
PAStime: Progress-aware
Scheduling for Time-critical
Computing

Soham Sinha, Richard West, Ahmad Golchin
Department of Computer Science, Boston University, USA

Introduction - Mixed-criticality Systems

2

Object classification

Traffic sign detection

Car entertainmentUnmanned Aerial
Vehicles

Background - MC Task Scheduling

3

System Modes

HI-mode LO-mode

Background - MC Task Scheduling

4

System Modes

HI-mode LO-mode

High-criticality (HC) Tasks
✔
Low-criticality (LC) Tasks Х

High-criticality (HC) Tasks
✔
Low-criticality (LC) Tasks ✔

Background - MC Task Scheduling

5

System Modes

HI-mode LO-mode

High-criticality (HC) Tasks
✔
Low-criticality (LC) Tasks Х

High-criticality (HC) Tasks
✔
Low-criticality (LC) Tasks ✔

High-criticality tasks are given
more time to execute at the
cost of low-criticality tasks

Adaptive Mixed-criticality (AMC) Scheduling
1. The system starts in LO-mode.

○ All tasks run with their LO-mode budgets.
2. When a task overruns its LO-mode budget, system mode is switched to HI-mode.
3. In HI-mode, only high-criticality tasks get to run.

6

AMC Scheduling - A Simple Example

7

HC1

LC

 C (LO) C (HI)

HC2

 C (LO) C (HI)

 C (LO)

HC1

HC2

HC1

HC2

Overruns C(LO)

No LC tasks

LO-mode HI-mode

1st Period 2nd Period 3rd Period

 System
mode

Limitations of AMC
● Although task deadlines are honored, LC tasks are dropped in HI-mode.
● A small delay in a HC task could overrun its LO-mode budget.

○ System is switched to HI-mode.
● Frequent switch to HI-mode will drop LC tasks more frequently as well.
● Quality-of-service of the LC tasks is degraded by premature or unnecessary switches to

HI-mode.

8

Prior Solutions to improve AMC
● Stretch the period.
● Use reduced HI-mode budget for low-criticality tasks.
● Static calculation of slack.

9

● Improve AMC by using runtime progress.
○ Reducing the number of mode switches
○ Increasing the execution time for LC tasks
○ Improve QoS of LC tasks while guaranteeing HC tasks’

deadlines.

PAStime:
Progress-aware
Scheduling

10

PAStime Runtime System

11

● Add checkpoints in a high-criticality program’s source code.
● Measure progress at the checkpoints in LO-mode by profiling.

● At runtime, if a HC task is delayed at a checkpoint
○ Check if C (LO) could be extended, without

breaking schedulability of other tasks.
● Keep the system in LO-mode, if the task finishes

within extended C (LO)
○ Otherwise, switch to HI-mode

BB1:
start

BB2:
for loop (10
times)

BB3

BB6:
for loop
(20 times)

BB5

BB4

BB7

BB8

500ms

2000ms

AMC-PAStime: AMC extended with PAStime

12

HC1

LC

 C (LO) C (HI)

HC2

 C (LO) C (HI)

HC1

HC2

HC1

Observes delay,
extends C(LO)

LO-mode

 C (LO)

LC

HC2

LC

 Extended
 C (LO)

1st Period 2nd Period 3rd Period

Checkpoint

 System
mode

Implementation of PAStime
● Two phases

○ Profiling phase
○ Execution phase

● Runtime implementation in LITMUSRT

○ First implementation of AMC
in LITMUSRT

○ Both AMC and AMC-PAStime
In LITMUSRT

13

Checkpoint Instrumentation
● Manual Checkpoint Instrumentation
● Automatic Checkpoint Instrumentation for Profiling phase

○ Insert checkpoint before a loop (except the first)
○ Implemented in LLVM

14

BB1:
start

BB2:
for loop
(10 times)

BB3

BB6:
for loop
(20 times)

BB5
BB4

BB7

BB8

Evaluation

15

An Overview

● Platform: Intel NUC Kit (Intel
Core i7-5557U 3.1 GHz)

● Applications: Darknet Object
Classification (HC), dlib Object
Tracking (HC), MPEG Video
Decoder (LC)

● Metrics: QoS, Scalability (2-20
tasks), Flexibility in LO-mode
utilization, Checkpoint location,
Overheads, Prediction Models

QoS of A Low-criticality Task

16

 9-21% increment in decoded frames

Two Tasks
One HC Object Classifier

One LC Video Decoder

Scalability - 2 to 20 Tasks

17

Utilizations of LC tasks is improved by
a factor of 3 to 9 for 8 to 20 tasks.

Half the task in each set are HC
Object Classifier tasks and half are

LC Video Decoder tasks

Two Prediction Models

● Prediction based on linear extrapolation of delay
● Prediction based on Memory Access Time

18

Conclusion and
Future Work

● Explore other prediction models
such as the feedback-based one.

● Applications of PAStime in
timing-sensitive
cloud-computing applications.

● In Quest RTOS, VCPU budget
could be extended based on
observed delay at a checkpoint,
given that RMS schedulability
criteria is met.

19

PAStime is a mixed-criticality
runtime system to extend the

LO-mode based on the execution
progress of the HC tasks. PAStime
is implemented using LLVM and

LITMUSRT.

Thanks You!

20

Contact: soham1 <AT> bu.edu

Questions?

