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= General-purpose systems provide a general set of
abstractions that allow for a good combination of

= Fairness between processes

= Simple abstraction of the base hardware to all
application processes

= With generality, fine grained control is sacrificed
= Copying of data via kernel for network stack

» Networking core cannot be easily extended
with new protocols

= High performance applications may demand more than
these generic abstractions can provide



= Contributions
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= High performance networking using “user-level sandboxing”
= Zero copy
* Eliminates scheduling overheads

= Safe abstraction

= Kernel controls access rights to user-level sandbox
services

» Regulated access to I/O devices is guaranteed

= Example usages:

= Efficient middleware routing of high bandwidth/low
latency data streams

= A proxy server handing remote procedure calls
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Provides user-level environment for the execution of service
extensions

= Separate kernel from app-specific code

= Use only page-level hardware protection

= Approach does not require specific hardware protection
features, such as segmentation and tagged TLBs

= Extension code only activated by the kernel via upcalls

» Sandbox extensions can be executed in the context of any
process to avoid scheduling overheads
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= Modify address spaces of all processes to contain one or
more shared pages of virtual addresses

» Shared pages used for sandbox
= Normally inaccessible at user-level

» Kernel upcalls toggle sandbox page protection bits &
perform TLB invalidation on corresponding page(s)

= Current x86 approach
= 2x4MB superpages
= Modified dietlibc supports most normal functionality
» ELF loader to map code into sandbox
= Support sandboxed threads that can block on syscalls
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= Fast Upcalls

» | everage SYSEXIT/SYSENTER on x86
= Support Traditional IRET approach also

= Kernel Events

= Generic interface supports delivery of events to specific
extensions

= Each extension has its own stack & thread structure
= Events can be queued -- like POSIX.4 (real time) signals



» User-level Networking
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= |ssues involved in building a high performance customizable
user-level networking stack:

* Memory Management

= A slab allocator that has a-priori knowledge of objects
such as packet descriptors

= Kernel Bypassing

» An abstraction for passing control to an extension for
Interrupt time (asynchronous) processing

= NIC Interaction

= Support DMA transfers of packet data to / from
sandboxed extension code
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= UML (User Mode Linux) used as the basis for network
service extensions, by providing:

= memory allocation
= a modular device interface

= a fully functional, modular networking stack

= A well defined set of communication channels between

kernel and sandbox to pass memory location for packet
arrival and transmission

= High speed DMA to user level is only possible because
sandbox exists in every process virtual address space
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® User-level Networking

= Demultiplexing packets

= Some technologies rely on programmable NICs which
have a-priori knowledge of the destination of incoming
packets

= All incoming packets must still be allocated and
transferred to sandbox area

» A light-weight classifier can be written either in the kernel
or sandbox

» Sandbox networking scheme is not intended for efficient
processing of all packets

= \We focus on efficient communication for sandbox
extensions
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= Experimental Results
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= Example customized service extension: Relay Socket
= To bind a pair of sockets together
= For efficient forwarding of packets at transport layer

= UDP Forwarding
= Comparison of networking implementations

= Transfer time |jitter

= TCP Forwarding
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= UDP forwarding (1/2)
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= UML in user process vs. UML in sandbox
= An improvement of 130% with no background threads

= With more background threads, sandbox agent does not suffer
scheduling delays and therefore maintains high throughput
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= User-level vs. Kernel-level vs. Sandbox Networking

= Sandbox networking is comparable to kernel approach with no
background threads

= Throughput remains constant irrespective of background threads
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= Low jitter is important for QoS-constrained (e.g. multimedia) applications

= Near constant jitter is demonstrated by the sandboxed networking
scheme

= other two approaches show larger and more variable jitter as the
number of background threads increases
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= UML in user space vs. sandbox
= Using wget to get 1GB file from Apache server via intermediate node
= 30% improvements in throughput using SCHED_ OTHER

» Prioritizing the sandbox thread using SCHED RR yields more than
50% higher throughput irrespective of background threads
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» Conclusions
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= Efficient networking stack in a “user-level sandbox”

= Higher throughput and lower jitter than traditional
middleware services implemented in process-private
address spaces

* |n many cases, our architecture enables user-level
services to outperform equivalent kernel-based services

that require scheduling

= User-level sandboxing scheme allows extension code to:

» Safely and efficiently access lower-level abstractions
(e.g., interrupt time execution, network hardware)

= Execute without scheduling process-private address
spaces

= Easy to debug and implement new services.



ﬂ Future Work
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= Type safe language support / software-based fault isolation

= Binary rewriting techniques to avoid patching host kernel for
sandbox support



