of choice—could detect overload con-
dition using response time. To that end, a natural choice
would be the Virtual Clock Time (VCT), which is common
to all VM implementations. VCT is defined as the real-time
interval between two consecutive virtual clock cycles (on the
VM). Thus, one can think of VCT as the response time of
the hosting system to a request by a VM for advancing its
clock by a tick (or equivalently, it is the inverse of the virtual
clock rate).

When a VM contends for an overloaded resource, the
value of VCT will increase to reflect the waiting time for that
resource. While the relationship between VCT and resource
contention is monotonic, the manner in which this relation-
ship manifests itself is highly dependent on the resource in
question—how it is shared, apportioned, or scheduled. For
example, if CPU cycles are the bottleneck, then an increase
in the number of VMs will ideally7 result in a linear increase
in VCT. However, if other resources such as memory become
the bottleneck, then an increase in the number of VMs (or
in the number of threads within each VM) will result in a
super-linear (or even “exponential”) increase in VCT. This is
so because the increased multiprogramming level will result
in increased paging activities since the same main memory
size on the host system must now cater to a much larger
working set. The impact of an increase in the rate of page
faults (even if slight) will thus translate to a huge increase
in VCT, which can be used by the VM as an indicator of
overload conditions.

It is important to note that a VM may well demand
the heavy use of multiple resources (e.g., memory and I/O).
However, only one of these resources will be first to trig-
ger a significant increase in VCT, making that the “bottle-
necked” resource for that VM. Thus, we argue that large
changes in the VCT of a VM will be associated with a sin-
gle “congested” resource, as opposed to other resources that
may be used by the VM.8 This allows VMs to be naturally
partitioned into “bottleneck-equivalent classes.” As we will

7In practice, the relationship is super-linear due to various
overheads related to the increased level of concurrency.
8For example, a CPU-bound VM will not experience a large
increase in its VCT (on average) if the hosting system is
only experiencing significant I/O contention.

3

briefly discuss later in this section, and analytically show in
the next section, with proper adaptation strategies, all VMs
in a bottleneck-equivalent class will share that bottlenecked
resource fairly.

Congestion Signal Generation: To detect whether there
is resource congestion, a VM could measure the ratio be-
tween the current VCT and the minimum VCT observed
over a longer time scale. To smooth out short-term vari-
abilities, current VCT can be estimated as an average value
V CT (t) at time t using an Exponentially-Weighted Moving
Average (EWMA) with parameter γ (0 < γ < 1) on the
instantaneous values of V CT (t) as follows:

V CT (t) = (1 − γ) · V CT (t− 1) + γ · V CT (t) (1)

The minimum VCT could be seen as a baseline value against
which the current VCT is evaluated. Given an appropriate
window of time w, the minimum VCT could be estimated
as follows:

V CTmin(t) = min{V CT (t− i) : i = 1, . . . , w} (2)

The congestion signal is calculated by computing the ratio
R between V CT (t) and V CTmin(t) and comparing that to
some chosen threshold H (e.g., H = 2). This ratio could be
seen as a measure of the “slowdown” caused by contention
for underlying resources. If R > H , then the resource con-
gestion signal is set to 1, otherwise, it is set to 0.9

2.2 Control Signal: Resource Consumption
For an application in general (and a VM in particular) to
adapt its demand of underlying resources, a mechanism must
be devised that maps a “control signal” to actual demand.
In this section we present two complementary approaches:
(1) The imposition of an upper bound on the Multi-Programming
Level (MPL), e.g., maximum number of processes or threads
in an application, and (2) the imposition of an upper bound
on the rate of execution, or equivalently a lower bound on
periodic timeout or sleep time for an application.

MPL Control: Most applications and services use pro-
cesses and threads to scale up their performance. Clearly,
a thread can be viewed not only as a unit of execution,
but also as a unit of resource consumption, whereby each
thread of execution consumes additional resources such as
CPU cycles, memory, I/O bandwidth, etc. By virtue of its
structure, a VM can be considered as a multi-threaded appli-
cation as illustrated in Figure 1. Within each VM, a number
of threads are available to execute the various applications
running within that VM. Hence, the resource demand of
each VM could be bound by a limit on the maximum num-
ber of threads that may be active at any given time.

MPL control in a VM can be implemented by suspend-
ing or resuming threads within a VM. While it is true that
each thread within the VM does not necessarily consume the
exact same amount of resources,10 we expect that such het-
erogeneity will not be problematic unless the MPL is quite
small. In such cases (when MPL is too small and certainly
when MPL=1), a VM must resort to a different mechanism
for adapting its consumption as we will see next.
9Such an on-off signal makes analysis of the control system
quite complex, thus in Section 3, we use a probabilistic func-
tion to map R and H to a congestion signal.

10In practice, if a VM is hosting a multi-threaded service
(e.g., a web server or an end-system multicast agent, etc.)
then it may well be the case that threads within the VM
will be comparable in terms of their resource consumption
needs—both in terms of the nature of resources they need
(CPU vs I/O bound) as well as the amount of use.

Rate Control: Another mechanism that could be used to
control demand for resources is to throttle the execution of
a given VM by forcing it to periodically sleep. By forcing
a VM to sleep for a minimum “timeout” Ts, we effectively
cap the maximum execution rate for that VM to be propor-
tional to 1/Ts. Rate control is an effective mechanism to
offload underlying resources, especially when reducing the
number of threads is not feasible (e.g., an application has
only one thread of execution) or else the various threads in
an application perform radically different functionalities, or
have very different resource consumption profiles.

2.3 Controller: Adaptation Strategy
By dynamically adjusting the number of active threads in
it, or by adjusting its periodic sleep interval, an application
such as a VM could adapt its resource demand. Clearly, this
adaptation will follow some prescribed increase/decrease rules
that guarantee desirable properties of efficiency and fair-
ness. An example of such rules would be the additive-
increase/multiplicative-decrease (AIMD) rule, which would
allow a VM to probe the capacity of underlying resources
by incrementing demand (e.g., number of threads or rate of
execution) in a linear fashion, but would force this demand
to decrease exponentially when a feedback signal indicates
an overload condition.

While AIMD is one example of an adaptation rule that
is known to converge to fairness and efficiency, a whole spec-
trum of such increase/decrease rules have been explored in
the literature—see [4, 21] for examples. In this paper, while
we focus on AIMD control, it should be clear that other
adaptation strategies could well be adopted in our frame-
work, especially when they result in other favorable prop-
erties (e.g., smoother adaptation, or aggressive probing of
available underlying resources, faster convergence, etc.)

3. FVM: MODEL AND ANALYSIS
In this section, we present a non-linear, dynamic model of
our proposed FVM framework. Specifically, we present a
model whereby a number of VMs adapt their demand to
match the capacity of underlying system resources. We then
present a linearized model and investigate steady-state and
convergence/stability properties.

3.1 Model Derivation
We consider a dynamic model of V applications—namely,
VMs—sharing a single resource. Let nv(t) denote the de-
mand from each application at any instant of time t. For
example, such demand can be expressed as the number of
threads each VM owns. The total demand,

PV
v=1 nv(t), de-

termines the total resource usage, m(t). One possible map-
ping from demand to usage could be expressed using the
following linear relationship:

m(t) = K1 ×
VX

v=1

nv(t) (3)

where K1 is the number of resource units consumed by each
thread. If we consider memory to be the bottlenecked re-
source, then m(t) reflects the total demand on memory us-
age from all threads. An increase in total demand m(t) will
typically translate to additional overhead, which in turn will
translate to an increase in service time (e.g., VCT slowdown)
or equivalently a decrease in service rate. Such an overhead
could be viewed as the price that a VM must pay for ac-
quiring the resource when total demand is m(t). As we

4

AIMD K1

EWMA

p(t)nv(t)
+

m(t)

g(t)c(t)

Figure 2: Block diagram for application adaptation

hinted earlier in the paper, the relationship between price
(VCT slowdown in our case) and demand is likely to fol-
low a super-linear function. For example, as the demand
for memory increases, paging activity increases at a faster
rate, which may result in a super-linear increase in VCT. In
general, we can depict the VCT slowdown p(t) at time t as
a function of the total demand m(t). While there could be
many possible instantiations of this function, for simplicity
we use the following equation:

p(t) = m2(t) (4)

In a real setting, the price, measured as the slowdown in
VCT, may exhibit high variability over short time scales,
due to the granularity of overhead events, such as delays
caused by page faults. Such variability could be smoothed
out over longer time scales using EWMA averaging, similar
to equation (1). Hence, the average VCT slowdown (aver-
age price) g(t) at time t evolves according to the following
equation:11

ġ(t) = −γ(g(t) − p(t)), 0 < γ < 1 (5)

where γ reflects the weight given to the instantaneous VCT
slowdown p(t). Based on the average VCT slowdown, a
congestion signal, c(t), is generated. This congestion signal
can be expressed as a linear function of the average VCT
slowdown according to the following equation:

c(t) = σ × g(t) (6)

The value of σ will typically bound the congestion signal at
any time instant below 1. By choosing σ to be the recipro-
cal of the maximum VCT slowdown (maximum price), such
condition is ensured.

Under AIMD, each application adjusts its demand based
on the congestion signal c(t) according to the equation:

ṅv(t) = (1 − c(t)) − nv(t)

2
c(t) v = 1, 2, .., V (7)

where the first term represents the additive increase of one
unit of demand and the second term, represents the multi-
plicative decrease by halving the demand. Figure 2 depicts
the general control block diagram for the model presented
above.12

3.2 Impact on Efficiency and Fairness
We instantiate the above model for 5 VMs. We choose K1

to be 10 units. The averaging weight, γ, in equation (5)
is chosen to be 0.1 and σ, in equation (6) is chosen to be
2.5×10−6. We solve the above fluid model numerically for a
careful and continuous tracking of the model variables even
through nonlinear regions. We assume that each one of the

11In general, we denote that change in a variable x(t) by ẋ(t)
12Since VMs are running on the same physical machine, the
effect of feedback delay should be negligible, and hence is
not accounted for in our model.

five VMs starts with an initial number of threads.13 Let the
initial number of threads for the five VMs be 4, 7, 10, 13 and
16 threads, respectively. Figure 3(a) shows how the various

10 20 30 40 50
0

5

10

15

20

Time (Steps)

N
um

be
r

of
 T

hr
ea

ds

VM 1
VM 2
VM 3
VM 4
VM 5

(a) Application Adaptation

10 20 30 40 50
0

5

10

15

20

Time (Steps)

N
um

be
r

of
 T

hr
ea

ds

VM 1
VM 2
VM 3
VM 4
VM 5

(b) Admission Control

Figure 3: Convergence to Fairness (a) With Appli-
cation Adaptation; (b) With Admission Control

VMs converge to a fair and efficient allocation of threads
using the above model and prescribed AIMD adaptation.
During the first 5 steps, each VM increases its demand since
g(t) is still lagging behind p(t). Once g(t) catches up with
p(t), the appropriate congestion signal, c(t) will ensure a fair
convergence across the VMs. Clearly, the convergence time
depends on our choice of parameters. In particular, a small
value of γ will provide good stability, but the response of the
system to sudden changes in resource availability (e.g., due
to sudden increase/decrease in number of VMs) maybe be
sluggish. Having a larger γ will decrease convergence time,
but may result in a more oscillatory transient behavior (e.g.,
larger overshooting).

We compare this model to a centralized overload pro-
tection approach whereby the system is protected against
congestion through an admission controller. The admission
controller decides the admission ratio, a(t), of new threads
using a Proportional-Integral (PI) controller. A PI con-
troller is one whose control signal is proportional to the error
signal and its integral, where the error signal is computed as
the difference between p(t) and some target level, PT . Thus
the change in the admission ratio, a(t), can be described by
the equation:

ȧ(t) = K2 × (PT − p(t)) (8)

where a(t) is bounded from above by 1 and from below by
0 and K2 is the PI constant that controls how fast the con-
troller reacts to the error signal. Higher values of K2 in-
duce faster convergence, but with the drawback of possible
oscillations; lower values provide better stability, with the
possibility of a more sluggish response to sudden changes in
resource availability.

We choose K2 to be 1.0 × 10−6 and PT to be 100000.
Figure 3 (b) represents the convergence of the number of
threads per VM to steady-state values, when p(t) reaches
PT . One can easily observe that such convergence does not
lend itself to any fair allocation of the underlying resource.
As for efficiency, both models maintain a fixed number of
threads over time, ensuring that efficiency is not compro-
mised.

3.3 Model Linearization and Stability
Setting equation (7) to zero, gives the steady-state relation-
ship between the demand of each application and the con-

13In a real setting, VMs may not have started at the same
time. Thus, this initial value should be viewed as reflecting
an unbalanced allocation of resources (threads) across VMs
at some arbitrary point in time.

5

gestion signal. We let x∗ denote the steady-state value for
variable x.

n∗v =
2

c∗
− 2 (9)

p∗ = g∗ = m∗2 (10)

We analyze the stability of the above model by lin-
earizing the system around its steady-state operating region.
Equation (7) becomes:

¯̇nv(t) = (−1 − nv
∗

2
)c̄(t) +

−c∗
2
n̄v(t) (11)

where x̄ denotes the linearized form of the variable x (i.e.,
perturbations around the steady-state value). Equation (4)
becomes:

p̄(t) = 2m∗m̄(t) (12)

Taking the Laplace transforms for the above closed-loop
model, we get the open-loop transfer function L(s):

L(s) =
αV K12m∗γσ
(s+ γ)(s+ β)

(13)

where α and β are given by (1 +
n∗

v
2

) and c∗
2

, respectively.

Let G be equal to 3
p

4σ(K1V)2 and assuming that n∗v �
2 and that σ is chosen so that γG � 0.5, then the closed
loop characteristic equation can be derived to be:

s2 +
1

G
s+ 0.5 = 0 (14)

The location of the roots of the characteristic equation
in the s-plane determines the stability of the overall system
and the nature of its transient behavior [28]. The roots of
characteristic equation r1 and r2 are given by:

r1, r2 =
−1

2G
±

q
1

G2 − 2

2
(15)

As the value of G in equation (15) varies from 0 to√
0.5, both roots are real and inside the left half of the s-

plane, ensuring exponential convergence. As G increases
beyond

√
0.5, the roots become imaginary, but their real

components are still on the left half of the s-plane, ensur-
ing oscillatory convergence. Notice that there is no positive
value for G that would cause the system to be unstable,

since the positive value of
q

1
G2 − 2 is always less than 1

G
.

Notice also that our assumption about n∗v � 2 ensures that
c∗ is relatively much smaller than 1 (cf. equation 9).

4. FVM: IMPLEMENTATION
Our prototype FVM implementation is based on a modified
version of User Mode Linux (UML). UML’s open source code
is one of the reasons that motivated the choice of this plat-
form. Moreover, UML’s implementation is relatively simple
and easy to modify.

UML Overview: UML [35] is a virtual machine abstrac-
tion that allows guest Linux systems and processes to run at
user-level on top of a host Linux system. All of UML’s de-
vices are virtual, being constructed from software resources
provided by the underlying host. Essentially, UML supports
any application that is able to run on the host, including it-
self. Unlike other VMs such as VMware [36], UML is a port
of the Linux kernel to the system call interface rather than
to a hardware interface.

Monitor
VCT

Controller
MPL

VM

Host OS/VMM

Hardware

Rate

Monitor
VCT

Controller
MPL

VM

Rate

Figure 4: FVM Control Model

Currently UML has two modes: the tt (Tracing Thread)
mode and the skas (Separate Kernel Address Space) mode.
In skas mode, guest processes are seen as threads within
a single host process. For performance reasons, our FVM
implementation is based on skas mode of UML.

FVM Prototype Implementation Details: Our imple-
mentation of FVM requires only a few minor modifications
to UML code (located in the arch/um directory in the Linux
source tree). The entire changes add about 500 lines of new
code to UML. Based on our presentation in Section 2, Fig-
ure 4 shows the basic components of our FVM framework.
Multiple FVMs share underlying resources, with each FVM
supporting a number of threads for its own applications.
Each FVM has a “Monitor” that measures the feedback sig-
nal (namely, the slowdown R in VCT) and a “Controller”
that adjusts the level of demand offered by the FVM us-
ing either MPL or rate control (i.e., the number of threads
within the FVM or the FVM sleep time, respectively). The
FVM “Monitor” is implemented by measuring the real-time
interval between two consecutive virtual clock interrupts, us-
ing the Pentium-based Timestamp Counter (TSC) for high
precision. In UML, clock interrupts are implemented using
the SIGALRM and SIGVTALRM timers. Periodically, every period
Tc (or equivalently every Nclk virtual clock interrupts), the

value of V CT (t) is calculated from an EWMA of the in-
tervals between successive clock ticks during the period Tc.
The minimum value, V CTmin(t), is then calculated over a

fixed window of w non-overlapping values of V CT (t). This
enables the FVM “Monitor” to generate the feedback signal,
namely, whether or not overload conditions exist.

The FVM “Controller” is invoked periodically every
Tc interval. Based on whether or not the FVM “Monitor”
signals an overload condition, the “Controller” adjusts the
maximum number of threads (and possibly the sleep time, if
the MPL value reaches 1) using an “Additive Increase Mul-
tiplicative Decrease” (AIMD) scheme. Based on the newly
calculated limit on the number of threads allowed in each
FVM, the “Controller” may need to suspend currently ac-
tive threads (in case of a multiplicative decrease), or it may
resume currently suspended threads (in case of an additive
increase). SIGSTOP and SIGCONT job-control signals are used
to suspend and resume randomly selected threads.

To ensure that the FVM does not fork threads in excess
of the limit calculated by the FVM “Controller”, a check is
performed on each thread creation system call (e.g., through
a call to sys fork(sys clone(), sys vfork()). As we men-
tioned before, rate control (if enabled and needed, e.g., when
MPL=1) is implemented in the “Controller” simply by forc-
ing the entire virtual machine to sleep for a period of time
Ts using the sleep function. Rate control follows an AIMD
adaptation whereby 1/Ts is increased linearly and decreased
multiplicatively.

The operation of the “Monitor” and “Controller” in

6

the FVM is parameterized (and can be changed) using a
script. The settings include the timescales for monitoring,
control, and measurement, as well as the initial values for the
maximum number of threads allowed for a given FVM and
the constants of our adaptation strategies. Since our FVM
implementation in UML allows for two adaptation strategies
(MPL control and rate control), we must specify “constants”
for the AIMD rules of both control.

For the prototype used in this paper, Table 1 shows
the baseline settings of our FVM implementation in UML.
Unless otherwise specified, these settings are used in our
experimental section.

Parameter Setting
Monitoring/control Period (Tc) 5 sec
Window of V CTmin (Tw = w × Tc) 60 sec
EWMA constant for V CT (γ) 0.3
Initial limit on number of threads 10
VCT slowdown threshold (H) 2.5
AIMD additive constant (MPL ctrl) 1 thread
AIMD additive constant (Rate ctrl) 0.1 hz (=1/Ts)
AIMD multiplicative constant 1.5

Table 1: Baseline Settings of FVM Prototype

Underlying System Requirements and Functional-
ity: The application-level adaptation we advocate in this
paper in general, as well as its specific FVM instantiation
presented in this section, makes some inherent assumptions
about the manner in which the underlying system (e.g.,
host OS/VMM) allocates/schedules its resources to com-
peting processes (e.g., VMs). Specifically, there is an in-
herent assumption that underlying resource allocators are
not biased in that each resource is shared across competing
processes in proportion to corresponding process demands.
For instance, a simple round-robin scheduler is “unbiased”
whereas a multi-level feedback scheduler is not.14 If under-
lying resource managers base their decision on other consid-
erations, then application-level adaption may not converge
to efficiency and fairness due to the unpredictability of the
interference between the application and underlying system
control planes.

Clearly, the resource management strategies deployed
in Linux (i.e., the underlying system in our FVM prototype
implementation) are not entirely “unbiased”. For instance,
when a Linux system is faced with extensive paging (i.e.,
thrashing), the kernel swaps out least frequently used pages
first. Furthermore, when the system is out of memory, Linux
may terminate a subset of processes, which is clearly unfair
to processes (especially those with minimal memory require-
ments). Luckily, Linux resorts to such draconian measures
only under overload conditions. Such conditions should not
materialize by virtue of the application adaptation frame-
work we have advocated and implemented in this paper.
That said, one can readily see that our framework could
be implemented (and is likely to be far more effective) on
a much “thinner” underlying system with minimalistic re-
source allocation strategies.

The above discussion begs the question of what “func-
tionality” (other than minimalistic unbiased resource man-
agement) should an underlying system provide. The frame-
work we advocate in this paper guarantees efficiency and

14Notice that our requirement for unbiased underlying re-
source scheduling does not necessarily imply fairness. In-
deed, an unbiased scheduler such as round robin may well
be unfair to I/O bound processes, for instance.

fairness by relying on the “friendliness” of competing appli-
cations. If such a framework is to be used in an open en-
vironment in which such friendliness could not be expected
of all applications, then an important functionality of the
underlying system would be to provide incentives for appli-
cations to be friendly. To that end, one effective mechanism
would be the implementation of resource policing function-
alities. By “policing” we mean the ability of the system to
identify misbehaving applications, i.e., those which do not
adapt in a manner compatible with prescribed rules, such
as AIMD. It is important to note that policing could be im-
plemented through random sampling of resource usage by
various applications over an appropriate timescale. While
such policing functionality will incur overhead, it should be
evident that such an overhead would pale in comparison to
the overhead of requiring the system to perform clever (and
certainly complex) resource management on behalf of appli-
cations.

5. FVM: PERFORMANCE EVALUATION
Using our prototype FVM implementation, we conducted
a series of experiments to evaluate the performance of our
framework in terms of efficiency and fairness. Two sets of ex-
periments were conducted. In the first, our FVM framework
was used to host a set of memory-intensive “benchmark” ap-
plications. In the second, our FVM framework was used to
host a set of “real” applications—namely the Apache web
server. Before presenting results from these two sets of ex-
periments, we discuss briefly the various performance met-
rics used in our evaluation.

The first metric we consider is the Virtual Clock Time
(VCT), as defined earlier in the paper. The value of VCT
could be seen as a gauge for responsiveness. The second
metric is throughput, which we define to be the total num-
ber of completed work units (e.g., a single execution of a
hosted application, or a response from a web server) per
unit time. The third metric we consider is the fairness in-
dex. To capture both the fairness and efficiency of an adap-
tation strategy, we define the Fairness Index (FI) using the
following equation:

FI = 1 −
qPV

i=1 (xi − oi)2qPV
i=1 o

2
i

(16)

where V is the total number of VMs, xi is the performance
metric for VMi for which the index is to be calculated, oi

is the optimal value of the metric under a perfectly fair and
efficient allocation. Notice that FI=1.0 implies optimal per-
formance with respect to both efficiency and fairness. FI will
decrease if either efficiency or fairness are degraded. In our
experiments, we use throughput as the underlying metric for
calculating FI.

5.1 Benchmark Application Experiments
The application benchmark we used was developed to em-
ulate a memory-intensive application as follows. First, the
application grabs 1MB of buffer, reads data from a file into
this buffer, performs some computations, writes back the
content of the buffer to another file, and then frees memory.
Each VM has a number of threads, each executing the above
operations repetitively. To generate different workloads, we
vary the initial number of threads in each VM or the number
of VMs on the host. For each such workload, the system is
allowed to run for 10 minutes before results are collected.

7

The underlying physical machine used in this set of ex-
periments is a 2.4GHz Pentium IV with 512KB of cache and
1.2GB of RAM. To ensure that memory is the bottlenecked
resource, a background application is used to lock 800MB
of memory, leaving only 400MB of memory for the VMs to
share.

Figure 5 shows the values of VCT, throughput, and FI
when the number V of VMs is varied from 1 to 6, with each
one of the VMs hosting a total of 50 benchmark application
threads. For each metric, we show results obtained with a
standard UML VM (the dashed line) as well as with our
FVM prototype implementation in UML (the solid line).

The results show clearly the effect of overload on both
UML and FVM. Without adaptation, as the number of VMs
increases the performance reflected by VCT and through-
put values degrades significantly. With FVM adaptation,
the degradation is quite graceful.15 Notice that with three
or less VMs running on the host, the available memory is
large enough, allowing for an efficient operation, making the
three metrics almost the same, whether or not adaptation is
employed. However, beyond three VMs, the performance of
non-adaptive VMs deteriorates rapidly (superlinearly) com-
pared to that of adaptive VMs. With six VMs sharing the
host, the total throughput with adaptation is more than
400% that without adaptation. Linux’ suspension policies
designed to thwart the effects of thrashing (due to extensive
paging) can be seen clearly in the sudden drop in FI when
the number of VMs reaches and exceeds four.

Figure 6 shows the values of VCT, throughput, and
FI when a total of two VMs (V = 2) are running on the
host, with each VM supporting the execution of a number
of threads, which we vary from 1 to 300 per VM. One can
see a very similar behavior to that observed in Figure 5.
An interesting observation from this experiment is that un-
der very light loads—namely when the number of threads
per VM is below 20—our FVM approach lags (albeit very
slightly) in terms of total bandwidth. Under such circum-
stances, unnecessary adaptation results in a slight degrada-
tion in performance.

5.2 Web Server Experiments
To evaluate the performance of our FVM framework in more
realistic environments, we used our FVM prototype (as well
as an unmodified UML VM) to host a real web server ap-
plication. For that purpose, we used the popular multi-
threaded Apache 2.0 web server. A total of four VMs are
used in each experiment, with each VM hosting an Apache
server.

To vary the workload on the four VMs, we used httperf
clients [27] running on Linux 2.4.20 to generate HTTP session-
based workloads. Session-based workloads are commonly
used in the literature to evaluate various performance char-
acteristics [38, 15, 11]. In our experiments, we vary the
number of sessions, with each session repeatedly generat-
ing new CGI requests. To respond to a CGI request, the
Apache server forks a new CGI thread to execute a CGI
program, which reads and writes a 1MB chunk of memory,
and then sends out a 4KB html file to the httperf client.
Four client machines are used to run the httperf synthetic
workload generator, with each machine targeting one of the
VMs. The httperf client machines are 2.4GHz Pentium IV
with 1.2GB of RAM, whereas the server machine shared by
the four VMs is a 1.4GHz Pentium IV with 512MB of RAM.

15The small, graceful performance degradation is due to ex-
pected overheads due to increased context switching when
the number of FVMs increases.

Figure 7 shows the values of VCT, throughput (number
of successful HTTP transfers per second), and FI when the
four VMs are running on the host, with each VM subjected
to a synthetic workload that we vary between 20 and 140
sessions. For each metric, we show results obtained with
a standard UML VM (the dashed line) as well as with our
FVM prototype implementation in UML (the solid line). For
each load setting, we run the system for 20 minutes, with
data collected every 5 seconds. The results are quite similar
to those obtained in the previous set of experiments (for the
memory intensive benchmarking application)—highlighting
the efficiency and fairness of application-level adaptation,
especially under heavy loads.

Figure 8 and Figure 9 show the observed values of VCT
and achievable throughput (measured in HTTP gets per sec-
ond) under a low load (of 60 sessions per VM), a moderate
load (of 100 sessions per VM), and a heavy load (of 120
sessions per VM). In both figures, the values of VCT and
throughput are shown for each one of the four VMs (i.e.,
Apache servers) over time, averaged over 50 second inter-
vals. The top row in each figure corresponds to the results
obtained using vanilla UML, whereas the bottom row cor-
responds to the results obtained using our FVM prototype.

The results in Figure 8 and Figure 9 show that the ad-
vantage of adaptation is less pronounced under light loads.
Under moderate loads, without FVM control, the system os-
cillates for a long while before eventually converging, whereas
using FVM control, the system converges much faster. Un-
der heavy loads (when the system is effectively in overload),
the lack of FVM control results in a very poor behavior,
whereby only one VM (the web server on VM1) able to re-
spond adequately to its workload, with all three other VMs
effectively shut out (as indicated by the wild variation in
their VCT and the significantly low throughput). Under
the same load conditions, when FVM control is used, the
four VMs adapt their demand, resulting in fast convergence
to a fair and efficient sharing of the host’s capacity.

6. RELATED WORK
Our FVM framework spans a number of active research ar-
eas. In this section, we briefly summarize how prior work in
these areas relates to ours. Given the huge literature in these
areas, our citations are only meant to be representative.

Application-level Resource Management: A signifi-
cant number of OS architectures have adopted the “end-to-
end argument” [32] by providing user-level resource man-
agement APIs (as is done in microkernels, using user-level
services [24, 2], and in exokernels [16] using library operating
systems). Nemesis [18] is an OS designed to deliver Quality-
of-Service (QoS) guarantees to applications, and uses ideas
similar to the exokernel in terms of application-specific mul-
tiplexing of system resources such as memory. All these
system designs allow resource-management policies of the
OS, including scheduling, memory management, and I/O,
to be tailored for a specific application. While safety and
efficiency are central to these systems, there is no explicit
support for applications to friendly manage resources in an
adaptive manner. Specifically, the notion of a feedback sig-
nal from the underlying system, with which applications can
make informed decisions about their resource demands, is
not integral to these system designs.

Resource Management in VMs: Recent research on
VMs, such as Denali [39] and Xen [5], focus on efficient
techniques to enforce resource isolation. Techniques such as
paravirtualization are used to expose part of the hardware

8

1 2 3 4 5 6
0

500

1000

1500

2000

of VMs

V
irt

ua
l C

lo
ck

 T
im

e
Without FVM
With FVM

1 2 3 4 5 6
0

1

2

3

4

5

6

7

of VMs

T
hr

ou
gh

pu
t

Without FVM
With FVM

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

of VMs

F
ai

rn
es

s

Without FVM
With FVM

Figure 5: Benchmarking results showing performance metrics vs number of VMs (# threads=50)

1 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

of threads per VM

V
irt

ua
l C

lo
ck

 T
im

e

Without FVM
With FVM

1 50 100 150 200 250 300
0

1

2

3

4

5

6

7

of threads per VM

T
hr

ou
gh

pu
t

Without FVM
With FVM

1 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

of threads per VM

F
ai

rn
es

s

Without FVM
With FVM

Figure 6: Benchmarking results showing performance metrics vs number of threads per VM (# VMs=2)

20 40 60 80 100 120
0

100

200

300

400

500

600

700

of sessions

V
irt

ua
l C

lo
ck

 T
im

e

4VMs−without FVM
4VMs−with FVM

20 40 60 80 100 120
0

0.5

1

1.5

2

of sessions

T
hr

ou
gh

pu
t

4VMs−without FVM
4VMs−with FVM

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

of sessions

F
ai

rn
es

s

4VMs−without FVM
4VMs−with FVM

Figure 7: Performance of VM-hosted Web servers under varying number of httperf sessions (load).

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

Time(s)

V
irt

ua
l C

lo
ck

 T
im

e
(m

s)

VM1
VM2
VM3
VM4

(a) Light load (60 sessions) / UML

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

Time(s)

V
irt

ua
l C

lo
ck

 T
im

e
(m

s)

VM1
VM2
VM3
VM4

(b) Moderate load (100 sessions) / UML

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

Time(s)

V
irt

ua
l C

lo
ck

 T
im

e
(m

s)

VM1
VM2
VM3
VM4

(c) Heavy load (120 sessions) / UML

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

Time(s)

V
irt

ua
l C

lo
ck

 T
im

e
(m

s)

VM1
VM2
VM3
VM4

(d) Light load (60 sessions) / FVM

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

Time(s)

V
irt

ua
l C

lo
ck

 T
im

e
(m

s)

VM1
VM2
VM3
VM4

(e) Moderate load (100 sessions) / FVM

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

Time(s)

V
irt

ua
l C

lo
ck

 T
im

e
(m

s)

VM1
VM2
VM3
VM4

(f) Heavy load (120 sessions) / FVM

Figure 8: Evolution of Virtual Clock Time (VCT) for each VM over time

9

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

Time(s)

T
ho

ug
hp

ut
VM1
VM2
VM3
VM4

(a) Light load (60 sessions) / UML

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

Time(s)

T
ho

ug
hp

ut

VM1
VM2
VM3
VM4

(b) Moderate load (100 sessions) / UML

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

Time(s)

T
ho

ug
hp

ut

VM1
VM2
VM3
VM4

(c) Heavy load (120 sessions) / UML

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

Time(s)

T
ho

ug
hp

ut

VM1
VM2
VM3
VM4

(d) Light load (60 sessions) / FVM

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

Time(s)

T
ho

ug
hp

ut

VM1
VM2
VM3
VM4

(e) Moderate load (100 sessions) / FVM

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

Time(s)

T
ho

ug
hp

ut

VM1
VM2
VM3
VM4

(f) Heavy load (120 sessions) / FVM

Figure 9: Achievable throughput per VM-hosted Web server over time.

interface, thereby reducing the overheads of total machine
virtualization. This enables a larger number of VMs to exe-
cute concurrently on a single host, which would be beneficial
for secure (virtual) webservers supporting many thousands
of clients. Denali adopts a static allocation scheme to parti-
tion resources amongst VMs, which makes it difficult to fully
utilize all resources, especially in an open system in which
VMs may be deployed (and their workloads changed dynam-
ically). In Xen[5], admission control and resource reserva-
tion are used when starting new VMs. To reduce overall
memory pressure on the system, Xen is capable of dynam-
ically reclaiming pages of memory from some of its hosted
VMs, for allocation to others.

Our FVM work complements the above work on ma-
chine virtualization. In fact, it is possible for our feedback-
based resource adaptation methods to be incorporated into
these VM architectures–a subject of some of our future work.

Adaptive Feedback Control: Marshaling techniques from
control and optimization theory has been a fruitful direction
as exemplified in many systems-related [1, 3, 10, 15, 25, 30]
as well as networking-related [8, 17, 19, 22, 26] studies. By
adopting a control-theoretic model, we provide meaningful
feedback signals to applications for fair and efficient resource
management. While many “fair” resource allocation policies
exist, including those for allocating network bandwidth [13],
CPU cycles [37], and disk bandwidth [33], these approaches
do not adapt to dynamic changes in resource requirements
and usage. Typically, applications change their resource de-
mands over time, so making resource allocation decisions
using fixed parameters (e.g., weights in weighted fair queu-
ing [13]) is inadequate or requires more complex policy de-
cisions to be considered.

We believe our work to be the first to combine aspects of
control theory, VMs and application-level resource manage-
ment to alleviate the need for complex, centralized system-
level management of multiple resources.

7. CONCLUSION
In this paper, we advanced the concept of “virtual machine
friendliness” which applies the classical end-to-end argu-
ment to the problem of multi-resource allocation across a
set of applications sharing the same infrastructure. We have
shown through modeling and analysis, as well as through a
prototype implementation and performance evaluation of a
Friendly Virtual Machine (FVM) that this approach is not
only feasible but also desirable.

(1) Our approach enables applications sharing a common
host to be naturally partitioned into congestion equivalence
classes based on the particular source of congestion for each
application. This “performance isolation” property is much
harder to guarantee using traditional centralized multi-resource
allocation approaches, which cannot easily infer such a par-
tition.

(2) Our approach delegates the regulation of resource us-
age to the application itself. This enables different FVM-
compatible adaptation strategies to coexist, thus allowing
applications to select the most appropriate manner in which
resource allocations are allowed to vary over time. The eval-
uation of this feature of our framework is currently under-
way.

(3) Our approach lends itself well to emerging open systems
whereby “guest applications” must be executed on demand
on a shared hosting infrastructure. In this paper, we have
considered the case of an infrastructure that consists of a
single (centralized) host, albeit with multiple resources. We
are currently investigating the applicability of this frame-
work to infrastructures in which resources are distributed.

(4) Our approach enables the design complexity of under-
lying hosting systems to be significantly reduced. While
our current prototype implementation was built on top of
a fairly complex host OS (Linux), the concepts and mech-
anisms in this paper should be readily applicable to other
hosting environments.

10

8. REFERENCES
[1] T. Abdelzaher and C. Lu. Modeling and performance

control of internet servers. In Proceedings of the 39th IEEE
Conference on Decision and Control (ICDC), Sydney,
Australia, December 2000.

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young. Mach: A new kernel
foundation for UNIX development. In Summer USENIX
Conference, Atlanta, GA, USA, July 1986.

[3] M. Andersson, M. Kihl, and A. Robertsson. Modelling and
design of admission control mechanisms for web servers
using non-linear control theory. In Proceedings of ITCom,
2003.

[4] D. Bansal and H. Balakrishnan. Binomial congestion
control algorithms. In Proceedings of IEEE INFOCOM,
2001.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proceedings of SOSP, 2003.

[6] D. Bertsekas and R. Gallager. Data Networks.
Prentice-Hall, 1987.

[7] D. Bovet, M. Cesati, and A. Oram. Understanding the
Linux Kernel, 2nd Ed. O’Reilly & Associates, Inc., 2002.

[8] T. Bu and D. Towsley. Fixed point approximations for tcp
behavior in an aqm network. In ACM SIGMETRICS,
Boston, MA, June 2001.

[9] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco:
Running commodity operatingsystems on scalable
multiprocessors. ACM Transactions on Computer Systems,
volume 15(number 4):pp 412–447, 1997.

[10] J. Carlstrom and R. Rom. Application-aware admission
control and scheduling in web servers. In Proceedings of
IEEE INFOCOM, June 2002.

[11] H. Chen and P. Mohapatra. Session-based overload control
in qos-aware web servers. In Proceedings of IEEE
INFOCOM, June 2002.

[12] D. D. Clark. The design philosophy of the DARPA internet
protocols. In Proceedings of ACM SIGCOMM, 1988.

[13] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. In Proceedings of
the ACM SIGCOMM, Austin, TX, September 1989.

[14] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory
safety without runtime checks or garbage collection. In
Proc. Languages Compilers and Tools for Embedded
Systems 2003, San Diego, CA, June 2003.

[15] Y. Diao, N. Gandhi, S. Parekh, J. Hellerstein, and
D. Tilbury. Using mimo feedback control to enforce policies
for interrelated metrics with application to the apache web
server. In Proceedings of the Network Operations and
Management Symposium 2002, Florence, Italy, April 2002.

[16] D. R. Engler, F. Kaashoek, and J. O’Toole. Exokernel: An
operating system architecture for application-level resource
management. In Proceedings of SOSP, pages 251–266,
Copper Mountain Resort, Colorado, USA, December 1995.

[17] R. Gibbens and F. Kelly. Resource pricing and the
evolution of congestion control. Automatica, 35:1969–1985,
1999.

[18] S. M. Hand. Self-paging in the nemesis operating system.
In Proceedings of OSDI, pages 73–86. USENIX Association,
1999.

[19] C. Hollot, V. Misra, D. Towsley, and W. Gong. A control
theoretic analysis of red. In Proceedings of IEEE
INFOCOM, April 2001.

[20] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney,
and Y. Wang. Cyclone: A safe dialect of c. In USENIX
Annual Technical Conference, 2002.

[21] S. Jin, L. Guo, I. Matta, and A. Bestavros. A spectrum of
tcp-friendly window-based congestion control algorithms.
IEEE/ACM Transactions on Networking, 11(3), June
2003.

[22] F. Kelly, A. Maulloo, and D. Tan. Rate control for
communication networks: Shadow prices, proporti onal
fairness and stability. Journal of Operations Research
Society, 1998.

[23] S. King, G. W. Dunlap, and P. M. Chen. Operating system
support for virtual machines. In USENIX Annual Technical

Conference, 2003.
[24] J. Liedtke. On µ-kernel construction. In Proceedings of

SOSP, December 1995.
[25] S. Lim, C. Lee, C. Ahn, C. Lee, and K. Park. An adaptive

admission control mechanism for a cluster-based web server
system. In Proceedings of IPDPS’02, Fort Lauderdale,
Florida, April 2002.

[26] S. Low and D. Lapsley. Optimization flow control, I:basic
algorithm and convergence. IEEE/ACM Transactions on
Networking, 1999.

[27] D. Mosberger and T. Jin. httperf- a tool for measuring web
server performance. In Proceedings of the First workshop
on Internet Server Performance, Madison, WI, June 1998.

[28] K. Ogata. Modern control engineering,. Prentice Hall, 2002.
[29] G. Popek and R. Goldberg. Formal requirements for

virtualizable third generation architectures.
Communications of the ACM, 17(7):pp 413–421, July 1974.

[30] A. Robertsson, B. Wittenmark, and M. Kihl. Analysis and
design of admission control systems in web-server systems.
In Proceedings of American Control Conference (ACC),
June 2003.

[31] J. S. Robin and C. IrvineK. Analysis of the intel pentium’s
ability to support a secure virtual machine monitor. In
USENIX Security Symposium, 2000.

[32] J. Saltzer, D. Reed, and D. Clark. End-to-end arguments in
system design. In ACM Transactions on Computer
Systems (TOCS), pages Vol.2, No.4 195–206, 1984.

[33] P. J. Shenoy and H. Vin. Cello: A disk scheduling
framework for next generation operating systems. In
Proceedings of ACM SIGMETRICS, Madison, Wisconsin,
June 1998.

[34] J. Sugerman, G. Venkitachalam, and B. H. Lim.
Virtualizing i/o devices on vmware workstation’s hosted
virtual machine monitor. In USENIX Annual Technical
Conference, pages 1–14, 2001.

[35] The user-mode linux kernel home page:
http://user-mode-linux.sourceforge.net/.

[36] Vmware: http://www.vmware.com/.
[37] C. Waldspurger and W. Weihl. Stride scheduling:

Deterministic proportional share resource management. In
Technical Memorandum MIT/LCS/TM-528, June 1995.

[38] M. Welsh and D. Culler. Adaptive overload control for busy
internet servers. In Proceedings of the 4th USENIX
Conference on Internet Technologies and Systems, March
2003.

[39] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
performance in the denali isolation kernel. In Proceedings of
OSDI, Boston, MA, USA, December 2002.

11

