
Introduction Architecture Performance Conclusions Ongoing and Future Work

A Virtualized Separation Kernel for Mixed
Criticality Systems

Ye Li, Richard West and Eric Missimer

Boston University

March 2nd, 2014

Introduction Architecture Performance Conclusions Ongoing and Future Work

Motivation

I Mixed criticality systems requires component isolation for
safety and security

I Integrated Modular Avionics (IMA), Automobiles

I Multi-/many-core processors are increasingly popular in
embedded systems

I Multi-core processors can be used to consolidate services of
different criticality onto a single platform

Introduction Architecture Performance Conclusions Ongoing and Future Work

Motivation

I Many processors now feature hardware virtualization
I ARM Cortex A15, Intel VT-x, AMD-V

I Hardware virtualization provides opportunity to efficiently
partition resources amongst guest VMs

H/W Virtualization + Resource Partitioning = Platform for Mixed
Criticality Systems

Introduction Architecture Performance Conclusions Ongoing and Future Work

Related Work

Existing virtualized solutions for resource partitioning

I Wind River Hypervisor, XtratuM, PikeOS

I Xen, PDOM, LPAR

Traditional Virtual Machine approaches too expensive

I Require traps to VMM (a.k.a. hypervisor) to multiplex and
manage machine resources for multiple guests

I e.g., 1500 clock cycles VM-Enter/Exit on Xeon E5506

We want to eliminates hypervisor intervention during normal
virtual machine operations

Introduction Architecture Performance Conclusions Ongoing and Future Work

Contribution

Quest-V Separation Kernel

I Uses H/W virtualization to partition resources amongst
services of different criticalities

I Each partition, or sandbox, manages its own CPU, memory,
and I/O resources without hypervisor intervention

I Hypervisor only needed for bootstrapping system + managing
communication channels between sandboxes

Introduction Architecture Performance Conclusions Ongoing and Future Work

Overview

Introduction Architecture Performance Conclusions Ongoing and Future Work

Memory Partitioning

I Guest kernel page tables for GVA-to-GPA translation
I EPTs (a.k.a. shadow page tables) for GPA-to-HPA translation

I EPTs modifiable only by monitors
I Intel VT-x: 1GB address spaces require 12KB EPTs with 2MB

superpaging

Introduction Architecture Performance Conclusions Ongoing and Future Work

Memory Partitioning

Introduction Architecture Performance Conclusions Ongoing and Future Work

Quest-V Linux Memory Layout

Introduction Architecture Performance Conclusions Ongoing and Future Work

I/O Partitioning

I I/O devices statically partitioned
I Device interrupts directed to each sandbox

I Eliminates monitor from control path
I I/O APIC redirection tables protected by EPT

I EPTs prevent illegal access to memory mapped I/O registers

I Port-addressed I/O registers protected by bitmap in VMCS
I Monitor maintains PCI device ”blacklist” for each sandbox

I (Bus No., Device No., Function No.) of restricted PCI devices

Introduction Architecture Performance Conclusions Ongoing and Future Work

I/O Partitioning

PCI devices in blacklist hidden from guest during enumeration

I Data Port: 0xCFC Address Port: 0xCF8

Introduction Architecture Performance Conclusions Ongoing and Future Work

CPU Partitioning

I Scheduling local to each sandbox
I Avoids monitor intervention
I Partitioned rather than global

I Native Quest kernel uses VCPU real-time scheduling
framework (RTAS ’11)

Introduction Architecture Performance Conclusions Ongoing and Future Work

Linux Front End

I Most likely serving low criticality legacy services

I Based on Puppy Linux 3.8.0

I Runs entirely out of RAM including root filesystem
I Low-cost paravirtualization

I Less than 100 lines
I Restrict observable memory
I Adjust DMA offsets

I Grant access to VGA framebuffer + GPU

I Quest native SBs tunnel terminal I/O to Linux via shared
memory using special drivers

Introduction Architecture Performance Conclusions Ongoing and Future Work

Quest-V Linux Screenshot

Introduction Architecture Performance Conclusions Ongoing and Future Work

Quest-V Linux Screenshot

Introduction Architecture Performance Conclusions Ongoing and Future Work

Monitor Intervention

During normal operation, we observed only one monitor trap every
3 to 5 minutes caused by cpuid.

No I/O Partitioning I/O Partitioning (Block COM and NIC)
Exception 0 9785
CPUID 502 497
VMCALL 2 2
I/O Inst 0 11412
EPT Violation 0 388
XSETBV 1 1

Table : Monitor Trap Count During Linux Sandbox Initialization

Introduction Architecture Performance Conclusions Ongoing and Future Work

Quest-V Performance Overhead

I Measured time to play back 1080P MPEG2 video from the
x264 HD video benchmark

I Intel Core i5-2500K HD3000 Graphics

 0

 5

 10

 15

 20

 25

 30

 35

Linux Quest Linux Quest Linux 4SB

T
im

e
 (

s
e
c
o
n
d
)

VC (VO=NULL)
VC

VO

Introduction Architecture Performance Conclusions Ongoing and Future Work

Memory Virtualization Cost

I Example Data TLB overheads

I Intel Core i5-2500K 4-core, shared 2nd-level TLB (4KB pages,
512 entries)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 100 200 300 400 500 600 700 800

T
im

e
 (

C
P

U
 C

y
c
le

s
)

Number of Pages

Quest-V VM Exit
Quest-V TLB Flush

Quest TLB Flush
Quest-V Base

Quest Base

Introduction Architecture Performance Conclusions Ongoing and Future Work

Conclusions

I Quest-V separation kernel built from scratch
I Distributed system on a chip
I Uses (optional) hardware virtualization to partition resources

into sandboxes
I Protected communication channels between sandboxes

I Sandboxes can have different criticalities
I Native Quest sandbox for critical services
I Linux front-end for less critical legacy services

I Sandboxes responsible for local resource management
I Avoids monitor involvement

Introduction Architecture Performance Conclusions Ongoing and Future Work

Ongoing and Future Work

I Online fault detection and recovery
I Technologies for secure monitors

I e.g., Intel TXT, Intel VT-d

I Micro-architectural Resource Partitioning
I e.g., shared caches, memory bus

Introduction Architecture Performance Conclusions Ongoing and Future Work

Thank You!

For more details, preliminary results, Quest-V source code and
forum discussions. Please visit:

www.questos.org

	Introduction
	Motivation
	Related Work
	Contribution

	Architecture
	Overview
	Memory Partitioning
	I/O Partitioning
	CPU Partitioning
	Linux Front End

	Performance
	Monitor Intervention
	Performance Overhead
	Memory Virtualization Cost

	Conclusions
	Ongoing and Future Work

