
Distributed Real-Time Fault Tolerance on a

Virtualized Multi-Core System

Eric Missimer*, Richard West and Ye Li

Computer Science Department

Boston University

Boston, MA 02215

Email: {missimer,richwest,liye}@cs.bu.edu
*VMware, Inc.

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 1



Quest-V: Virtualized Multi-Core System

Quest-V Background:

Boston University’s in house operating system + hypervisor

Developed for real-time and high-confidence systems

Key Features:

Virtualized Separation Kernel

Simplified Hypervisor:

Sandboxes are pinned to cores at boot, no need for scheduling
I/O devices are partitioned amongst sandboxes, not shared or
emulated
Virtualization used for encapsulation

Assume hypervisor is a trusted code base

Communication through explicit shared memory channels

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 2



Quest-V Design

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 3



Motivation

Safety critical systems requires component isolation and
redundancy

Integrated Modular Avionics (IMA), Automobiles

Multi-/many-core processors are increasingly popular in
embedded systems

Multi-core processors can be used to consolidate redundant
services onto a single platform

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 4



Motivation

Many processors now feature hardware virtualization

ARM Cortex A15, Intel VT-x, AMD-V

Hardware virtualization provides opportunity to efficiently
partition resources amongst guest VMs

Not trying to remove all hardware redundancy – just lessen it

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 5



Motivation

Many processors now feature hardware virtualization

ARM Cortex A15, Intel VT-x, AMD-V

Hardware virtualization provides opportunity to efficiently
partition resources amongst guest VMs

Not trying to remove all hardware redundancy – just lessen it

H/W Virtualization + Resource Partitioning/Isolation
=

Platform for Embedded Safety Critical Systems

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 5



Motivation

Focusing on hardware transient faults and software timing
faults

Random bit flips from caused by radiation
Asynchronous bugs in faulty device drivers

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 6



Quest-V N-Modular Redundancy

N redundant copies of a program, one per sandbox (at least
three)

At least one voter

Hash based fault detection and recovery

Virtualized separation kernel platform provides new n-modular
redundancy configurations

Software based dual core lock step (DCLS)

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 7



N-Modular Redundancy

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 8



N-Modular Redundancy for Real-Time Applications

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 9



Fault Detection

Typical n-modular redundancy compares the output of the
computation

Pro: Fast
Con: Don’t know what went wrong

Proposed detection method: compare application memory on
a per page basis via hashes

Pro: Faster and generic recovery for complicated applications
(discussed later)
Con: Must hash memory state of process (slow)
Can speed on comparison using a “summary” hash

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 10



Fault Detection

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 11



N-Modular Redundancy Configurations

Voting mechanism and device driver in the hypervisor

Voting mechanism and device driver in one sandbox

Voting mechanism distributed across sandboxes and device
driver is shared

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 12



Voting Mechanism and Device Driver in the Hypervisor

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 13



Voting Mechanism and Device Driver in the Hypervisor

Pros:

No need to modify
operating system - could
apply to Linux as well as
Quest

Need only n sandboxes

Cons:

Conflicts with Quest-V
hypervisor design

Faulty device driver could
jeopardize the entire
system

Need to duplicate the
entire guest

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 14



Voting Mechanism and Device Driver in One Sandbox

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 15



Voting Mechanism and Device Driver in One Sandbox

Pros:

Simpler hypervisor

Application level
redundancy, don’t need to
copy the entire sandbox

Cons:

Need (n+1) sandboxes

Need to modify guest

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 16



Voting is Distributed and Device Driver is Shared

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 17



Voting is Distributed and Device Driver is Shared

Pros:

Need only n sandboxes

Application level
redundancy, don’t need to
copy the entire sandbox

Cons:

Need to modify guest

Complicated shared device
driver

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 18



Recovery

Want recovery to be as generic as possible

Simple applications – rebooting might be sufficient

Complicated applications – rebooting could cause important
state to be lost

Perform live migrations of either application or guest machine

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 19



Recovery

All performed within the context of the thread’s sporadic server

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 20



Quick Summary - Key Points to Take Away

Per-page hash based fault detection and recovery

Three n-modular redundancy configurations in a virtualized
separation kernel

Hypervisor Voting Sandbox Voting Distributed Voting

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 21



Conclusion

So what’s left?

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 22



Conclusion

So what’s left?

Further implementation and comparison

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 22



Conclusion

So what’s left?

Further implementation and comparison

Figure out solution for voter single point of failure:
Possibilities include arithmetic encoding and memory scrubbing

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 22



Conclusion

More Info: www.questos.org

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 23



Conclusion

More Info: www.questos.org

Questions?

Eric Missimer, Richard West and Ye Li Real-Time Fault Tolerance 23


