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Quest-V: Virtualized Multi-Core System

Quest-V Background:

Boston University’s in house operating system + hypervisor

Developed for real-time and high-confidence systems

Key Features:

Virtualized Separation Kernel

Simplified Hypervisor:

Sandboxes are pinned to cores at boot, no need for scheduling
I/O devices are partitioned amongst sandboxes, not shared or
emulated
Virtualization used for encapsulation

Assume hypervisor is a trusted code base

Communication through explicit shared memory channels
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Quest-V Design
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Motivation

Safety critical systems requires component isolation and
redundancy

Integrated Modular Avionics (IMA), Automobiles

Multi-/many-core processors are increasingly popular in
embedded systems

Multi-core processors can be used to consolidate redundant
services onto a single platform
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Motivation

Many processors now feature hardware virtualization

ARM Cortex A15, Intel VT-x, AMD-V

Hardware virtualization provides opportunity to efficiently
partition resources amongst guest VMs

Not trying to remove all hardware redundancy – just lessen it
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Motivation

Many processors now feature hardware virtualization

ARM Cortex A15, Intel VT-x, AMD-V

Hardware virtualization provides opportunity to efficiently
partition resources amongst guest VMs

Not trying to remove all hardware redundancy – just lessen it

H/W Virtualization + Resource Partitioning/Isolation
=

Platform for Embedded Safety Critical Systems
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Motivation

Focusing on hardware transient faults and software timing
faults

Random bit flips from caused by radiation
Asynchronous bugs in faulty device drivers
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Quest-V N-Modular Redundancy

N redundant copies of a program, one per sandbox (at least
three)

At least one voter

Hash based fault detection and recovery

Virtualized separation kernel platform provides new n-modular
redundancy configurations

Software based dual core lock step (DCLS)
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N-Modular Redundancy

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 8



N-Modular Redundancy for Real-Time Applications
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Fault Detection

Typical n-modular redundancy compares the output of the
computation

Pro: Fast
Con: Don’t know what went wrong

Proposed detection method: compare application memory on
a per page basis via hashes

Pro: Faster and generic recovery for complicated applications
(discussed later)
Con: Must hash memory state of process (slow)
Can speed on comparison using a “summary” hash
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Fault Detection
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N-Modular Redundancy Configurations

Voting mechanism and device driver in the hypervisor

Voting mechanism and device driver in one sandbox

Voting mechanism distributed across sandboxes and device
driver is shared
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Voting Mechanism and Device Driver in the Hypervisor
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Voting Mechanism and Device Driver in the Hypervisor

Pros:

No need to modify
operating system - could
apply to Linux as well as
Quest

Need only n sandboxes

Cons:

Conflicts with Quest-V
hypervisor design

Faulty device driver could
jeopardize the entire
system

Need to duplicate the
entire guest
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Voting Mechanism and Device Driver in One Sandbox
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Voting Mechanism and Device Driver in One Sandbox

Pros:

Simpler hypervisor

Application level
redundancy, don’t need to
copy the entire sandbox

Cons:

Need (n+1) sandboxes

Need to modify guest
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Voting is Distributed and Device Driver is Shared
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Voting is Distributed and Device Driver is Shared

Pros:

Need only n sandboxes

Application level
redundancy, don’t need to
copy the entire sandbox

Cons:

Need to modify guest

Complicated shared device
driver
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Recovery

Want recovery to be as generic as possible

Simple applications – rebooting might be sufficient

Complicated applications – rebooting could cause important
state to be lost

Perform live migrations of either application or guest machine
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Recovery

All performed within the context of the thread’s sporadic server
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Quick Summary - Key Points to Take Away

Per-page hash based fault detection and recovery

Three n-modular redundancy configurations in a virtualized
separation kernel

Hypervisor Voting Sandbox Voting Distributed Voting
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Conclusion

So what’s left?
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Conclusion

So what’s left?

Further implementation and comparison
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Conclusion

So what’s left?

Further implementation and comparison

Figure out solution for voter single point of failure:
Possibilities include arithmetic encoding and memory scrubbing
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Conclusion

More Info: www.questos.org
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Conclusion

More Info: www.questos.org

Questions?
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