An Efficient End-host Architecture for
Cluster Communication Services

Xin Qi, Gabriel Parmer and Richard West

Computer Science

* I ntrod UC'“ O n S :;;

Computer Science

= General-purpose systems provide a general set of
abstractions that allow for a good combination of

= Fairness between processes

= Simple abstraction of the base hardware to all
application processes

= With generality, fine grained control is sacrificed
= Copying of data via kernel for network stack

» Networking core cannot be easily extended
with new protocols

= High performance applications may demand more than
these generic abstractions can provide

= Contributions

Computer Science

= High performance networking using “user-level sandboxing”
= Zero copy
* Eliminates scheduling overheads

= Safe abstraction

= Kernel controls access rights to user-level sandbox
services

» Regulated access to I/O devices is guaranteed

= Example usages:

= Efficient middleware routing of high bandwidth/low
latency data streams

= A proxy server handing remote procedure calls

: SN
=8 User-level Sandboxing W 8

Computer Science

Provides user-level environment for the execution of service
extensions

= Separate kernel from app-specific code

= Use only page-level hardware protection

= Approach does not require specific hardware protection
features, such as segmentation and tagged TLBs

= Extension code only activated by the kernel via upcalls

» Sandbox extensions can be executed in the context of any
process to avoid scheduling overheads

»

Hardware Support for Memory- & ™
safe Extensions

i- Load - i N - 4

U

A

- JIEEN

Computer Science

P1 P2 Pn

Process-private
address space

ser Level

Sandbox region
(shared virtual address space)

Extension for P2 '
Kernel Level

Kernel events make
sandbox region
user-level accessible

& User-level Sandboxing
Implementation T

Computer Science

= Modify address spaces of all processes to contain one or
more shared pages of virtual addresses

» Shared pages used for sandbox
= Normally inaccessible at user-level

» Kernel upcalls toggle sandbox page protection bits &
perform TLB invalidation on corresponding page(s)

= Current x86 approach
= 2x4MB superpages
= Modified dietlibc supports most normal functionality
» ELF loader to map code into sandbox
= Support sandboxed threads that can block on syscalls

Hardware Support for Memory- & ™
safe Extensions B i

Computer Science

Process 1 Physical Memory Process 2
Private L
: Mapped Data
address ! - PP
space » ! ;
"""" Extension | ! i ~
Sandbox C(lde ! Sandbox
public | i public - 4MB
area readonlydata) i & | area
_______________________________ - :L R
Mapped Data !
Protected Extension Protected . 4MB
area Stacks area
~~~~~~~~~~~~~~~~~~~ _/




‘-;‘G N un,

4 Invoking Sandbox Extensions /% %
l‘t et g ey =

Computer Science

= Fast Upcalls

» | everage SYSEXIT/SYSENTER on x86
= Support Traditional IRET approach also

= Kernel Events

= Generic interface supports delivery of events to specific
extensions

= Each extension has its own stack & thread structure
= Events can be queued -- like POSIX.4 (real time) signals



» User-level Networking

Computer Science

= |ssues involved in building a high performance customizable
user-level networking stack:

* Memory Management

= A slab allocator that has a-priori knowledge of objects
such as packet descriptors

= Kernel Bypassing

» An abstraction for passing control to an extension for
Interrupt time (asynchronous) processing

= NIC Interaction

= Support DMA transfers of packet data to / from
sandboxed extension code



= User-level Networking 7%

Computer Science

= UML (User Mode Linux) used as the basis for network
service extensions, by providing:

= memory allocation
= a modular device interface

= a fully functional, modular networking stack

= A well defined set of communication channels between

kernel and sandbox to pass memory location for packet
arrival and transmission

= High speed DMA to user level is only possible because
sandbox exists in every process virtual address space



‘-;‘GN Uy,

O L

S %

un
| : H =
Mot g 5~

Computer Science

® User-level Networking

= Demultiplexing packets

= Some technologies rely on programmable NICs which
have a-priori knowledge of the destination of incoming
packets

= All incoming packets must still be allocated and
transferred to sandbox area

» A light-weight classifier can be written either in the kernel
or sandbox

» Sandbox networking scheme is not intended for efficient
processing of all packets

= \We focus on efficient communication for sandbox
extensions



User-level Networkiné;
--(Asynchronous Mode)

-0
i
i i’

ST

Computer Science

User Level

A
Rx Ring Sandbox App Tx Rlnv@
@) g GEDS

Sandbox Network Stack
®
3

SBnet Driver
Kernel

(o)
w
\_/
N
1 O1 ]
N/
N
<y
=\
wy

Network Driver

Network Interface Card (NIC)




User-level Networking
--(Synchronous Mode)

D"ﬁGN U,a,,f#
S “
wn
T [
o =

ST

Computer Science

User Level
Sandbox Memory Manager
A » Dr A
> Rx Rin rver Tx Rin
? Queue—@\
<2> @ Sandbox |\
App
SBnet L (1@
Driver QB st\‘;dblgx
Sandbox eStggk'ng
Kernel | |
® () <l> © @ |
\ 4 A 4
Network Driver
@ @ @ \/

Network Interface Card (NIC)




= Experimental Results

Computer Science

= Example customized service extension: Relay Socket
= To bind a pair of sockets together
= For efficient forwarding of packets at transport layer

= UDP Forwarding
= Comparison of networking implementations

= Transfer time |jitter

= TCP Forwarding



= Experiment Environment

Computer Science

N ) K ) §0

A B ©
4 N [ N
Socket Relayer Level
wget Iperf ~ SELEIE0X REE| el . httpd Iperf
_____ - Sandbox Relayer -

Kernel
\ / \ Kernel Relayer / \ Level

I I Control / Data
Channels




= UDP forwarding (1/2)

Computer Science

250

200 B

[ERN

a1

o
I

[ERN

o

o
I

Throughput (Mbps)

al
?
!
T

1 | ; | ; | - 1
0 1 2 4 8 16
Number of Background Threads

o

\ E UML in user process O UML in sandbox

= UML in user process vs. UML in sandbox
= An improvement of 130% with no background threads

= With more background threads, sandbox agent does not suffer
scheduling delays and therefore maintains high throughput



=1 UDP forwarding (2/2)

Computer Science

Throughput (Mbps)

-

0 ‘ ? ? 1 ? ?
0 1 2 4 8 16 24
Number of Background Threads

‘ O Socket O Kernel B Sandbox ‘

= User-level vs. Kernel-level vs. Sandbox Networking

= Sandbox networking is comparable to kernel approach with no
background threads

= Throughput remains constant irrespective of background threads



=4 Transfer Time Jitter ne. \

Computer Science

120 1000
% 100 g 900
S & 800
] 3
? 80 % 700
g T
CIE) g 600
= 60 ~ 500
: 5
% g 400
= 40 =]
£ = 300
S [J] ——
2 20 g 200
P’ n [ | —
07 - : O___ T T
0 4 16 0 4 16
Number of Background Threads Number of Background Threads
Bsandbox OKernel Osocket B Sandbox OKernel Socket
Average Jitter Maximum Jitter

= Low jitter is important for QoS-constrained (e.g. multimedia) applications

= Near constant jitter is demonstrated by the sandboxed networking
scheme

= other two approaches show larger and more variable jitter as the
number of background threads increases



» TCP Forwarding

Computer Science

120

100

80 T

60 —

Throughput(Mbps)

40 +— -

20+ -

— T

0 1 2 4 8
Number of background threads

‘UUML in user process BUML in sandbox(Normal) JUML in sandbox(RR)‘

= UML in user space vs. sandbox
= Using wget to get 1GB file from Apache server via intermediate node
= 30% improvements in throughput using SCHED_ OTHER

» Prioritizing the sandbox thread using SCHED RR yields more than
50% higher throughput irrespective of background threads



/

5‘&

ﬂ Microbenchmarks m i)

Computer Science

1

A

Operation Cost in CPU Cycles
Null Fast Upcall 1370
Sandbox Packet Processing time 6360

Kernel Packet Processing time 4800




» Conclusions

Computer Science

= Efficient networking stack in a “user-level sandbox”

= Higher throughput and lower jitter than traditional
middleware services implemented in process-private
address spaces

* |n many cases, our architecture enables user-level
services to outperform equivalent kernel-based services

that require scheduling

= User-level sandboxing scheme allows extension code to:

» Safely and efficiently access lower-level abstractions
(e.g., interrupt time execution, network hardware)

= Execute without scheduling process-private address
spaces

= Easy to debug and implement new services.



ﬂ Future Work

Computer Science

= Type safe language support / software-based fault isolation

= Binary rewriting techniques to avoid patching host kernel for
sandbox support



