
Revisiting the Design of Systems for High-Confidence
Embedded and Cyber-Physical Computing Environments

Richard West and Gabriel Parmer

{richwest,gabep1}@cs.bu.edu Tel: 1-617-353-2065

1 Introduction

As the complexity of emerging real-time and embedded software systems increases, new chal-
lenges beyond those focusing solely on timeliness guarantees are becoming increasingly signifi-
cant. It is expected that embedded devices such as mobile phones and personal digital assistants
will support tens of millions of lines of code in the foreseeable future. Web services, video-on-
demand and multimedia databases are already appearing on hand-held devices and so it makes
sense that software complexity will only increase over time. Avionics, automotive and medical
application domains clearly dictate the need for software dependability in addition to traditional
goals of timeliness constraints. Should unforeseen faultsduring software execution occur, it is
paramount that potentially adverse consequences are limited in scope. The inevitable complexity
of future cyber-physical systems (CPS) software will make it impossible to statically verify com-
plete correctness. Formal methods, model checking and exhaustive testing of all possible control
paths will either not be possible, or will not reveal all reachable system states (e.g., due to side-
effects of cache activity or asynchronous events as a consequence of interrupts during run-time).
A system should therefore be designed from the ground up to beresilient to unexpected control
flow patterns and resource interactions. Central to our argument is that existing commercial off-
the-shelf (COTS) systems have limitations in their designsthat require a complete rethink in how
they should be organized to support complex CPS software. A new approach to system design is
necessary, to address challenges both in terms of software dependability and predictability.

For a system to be truly dependable it must guarantee that anyunexpected behaviors, or soft-
ware faults, do not manifest in a way that violates contractsbetween service providers and users.
Here, a service user may be an application issuing a request to a system via an API that allows
both functional and temporal constraints to be specified. Given a service request of this nature, it
is the duty of the provider (here, the system) to ensure the application receives the desired service,
even when unexpected situations arise. Such unexpected behaviors could be in terms of memory,
CPU, and/or I/O protection violations. Examples include stray pointer dereferences, infinite loops,
starvation, deadlocks, or uncontrolled access to I/O devices. Asynchronous control flow (e.g., due
to interrupts, signal handling mechanisms, and multiple threads of execution), as well as resource
sharing can lead to violations in performance guarantees and, hence, predictability. Other archi-
tectural factors, such as cache sharing, hyper-threading,and TLB design can affect the execution
rates and, therefore, interference patterns between unrelated threads. Although static analysis tech-
niques have been developed (e.g., in the design of type-safelanguages) to address many forms of
protection issues, this position paper suggests that additional run-time system support is necessary
if software is to be made truly dependable.

We focus on two major OS challenges that need to be addressed in order to provide high-



confidence computing platforms that are resilient to inevitable unpredictable behavior. Specifi-
cally, we propose that (i) time be treated as a first-class entity, not only in the specification of task
execution properties, but in the API’s of the system itself,and (ii) the memory protection struc-
ture of the system be adaptable so as to maximize fault isolation (which adds execution overhead),
while meeting application and system timing constraints.

2 Time as a First-Class System Property

The treatment of time as a first-class resource has been severely neglected even in operating
systems that claim to be RTOSes. For the most part, these tendto provide static priority pre-
emptive thread scheduling policies (via which rate-monotonic scheduling [4] and analysis can be
performed), priority inheritance [6] for synchronizationobjects and critical sections, limited or no
virtual memory/paging, and off-line profiling/worst-caseexecution time (WCET) analysis tools.
Even relatively simple time-based scheduling policies such as “earliest-deadline-first” (EDF) have
not wholly replaced static priority policies due to the added cost of managing dynamic priorities,
and the potentially negative impact on task deadlines in unexpected overload situations. Even
the POSIX.4 standard for real-time computing specifiesSCHED FIFO andSCHED RR for “first-
in-first-out” (non-preemptive) and “round-robin” (preemptive) scheduling of tasks with fixed pri-
orities. Nowhere is there any specification of timing requirements in the API to the underlying
system scheduler. Furthermore, the added costs of system services (e.g., as a result of schedul-
ing and context-switching overheads, blocking delays due to synchronization on shared resources,
and the impacts of interrupts from I/O devices) are not properly accounted in the timely execu-
tion of real-time tasks. It is no wonder, then, that systems designed for real-time computing still
have significant areas of unpredictability. As further evidence, it is common for RTOSes to offer
non-real-time network services via protocols such as TCP/IP, for compatibility with pre-existing
applications rather than to ensure timing guarantees.

To better manage time so that predictable service executionis ensured, we propose to design
a system interface that explicitly captures temporal constraints. That is, any requests from appli-
cations and/or higher-level services for a designated lower-level service will specify their timing
requirements. Throughout the system, this timing information can be used to detect and possibly
correct for deviant execution (e.g. due to unintended priority inversion). The inherent unpre-
dictability of asynchronous events such as interrupts should be addressed by defining a unified
scheduling hierarchy on every form of system “event”. Specifically, scheduling decision points
need to be placed at all locations in the system where controlflow changes may impact the timing
guarantees of tasks and their corresponding services. For example, one could devise a system that
schedules interrupts in accordance with the priorities andtiming requirements of tasks affected by
those interrupts, rather than having interrupts always preempt potentially more important tasks.
New device driver interfaces are needed to determine as early as possible which task is waiting on
a given I/O response. When a device interrupt arises, it is essential that the urgency/importance of
handling that interrupt is matched accordingly with the waiting process. Similarly, interrupts that
are not associated with specific processes (e.g., inter-processor interrupts for TLB management,
and clock interrupts to update system time) need to be correctly accounted in the timing require-
ments of tasks. None of these issues are adequately addressed by existing systems supporting
existing APIs (e.g., POSIX). Only when time is treated as a first-class entity can true performance
isolation guarantees be made.



3 Mutable Protection Domains

To limit the scope of adverse side-effects caused by errant or untrusted software, it makes sense
to leverage, where appropriate, hardware and software-based memory fault isolation (i.e., protec-
tion) mechanisms [5, 3, 2, 1], thus allowing more predictable and controlled fault recovery. How-
ever, fault isolation overheads (e.g., due to page-table management, or run-time software safety
checks) impact the granularity at which they can be imposed.They in turn impact the predictabil-
ity of software execution, because factors such as TLB/cache misses, page replacement policies,
garbage collection, and memory-bounds checks impose variable costs.

Fault isolation provisions of modern systems (e.g., Linux)are typically limited to coarse-grained
entities, such as user- versus kernel-level protection domains and page-based process address
spaces.µ-kernels [3] provide a minimal set of trusted services upon which higher-level services
can be implemented at user-level. Both applications and user-level services typically map to sepa-
rate processes which communicate via the kernel if they needto interact. Consequently,µ-kernels
provide finer-grained fault isolation than monolithic systems at the cost of increased communica-
tion overheads. Virtual machines [1] allow multiple legacyOSs to be isolated from each other,
while being able to co-exist on the same physical machine. Such a structuring provides very
coarse-grained isolation boundaries, yet can impose significant communication overheads between
VMs, and between VMs and the trusted virtual machine monitor. Regardless of the organization
of the operating system, software-based fault isolation techniques can be employed to intercept
references to invalid memory locations [5]. Similarly, type-safe languages can be used to detect
potential software faults at compile- and run-time. Commonto all techniques for fault isolation
is the notion of a fault domain, such that one domain is isolated to some degree from another dis-
tinct domain, and an appropriately chosen method of communication is necessary for inter-domain
communication. Significantly, all existing systems imposea static system structure, that is largely
inflexible to changes in the granularity at which fault isolation can be applied. In turn, the method
of inter-domain communication is static (e.g., a software trap for system calls, or an IPC message
technique for inter-process communication). The efficiency and predictability of the system, then,
is limited by the amount of overhead due to communication between isolation domains.

For the purposes of ensuring behavioral correctness of a complex software system, it is desir-
able to provide fault isolation techniques at the smallest granularity possible, while still ensuring
predictable software execution. For example, while it may be desirable to assign the functional
components of various system services to separate protection domains, the communication costs
may be prohibitive in a real-time setting. That is, the costsof marshaling and unmarshaling mes-
sage exchanges between component services, the schedulingand dispatching of separate address
spaces and the impacts on cache hierarchies (amongst other overheads) may be unacceptable in
situations where deadlines must be met. Conversely, multiple component services mapped to a
single protection domain experience minimal communication overheads but lose the benefits of
isolation from one another.

Given the above, we propose the design of a system with “mutable protection domains” (MPDs),
that is flexible in its placement of fault isolation boundaries around various application and sys-
tem components. Where possible, we attempt to maximize fault isolation, by mapping fine-grained
software components to separate hardware protection domains, at the expense of increased commu-
nication overheads. In situations where such fine-grained isolation violates the acceptable end-to-
end communication costs through a series of component services that are required to meet specific
deadlines, we strategically increase the isolation granularity. The system, then, must decide where
fault isolation boundaries are placed, using a combinationof isolation benefit values applied to



the boundaries between software components, and the communication costs between components.
The objective essentially involves the run-time adaptation of a system configuration to maximize
fault isolation benefit while guaranteeing task timelinessconstraints. Such benefit would ordinar-
ily be gauged in terms of the otherwise adverse consequencesthat may arise if the corresponding
level of isolation did not exist.

4 Summary

Given the increasing complexity of software systems, it will be almost impossible to statically
verify their correct behavior. To ensure software dependability and predictability, existing COTS
systems are deficient in several key areas that necessitate arethink in their design. We propose a
system design that considers two key factors for predictability and dependability. First, time should
be treated as a first-class entity, requiring a revised API specification and a series of scheduling de-
cision points to be placed at all locations where control flowchanges may occur. Second, a flexible
system structure that adapts protection domain boundariesand communication costs should be con-
sidered, so as to maximize fault isolation where possible while still ensuring predictability/timing
guarantees.

5. Brief Biographies

Richard West received an MEng (1991) from the University of Newcastle-upon-Tyne, England,
as well as both MS (1998) and PhD (2000) degrees in computer science from the Georgia Insti-
tute of Technology. He is currently an associate professor in the Computer Science Department at
Boston University, where his research interests include operating systems, real-time systems, dis-
tributed computing and QoS management. Gabriel Parmer is a PhD student at Boston University,
working on topics related to operating systems (especiallytheir structure, service composition and
extensibility), real-time systems and resource management. He currently holds a BA degree (2003)
from Boston University.

References

[1] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham, and R. Neuge-
bauer. Xen and the art of virtualization. InProceedings of the ACM Symposium on Operating Systems
Principles, October 2003.

[2] M. Fhndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R. Larus, , and S. Levi. Language sup-
port for fast and reliable message-based communication in Singularity OS. InProceedings of EuroSys,
pages 177–190, April 2006.

[3] J. Liedtke. On micro-kernel construction. InProceedings of the 15th ACM Symposium on Operating
System Principles. ACM, December 1995.

[4] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment.
JACM, 1973.

[5] T. A. R. Wahbe, S. Lucco and S. Graham. Software-based fault isolation. InProceedings of the 14th
SOSP, Asheville, NC, USA, December 1993.

[6] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach to real-time
synchronization.IEEE Trans. Comput., 39(9):1175–1185, 1990.


