
Computer Science

An Internet-wide Distributed System for
Data-stream Processing

Gabriel Parmer, Richard West, Xin Qi,
Gerald Fry, and Yuting Zhang

Boston University
Boston, MA

gabep1@cs.bu.edu

Computer Science

Introduction

� Internet growth has stimulated development of data- rather
than CPU-intensive applications
� e.g., streaming media delivery, interactive distance learning,

webcasting (e.g., SHOUTcast)

� Peer-to-peer (P2P) systems now popular
� Can efficiently locate data, but not used to deliver it

� To date, limited work on scalable delivery & processing of
data streams
� Especially when these streams have QoS constraints!

� Aim: Build an Internet-wide distributed system for delivery &
processing of data streams considering QoS throughout
� Implement logical network of end-systems

� Support multiple channels connecting publishers to 1000s of
subscribers with individual QoS constraints

Computer Science

A Data-stream Processing Network

Video sensors
(publishers)

Static
Subscribers

Overlay
network

Mobile
Subscriber

Wireless
Access
point

Intermediate
nodes

Computer Science

Properties of k-ary n-cubes

E

C

A

G

F

D

B

H

R1 R25

2

4
8

10

1

9

6

3

Physical view

Logical view

B

A

C

D
F

E

G

H
16

18

21

19 1210

16
7

18
14

10

8

[000] [100]

[111]

[101]
[010]

[011]

� M = kn nodes in the graph
� If k = 2, degree of each node is n
� If k > 2, degree of each node is 2n
� Worst-case hop count between

nodes:
� n�k/2�

� Average case path length:
� A(k,n) = n �(k2/4) � 1/k

� Optimal dimensionality:
� n = ln M

� Minimizes A(k,n) for given k and n

Computer Science

QoS considerations in k-ary n-
cubes

� Methods for considering QoS
� Routing algorithms

� Ordered Dimensional Routing (ODR)
� Random Ordering of Dimensions (Random)
� Proximity-based Greedy Routing (Greedy)

� Dynamic node re-assignment
� Subscribers can exchange their logical identifier with

nodes that are closer to the publisher of their data-
stream
� Less hops from publishers to subscribers on

average

Computer Science

Optimizations via routing

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256 512

C
um

ul
at

iv
e

%
 o

f S
ub

sc
rib

er
s

Delay Penalty (relative to unicast)

2x16 ODR
2x16 Random
2x16 Greedy

16x4 ODR
16x4 Random
16x4 Greedy

Greedy routing
up to 40% better

Computer Science

End-system Architecture

� Modify COTS systems to support efficient and predictable
methods for execution of data-stream processing agents
(SPAs).
� Must consider QoS throughout, not only on the network level

� User-level sandboxing for efficient SPAs:
� Provide efficient method for isolating and executing extensions
� Provide efficient method for passing data between user-level and

network interface (eg. by using DMA)

Kernel
Level

Control / Data
Channels

•Overlay management
•Resource monitoring

Sandbox Region
App process

User
LevelApp process

SPAs
(e.g., routing agents)

Publisher Intermediate Subscriber

•Overlay management
•Resource monitoring

Computer Science

User-level Sandbox Implementation

� Modify address spaces of all processes to contain
one or more shared pages of virtual addresses
� Normally inaccessible at user-level
� Kernel upcalls to execute sandbox extensions

� This action also flips the protection bits so sandboxed
extensions always execute at user-level, thus protecting
the kernel

.

.

.

Process-
private
address space

Sandbox region
(shared virtual address space)

Kernel
Level

User
Level

P1 P2

Mapped data

Pn

SPA for PnSPA for P2

Kernel events make sandbox region user-level
accessible

� Can avoid address-
space context switching
costs when executing
extensions because
they exist in all address
spaces

Computer Science

SPA predictable execution support

� User-level networking
stack in sandbox
� Interacts with the NIC via

DMA
� Can execute and

process at interrupt-time
because sandbox is
resident in every address
space

� Elimination of extra copies
allows for greater efficiency

� Interrupt-time execution allows
isolation and predictability

Computer Science

Conclusions

� Use ideas from overlay routing and user-level
sandboxing to implement an Internet-wide
distributed system
� Provide efficient support for app-specific services and

scalable data delivery

� QoS is important throughout the entire system and
should be considered on the network as well as
end-host level

